
ORIGINAL ARTICLE

Twin support vector hypersphere (TSVH) classifier
for pattern recognition

Xinjun Peng • Dong Xu

Received: 14 January 2012 / Accepted: 7 December 2012 / Published online: 5 February 2013

� Springer-Verlag London 2013

Abstract Motivated by the support vector data descrip-

tion, a classical one-class support vector machine, and the

twin support vector machine classifier, this paper formu-

lates a twin support vector hypersphere (TSVH) classifier,

a novel binary support vector machine (SVM) classifier

that determines a pair of hyperspheres by solving two

related SVM-type quadratic programming problems, each

of which is smaller than that of a conventional SVM, which

means that this TSVH is more efficient than the classical

SVM. In addition, the TSVH successfully avoids matrix

inversion compared with the twin support vector machine,

which indicates learning algorithms of the SVM can be

easily extended to this TSVH. Computational results on

several synthetic as well as benchmark data sets indicate

that the proposed TSVH is not only faster, but also obtains

better generalization.

Keywords Machine learning � Pattern recognition �
Support vector machine � Nonparallel hyperplanes �
Hypersphere

1 Introduction

The support vector machine (SVM) is an excellent tool for

binary data classification [1–4]. This learning strategy,

introduced by Vapnik [3, 4], is a principled and very

powerful method in machine learning algorithms. Within a

few years after its introduction, the SVM has already out-

performed most other systems in a wide variety of appli-

cations. These include a wide spectrum of research areas,

ranging from pattern recognition [5, 6], text categorization

[7], biomedicine [8], brain–computer interface [9], and

financial applications [10].

The theory of SVM proposed by Vapnik et al. is based on

the structural risk minimization (SRM) principle [1–4]. In

its simplest form, the SVM for linearly separable two-class

problems finds an optimal hyperplane that maximizes the

margin between the two classes. The hyperplane is obtained

by solving a dual quadratic programming problem (QPP).

For nonlinearly separable cases, the input vectors are first

mapped into a high dimensional feature space by using a

nonlinear kernel function [1, 4]. A linear classifier is then

implemented in that feature space to classify the data.

One of the main challenges for the classical SVM is the

large computational complexity of the QPP. In addition, the

performance of a trained SVM also depends on the optimal

parameter set, which is usually found by cross-validation on

a training set. The long training time of QPP not only causes

the SVM to take a long time to train on a large database, but

also prevents the SVM from locating the optimal parameter

set from a very fine grid of parameters over a large span. To

reduce the learning complexity of SVM, various algorithms

and versions of SVM have been reported by many

researchers with comparable classifications ability, includ-

ing the Chunking algorithm [11], decomposition method

[12], sequential minimal optimization (SMO) approach

[13, 14], least squares support vector machine (LS-SVM)

[15, 16], and geometric algorithms [18–20].

All the above classifiers discriminate a point by deter-

mining in which half-space it lies. Mangasarian and Wild

[21] proposed a nonparallel-plane classifier for binary data

X. Peng (&) � D. Xu

Department of Mathematics, Shanghai Normal University,

Shanghai 200234, People’s Republic of China

e-mail: xjpeng999@gmail.com

X. Peng

Scientific Computing Key Laboratory of Shanghai Universities,

Shanghai 200234, People’s Republic of China

123

Neural Comput & Applic (2014) 24:1207–1220

DOI 10.1007/s00521-012-1306-6

classification, named the generalized eigenvalue proximal

support vector machine (GEPSVM). In this approach, data

points of each class are proximal to one of two nonparallel

planes. The nonparallel planes are eigenvectors corre-

sponding to the smallest eigenvalues of two related gen-

eralized eigenvalue problems. The GEPSVM is very fast as

it solves two generalized eigenvalue problems of the order

of input space dimension. But the performance of it is only

comparable with the classical SVM and in many cases, it

gives low classification accuracies. Recently, Jayadeva

et al. [22] proposed a twin support vector machine (TSVM)

classifier for binary data classification. The TSVM aims at

generating two nonparallel hyperplanes such that each one

is closer to one class and is at least one far from the other

class for any given binary data set. The strategy of solving

a pair of smaller sized QPPs instead of a large one as in

classical SVMs makes the learning speed of TSVM be

approximately four times faster than classical SVM. In

terms of generalization, the TSVM favorably compares

with classical SVM. Some extensions to the TSVM include

the least squares TSVM (LS-TSVM) [23], smooth TSVM

[24], nonparallel-plane proximal classifier (NPPC) [25,

26], geometric algorithms [27], localized TSVM

(LCTSVM) [28], twin support vector regression (TSVR)

[29, 30], twin parametric-margin SVM (TPMSVM) [31],

and twin parametric insensitive support vector regressions

(TPISVR) [32].

The experimental results in [22] show that the TSVM

obtains four times faster learning speed than a classical

SVM. This is because the TSVM differs from the SVM in

one fundamental way, in which a pair of smaller sized

QPPs is solved, whereas in the classical SVM, only a single

QPP is solved. In addition, the TSVM compares favorably

with the SVM and GEPSVM in terms of generalization

performance. However, there exists some shortcomings in

the TSVM. First, for the nonlinear TSVM, the objective

functions of its dual QPPs require inversion of matrix of

size (l ? 1) 9 (l ? 1) twice, where l is the number of

training samples, which increases the computational cost

for optimizing them. On the other hand, in order to extend

some efficient SVM algorithms on the TSVM, such as the

SMO and decomposition algorithm, it needs to cache the

inverse matrices, which leads the TSVM to be not suitable

for large-scale problems. Second, the TSVM uses a pair of

nonparallel hyperplanes to depict the characterizations of

two classes of samples, such that each hyperplane is closest

to data points of the corresponding class and is at a distance

of at least 1 from the data points of the other one. It is

obviously that this description is not reasonable for general

cases; for instance, it is impossible to use two planes to

reflect the binary classification samples coming from two

different Gaussian distributions. Third, unlike the classical

SVM, the TSVM only aims at minimizing the empirical

risks of training samples such that in each QPP, the

L2-norm empirical risks of samples of one class and the

L1-norm empirical risks of samples of the other class are

minimized simultaneously with a trade-off parameter. A

direct consequence is to appear the over-fitting phenome-

non on the nonparallel hyperplanes, which reduce the

generalization performance.

In this paper, we propose a new hypersphere classifier,

termed the twin support vector hypersphere (TSVH), for

binary pattern recognition. Our TSVH is motivated by the

support vector data description (SVDD) [33, 34], a clas-

sical one-class support vector machine (OCSVM) for

unsupervised learning (the readers can find the introduc-

tion of OCSVM at [35] etc). Basically, the TSVH aims at

generating two hyperspheres such that each hypersphere

contains as many as possible samples of one class and is

as far as possible from those of the other class. Similar to

the TSVM, the TSVH solves two smaller sized QPPs

instead of a large one as we do in the traditional SVM.

There exists some merits in the TSVH compared with the

TSVM. First, the formulation of TSVH is totally different

from that of the TSVM. Specifically, the inversions of

matrix of size (l ? 1) 9 (l ? 1) twice in the dual QPPs

of TSVM are avoided, which cause the TSVH to obtain a

lower learning cost and can be easily extended to large-

scale problems with efficient learning algorithms. Second,

the TSVH uses a pair of hyperspheres to describe the

training samples, such as each hypersphere covers as

many as possible samples of the one class, whereas is far

from the samples of the other class. This strategy is more

reasonable than the TSVM for most real cases, which

means TSVH can deal with more general pattern recog-

nition problems than TSVM. Computational comparisons

with the TSVM and SVM in terms of classification

accuracy and learning time are made on several artificial

and UCI data sets, showing that the proposed TSVH is

not only faster than the other two methods, but also

obtains comparable generalization.

The remainder of this paper is organized as follows:

Sect. 2 briefly reviews the SVM, SVDD, and TSVM.

Section 3 introduces the novel twin support vector hyper-

sphere. Section 4 discusses the learning algorithm for the

proposed TSVH. Experiments on several artificial and

benchmark data sets are discussed in Sect. 5. Finally, Sect.

6 summarizes and concludes the paper.

2 Background

In this section, we briefly introduce the classical SVM,

SVDD, and TSVM. Without the loss of generalization, we

consider a classification problem with the data set D ¼
ðx1; y1Þ; . . .; ðxl; ylÞf g; where xi 2 X � Rd and yi 2

1208 Neural Comput & Applic (2014) 24:1207–1220

123

f�1; 1g: Further, we denote by I� the sets of indices i such

that yi = ±1 and I ¼ Iþ
S
I�; and denote by D ± the

positive and negative set, i.e., D� ¼ fxiji 2 I�g.

2.1 Support vector machine

Generally, the SVM finds the best (maximal margin) sep-

arating hyperplane Hðw; bÞ between two classes of samples

in the feature space H

Hðw; bÞ : wTuðxÞ þ b ¼ 0 ð1Þ

maximizing the total (interclass) margin 2=jjwjj and

satisfying yi wTuðxiÞ þ bð Þ � 1� 0; i 2 I ; where uð�Þ :

X ! H maps X into H; w 2 H; and jj � jj is the L2-

norm. For the linear case, we have uðxÞ ¼ x. Under the

Mercer theorem [3, 4, 36], it is possible to use a kernel

kðu; vÞ to represent the inner product in H; i.e., kðu; vÞ ¼
uðuÞTuðvÞ; such as the Gaussian kernel kðu; vÞ ¼
expf�cjju� vjj2g with c[0. To fit practical

applications, one way is to add a slack variable ni for

each xi; which allows a controlled violation of the

constraint. Therefore, SVM can be expressed as the

following mathematical model:

min
1

2
wT wþ C

X

i2I
ni

s.t. yi wTuðxiÞ þ b
� �

� 1� ni;

ni� 0; i 2 I ;

ð2Þ

which is a QPP with linear inequalities in H, where C [0

is the pre-specified regularization factor given by users. By

introducing the Lagrangian coefficients ai’s, we derive its

dual QPP as following:

max
X

i2I
ai �

1

2

X

i;j2I

aiajyiyjkðxi; xjÞ

s.t. 0� ai�C; i 2 I ;
X

i2I
aiyi ¼ 0:

ð3Þ

After optimizing this dual QPP, we obtain the following

decision function:

f ðxÞ ¼ sgn
X

i2I
aiyikðxi; xÞ þ b

 !

; ð4Þ

where w in Hðw; bÞ is derived by the Karush–Kuhn–Tucker

(KKT) optimality conditions, which is:

w ¼
X

i2I
yiaiuðxiÞ ¼

X

i2Iþ
aiuðxiÞ �

X

j2I�
ajuðxjÞ: ð5Þ

Note that optimizing the dual QPP (3) is time-

consuming for large-scale problems because of enormous

matrix storages and intensive matrix operations. Thus, a

major research topic related to SVM is to focus on the fast

learning aspect, e.g., [11, 13, 14, 17–20].

2.2 Twin support vector machine

The TSVM is a binary classifier that does classification

using two nonparallel hyperplanes instead of a single

hyperplane in the classical SVM [22], which are obtained

by solving two smaller sized QPPs.

For the linear case, the TSVM finds the following pair of

nonparallel positive and negative hyperplanes in Rd :

wT
þxþ bþ ¼ 0; wT

�xþ b� ¼ 0; ð6Þ

such that each hyperplane is closer to the samples of one

class and is as far as possible from those of the other class.

A new point is assigned to class ?1 (positive) or -1

(negative) depending upon its proximity to the above two

nonparallel hyperplanes. Formally, the linear TSVM solves

the following two QPPs for finding the positive and

negative hyperplanes, respectively:

min
1

2

X

i2Iþ
wT
þxi þ bþ

� �2þC1

X

j2I�
nj

s.t. � wT
þxj � bþ � 1� nj;

nj� 0; j 2 I�;

ð7Þ

min
1

2

X

j2I�
wT
�xj þ b�

� �2þC2

X

i2Iþ
ni

s.t. wT
�xi þ b� � 1� ni;

ni� 0; i 2 Iþ;

ð8Þ

where C1, C2 [0 are the pre-specified trade-off factors,

and nj; j 2 I�; ni; i 2 Iþ are the Slack variables. By

introducing the Lagrangian multipliers, we obtain the

following dual QPPs1:

max
X

j2I�
aj �

1

2

X

j1;j22I�
aj1aj2 zT

j1

X

i2Iþ
ziz

T
i

 !�1

zj2

s.t. 0� aj�C1; j 2 I�;

ð9Þ

1 If
P

i2Iþ ziz
T
i and

P
j2I� zjz

T
j are ill-conditioning, we can add the

regularization terms �iE; �i [0; here, E is an identity matrix of

appropriate dimension. Remark that these two added regularization

terms are equivalent to adding two regularization terms �i

2
jjðw�jj2 þ

b2
�Þ; i ¼ 1; 2; into the objective functions of TSVM, which make

TWSVMs be more theoretical sound [37, 38]. In the view point of

regression, they make the nonparallel hyperplanes be more smooth

and robust.

Neural Comput & Applic (2014) 24:1207–1220 1209

123

are the centers and

max
X

i2Iþ
ai �

1

2

X

i1;i22Iþ
ai1ai2 zT

i1

X

j2I�
zjz

T
j

 !�1

zi2

s.t. 0� ai�C2; i 2 Iþ;

ð10Þ

where zk ¼ ðxk; 1Þ; k 2 I . After optimizing (9) and (10),

we obtain the augmented vectors of the two non-parallel

hyperplanes, which are:

vT
þ ¼ ðwT

þ; bþÞ ¼ �
X

j2I�
ajz

T
j

X

i2Iþ
ziz

T
i

 !�1

; ð11Þ

vT
� ¼ ðwT

�; b�Þ ¼
X

i2Iþ
aiz

T
i

X

j2I�
zjz

T
j

 !�1

: ð12Þ

A new data point x is then assigned to the class ? or -,

depending on which of the two hyperplanes given by (6) it

lies closest to. Thus,

f ðxÞ ¼ arg min
þ;�

d�ðxÞf g;

where

d�ðxÞ ¼
wT
�xþ b�

�
�

�
�

jjw�jj
:

For the nonlinear case, the nonparallel positive and

negative hyperplanes are expressed as following:
X

k2I
wk;þkðxk; xÞ þ bþ ¼ 0

and
X

k2I
wk;�kðxk; xÞ þ b� ¼ 0;

ð13Þ

with w� ¼ ðw1;�; w2;�; . . .; wl;�Þ and kðu; vÞ is some ker-

nel. It is easy to obtain the primal QPPs for this case, which

are similar to (11) and (12). If we define zk ¼
kðx1; xkÞ; . . .; kðxl; xkÞ; 1ð Þ for each k 2 I ; then we have the

same dual QPPs as (9) and (10) and the same augmented

vectors as (11) and (12) for (13).

The QPPs (9) and (10) have lower complexity than (3)

since they have only l� ¼ jI�j parameters, while (3) has

l = l? ? l- parameters, which causes the TSVM to be

approximately four times faster than the classical SVM.

This is because the complexity of SVM is no more than

Oðl3Þ; while the TSVM solves two QPPs, each of which is

roughly of size (l/2). Thus, the ratio of runtime is

approximately 4. It is necessary to point out that, in order to

optimize (9) and (10), the linear TSVM requires inversion

of matrix of size (d ? 1) 9 (d ? 1) twice, whereas the

nonlinear TSVM requires inversion of matrix of size

(l ? 1) 9 (l ? 1) twice. Further, the samples with

0\aj�C1; j 2 I� or 0\ai�C2; i 2 Iþ are defined as

SVs, since they are significant in determining the two

hyperplanes (6). The experiments show that the TSVM

obtains good generalization performance and faster learn-

ing speed than the classical SVM. However, as the above

discussion, there still exists some shortcomings in the

TSVM, which reduce the application ranges and general-

ization of TSVM.

2.3 Support vector data description

An one-class problem is usually understood as computing a

binary function that is supposed to capture regions in input

space where the probability density lies, that is, a function

such that most of the samples will lie in the region where

the function is nonzero (see Refs. [33–35]). In the view-

point of learning, an one-class problem is an unsupervised

one, where the samples are unlabeled or the label of each

sample is thought to be itself. Over the last decade, the

SVM has already been generalized to solve one-class

problems. One of the popular OCSVM is the SVDD pro-

posed by Tax and Duin [33, 34].

The SVDD identifies a sphere with minimum volume

that captures the given normal dataset. The sphere volume

is characterized with its center c and radius R in some

feature space. Minimization of the volume is achieved by

minimizing R2, which represents the structural error:

min R2

s.t. jjuðxiÞ � cjj2�R2; 8i:
ð14Þ

The above constraints do not allow any point to fall outside

of the hypersphere. In order to make provision within the

model for potential outliers within the training set, a

penalty cost function is introduced as follows (for samples

that lie outside of the hypersphere):

min R2 þ C
X

i

ni

s.t. jjuðxiÞ � cjj2�R2 þ ni; 8i:
ð15Þ

where C is the coefficient of penalty for each outlier and ni

is the distance between the ith sample and the hypersphere.

This is a quadratic optimization problem and can be solved

efficiently by introducing Lagrange multipliers for

constraints. Formally, it can be solved by optimizing the

following dual problem:

max
X

i

aikðxi; xiÞ �
X

i;j

aiajkðxi; xjÞ

s.t. 0� ai�C; 8i;
X

i

ai ¼ 1:

ð16Þ

This problem can be solved rather easily using well-

established quadratic programming algorithms and will

lead to the representation of ‘‘normal’’ data. The

assessment of whether a data point is inside or outside

1210 Neural Comput & Applic (2014) 24:1207–1220

123

the SVDD hypersphere is based on the sign of the

following function:

f ðxÞ ¼ sgn R2 � uðxÞ � cj jj j2
� �

¼ sgn R2 �
X

i;j

aiajkðxi; xjÞ

þ2
X

i

aikðxi; xÞ � kðx; xÞ
!

;

ð17Þ

where R2 is computed according to the KKT conditions,

and the center c is

c ¼
X

i

aiuðxiÞ: ð18Þ

Positive (negative) sign implies that the distance of the data

point to the center of the hyper-sphere is less (greater) than

the radius of the hypersphere.

3 Twin support vector hypersphere

In this section, we introduce a novel approach to SVM

classification which we have termed the twin support

vector hypersphere classifier.

As mentioned earlier, the TSVH is similar to the TSVM

in spirit, as it also obtains two QPPs for binary pattern

recognition, and each QPP has the SVM-type formulation,

except that not all patterns appear in the constraints of

either problem at the same time. However, it is based on an

entirely different fact that the samples of different classes

get clustered, which can be covered by two hyperspheres,

respectively, that is, the samples of one class are covered

by one hypersphere, whereas the samples of the other class

are as possible as far from this hypersphere. In short, it is

the combination of the idea of TSVM and SVDD.

The TSVH classifier is obtained by solving the follow-

ing pair of QPPs:

min
1

2

X

i2Iþ
uðxiÞ � cþj jj j2�m1R2

þ þ C1

X

j2I�
nj

s.t. uðxjÞ � cþ
�
�

�
�

�
�

�
�2�R2

þ � nj;

R2
þ � 0; nj� 0; j 2 I�; ð19Þ

min
1

2

X

j2I�
uðxjÞ � c�
�
�

�
�

�
�

�
�2�m2R2

� þ C2

X

i2I�
ni

s.t. uðxiÞ � c�j jj j2�R2
� � ni;

R2
� � 0; ni� 0; i 2 Iþ; ð20Þ

where C1, C2 [0 and m1, m2 [0 are the pre-specified

penalty factors, and c� 2 H and R± are the centers and

radiuses of corresponding hyperspheres, respectively.

This model finds two hyperspheres, one for each class,

and classifies points according to which hypersphere a

given point is closest to. The first term in the objective

function of (19) or (20) is the sum of squared distances

from the center of hypersphere to points of one class.

Therefore, minimizing it tends to keep the center of

hypersphere close to the points of one class. The second

term maximizes the squared radius of this hypersphere,

which makes this hypersphere be as large as possible.

The first constraints require the center of hypersphere to

be at a distance of at least its radius from points of the

opposite class; a set of error variables is used to measure

the errors wherever the points of opposite class are

covered by this hypersphere, that is, the distances from

the points to the center are less than the radius. The last

term of the objective function of (19) or (20) minimizes

the sum of error variables, thus attempting to minimize

misclassification due to points belonging to the opposite

class.

In short, similar to the TSVM, the TSVH is comprised

of a pair of QPPs such that, in each QPP, the objective

function corresponds to a particular class and the con-

straints are determined by the samples of the other class.

Thus, the TSVH gives rise to two smaller sized QPPs

compared with a single large QPP in the classical SVM,

leading the TSVH to be approximately four times faster

than the classical SVM for learning its hyperspheres.

However, unlike the formulation of TSVM that around

each hyperplane, the data points of the corresponding class

get clustered, Our TSVH, in the spirit of the SVDD, uses a

pair of hyperspheres to depict the two classes. In the

problem (19), the positive samples are covered by a

hypersphere and clustered around the center cþ, and in the

problem (20), the negative samples are covered by a

hypersphere and clustered around the center c�. For most

cases, this strategy is more reasonable than that of the

TSVM.

The corresponding Lagrangian function of (19) is

Lðcþ;R2
þ; n; a; r; sÞ ¼

1

2

X

i2Iþ
uðxiÞ � cþj jj j2�m1R2

þ þ C1

X

j2I�
nj

�
X

j2I�
aj uðxjÞ � cþ

�
�

�
�

�
�

�
�2�R2

þ þ nj

� �

�
X

j2I�
rjnj � sR2

þ;

ð21Þ

where aj; rj; j 2 I� and s are the Lagrangian multipliers,

a ¼ ðaj1 ; aj2 ; . . .; ajl� Þ; r ¼ ðrj1 ; rj2 ; . . .; rjl� Þ; and n ¼ ðnj1 ;

nj1 ; . . .; njl� Þ; jk 2 I�; k ¼ 1; . . .; l�; respectively. Differ-

entiating the Lagrangian function (21) with respect to

cþ; R2
þ; and nj; j 2 I� yields the following KKT necessary

and sufficient optimality conditions:

Neural Comput & Applic (2014) 24:1207–1220 1211

123

oL

ocþ
¼ �

X

i2Iþ
uðxiÞ � cþð Þ þ 2

X

j2I�
aj uðxjÞ � cþ
� �

¼ 0

! cþ ¼
1

lþ � 2
P

j2I�
aj

X

i2Iþ
uðxiÞ � 2

X

j2I�
ajuðxjÞ

 !

;

ð22Þ
oL

oR2
þ
¼ �m1 þ

X

j2I�
aj � s ¼ 0!

X

j2I�
aj� m1; ð23Þ

oL

onj

¼ C1 � aj � rj ¼ 0! 0� aj�C1; j 2 I�; ð24Þ

uðxjÞ � cþ
�
�

�
�

�
�

�
�2�R2

þ � nj; j 2 I�; ð25Þ

aj uðxjÞ � cþ
�
�

�
�

�
�

�
�2�R2

þ þ nj

� �
¼ 0; aj� 0; j 2 I�;

ð26Þ
rjnj ¼ 0; nj� 0; rj� 0; j 2 I�; ð27Þ

sR2
þ ¼ 0; R2

þ � 0; s� 0: ð28Þ

Since R?
2 [0 holds in the optimality result of problem (19)

if given a suitable parameter m1, then from (23) and (28),

we have
X

j2I�
aj ¼ m1: ð29Þ

Substituting (29) into (22) leads to

cþ ¼
1

lþ � 2m1

X

i2Iþ
uðxiÞ � 2

X

j2I�
ajuðxjÞ

 !

; ð30Þ

which obtains a by-product for determining m1 that

2m1 \ l?. Substituting (23), (24), and (30) into (21), we

obtain the dual QPP of (19), which is:

max
1

2

X

i2Iþ
kðxi; xiÞ �

1

2ðlþ � 2m1Þ
X

i1;i22Iþ
kðxi1 ; xi2Þ

�
X

j2I�
ajkðxj; xjÞ

� 2

lþ � 2m1

X

j1;j22I�
aj1aj2 kðxj1 ; xj2Þ þ

2

lþ � 2m1

X

i2Iþ;j2I�
ajkðxj; xiÞ

s.t.
X

j2I�
aj ¼ m1; 0� aj�C1; j 2 I�: ð31Þ

Defining t1 ¼ 2
lþ�2m1

and discarding the constant items in

the objective function of (31), the dual QPP (31) can be

simplified as following:

max �t1

X

j1;j22I�
aj1aj2 kðxj1 ; xj2Þ

þ
X

j2I�
aj t1

X

i2Iþ
kðxj; xiÞ � kðxj; xjÞ

 !

s.t.
X

j2I�
aj ¼ m1; 0� aj�C1; j 2 I�: ð32Þ

Similarly, we consider (20) and obtain its dual QPP as

max �t2

X

i1;i22Iþ
bi1

bi2
kðxi1 ; xi2Þ

þ
X

i2Iþ
bi t2

X

j2I�
kðxi; xjÞ � kðxi; xiÞ

 !

s.t.
X

i2Iþ
bi ¼ m2; 0� bi�C2; i 2 Iþ: ð33Þ

Here, t2 ¼ 2
l��2m2

; bi; i 2 Iþ are the Lagrangian

multipliers, and the center c� is

c� ¼
1

l� � 2m2

X

j2I�
uðxjÞ � 2

X

i2Iþ
biuðxiÞ

 !

: ð34Þ

Next, define the index sets

IþR ¼ ij0\bi\C2; i 2 Iþf g
and I�R ¼ jj0\aj\C1; j 2 I�

� �
;

ð35Þ

according to the KKT conditions, we derive the square

radiuses R ±
2 as

R2
þ ¼

1

jI�R j
X

j2I�
R

uðxjÞ � cþ
�
�

�
�

�
�

�
�2; ð36Þ

R2
� ¼

1

jIþR j
X

i2Iþ
R

uðxiÞ � c�j jj j2: ð37Þ

Once the centers c� and square radiuses R ±
2 are known

from (30), (34), (36), and (37), two hyperspheres

uðxÞ � cþj jj j2�R2
þ and uðxÞ � c�j jj j2�R2

� ð38Þ

are obtained. A new test sample x is assigned to class ? or

-, depending on which of the two hyperspheres given by

(38) it lies closest to, i.e.,

f ðxÞ ¼ arg min
þ;�

uðxÞ � cþj jj j2

R2
þ

;
uðxÞ � c�j jj j2

R2
�

()

: ð39Þ

Compared the TSVM with TSVH for the nonlinear case,

the former requires inversion of two matrices of size

(l ? 1) 9 (l ? 1), respectively, along with two dual QPPs

to be solved, whereas the latter only needs to solve two

SVM-type dual QPPs without any matrix inversion in the

1212 Neural Comput & Applic (2014) 24:1207–1220

123

objective functions of its dual QPPs, making the TSVH

surpass the TSVM in learning speed for large-scale

problems. Further, this difference leads the learning

algorithms of SVM can be easily extended to the TSVH,

such as the SMO [13, 14] and geometric algorithms

[18, 19].

In the next Section, we describe a learning algorithm for

the TSVH based on the Gilbert’s algorithm.

4 Learning algorithm for TSVH

In this Section, we describe a learning algorithm for the

TSVH. Here, only (32) is considered because (33) is sim-

ilar to (32).

Without the loss of generality, let us rewrite (32) with

the matrix expression as follows:

max �t1a
T K�aþ t1a

T u

s.t. aT e2 ¼ m1; 0� a�C1e2;
ð40Þ

where e2 is a vector of ones of l- dimension, the kernel

matrix K� ¼ kj1j2

� �
¼ kðxj1 ; xj2Þ
� �

2 Rl�	l� ; and u ¼
ðu1; u2; . . .; ul�Þ with uj ¼

P
i2Iþ kðxi; xjÞ � kðxj; xjÞ; j ¼

1; . . .; l�: Note that t1 is a constant (in general t1 [0

holds); therefore, the problem (40) can be rewritten as

min aT K�a� aT u

s.t. aT e2 ¼ m1; 0� a�C1e2:
ð41Þ

According to the constraint aT e2 ¼ m1; the linear term in

the objective function of (41) can be expressed as

aT u ¼ 1

m1

m1

	

aT u ¼ 1

m1

aT um1

� �
¼ 1

m1

aT ueT
2 a

� �

¼ 1

2m1

aT ueT
2 a

� �
þ aT e2uTa
� �� �

¼ 1

2m1

aT ueT
2 þ e2uT

� �
a:

ð42Þ

Substituting (42) into the objective function of (41) leads to

aT K�a� aT u ¼ aT K�a� 1

2m1

aT ueT
2 þ e2uT

� �
a

¼ aT K� �
1

2m1

ueT
2 þ e2uT

� �
	

a:

Denote G ¼ K� � 1
2m1

ueT
2 þ e2uT

� �
¼ ðgj1j2Þ; where

gj1j2 ¼ kj1j2 �
1

2m1

ðuj1 þ uj2Þ

¼ kðxj1 ; xj2Þ þ
1

2m1t1

kðxj1 ; xj1Þ þ kðxj2 ; xj2Þ
� �

� 1

2m1

X

i2Iþ
kðxi; xj1Þ þ kðxi; xj2Þ
� �

;

and set aj :¼ aj=m1; j 2 I�; then the problem (41) is

equivalent to the following QPP:

min aT Ga

s.t. aT e2 ¼ 1; 0� a� l1e2;
ð43Þ

where l1 = C1/m1.

To optimize (43), let us first consider the problem of

finding the minimum norm problem on the data set X ¼
fx1; x2; . . .; xng; which can be expressed as

min
Xn

k¼1

akxk

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

2

¼ aT Ma

s.t. aT e ¼ 1; 0� a� e;

ð44Þ

where e is a vector of ones of n dimension, and M ¼
ðmijÞ 2 Rn	n with mij ¼ xT

i xj; i; j ¼ 1; . . .; n: For this

problem, Gilbert [39] proposed an iterative geometric

algorithm for (44) to obtain the e-optimal solution, called

the Gilbert’s algorithm, which is represented by the

extreme points of the convex hull comprised of the points

of X. This Gilbert’s algorithm is described by the following

three steps:

Algorithm 1: Gilbert’s algorithm

1
 Initialization: Set the initial point x as the any point of X, such

as x ¼ x1;

2
 Stopping condition: Find the point xr such that xr ¼
arg minxk2X hxk; xif g; If the e-optimality condition jjxjj2 �
hxr ; xi\e holds, then the point x is the e-optimal solution.

Otherwise, go to Step 3
;

3
 Adaptation: Set q ¼ hx; x�xri
jjx�xr jj2

if x� xr 6¼ 0; otherwise q = 0; set

x ¼ xþ qðxr � xÞ: Continue with Step 2
:

Obviously, (43) is similar to (44). Thus, we consider to

solve (43) by using the Gilbert’s algorithm. We first

introduce the notion of reduced convex hull (RCH) [18, 40]

for a point set, which is

Definition Let X be a set with n different points. For a

real number 0 \ l\ 1, the reduced convex hull (RCH) of

X, denoted RCH(X, l), is defined as

RCHðX; lÞ ¼ x x ¼
Xn

i¼1

aixi; xi 2 X;
Xn

i¼1

ai ¼ 1; 0� ai� l

�
�
�
�
�

()

:

ð45Þ

Therefore, (43) can be regarded as the problem of

finding the minimum norm problem on RCH(D-,l1) with

an unknown distance. Fortunately, it is not necessary to

consider this distance for this problem since in the Gilbert’s

algorithm only the inner product h�; �i is used. For briefly,

Neural Comput & Applic (2014) 24:1207–1220 1213

123

we use huj1 ; uj2iG to denote the inner product of uðxj1Þ and

uðxj2Þ with this unknown distance jj � jjG; i.e., gj1j2 ¼
huj1 ; uj2iG; where u ¼ uðxÞ: Mavroforakis and Theodoridis

[18] pointed out that the extreme points of RCH(X, l) are

the combinations of points in X.

Proposition The extreme point of the RCH(X, l) has

coefficient ai belonging to the set S = {0, l, 1 - b1/

lcl}, that is, each extreme point of RCH(X, l) is a convex

combination of m ¼ d1=le different points in X. Further-

more, if 1=l ¼ d1=le; then all ai = l; otherwise,

ai = l, i ¼ 1; . . .;m� 1; and am = 1 - b1/lcl.

This proposition provides the necessary but not suffi-

cient condition for determining the extreme points of RCH,

in which the number of points satisfying the condition is

obviously larger than that of extreme points. Therefore, it is

impossible to inspect all candidate points in the process of

finding the closest point. In fact, it need not consider all

possible extreme points of RCH in the geometric algo-

rithm, but only compute the projections of all negative

points in I�, and choose the first d1=l1e points with the

smallest projections to update the current point.

Based on the above discussion on RCH, we describe the

learning algorithm for TSVH based on the Gilbert’s one as

follows.

Algorithm 2: Learning algorithm for TSVH

1
 Initialization: Set the parameters C1, m1 and kernel;

set l1 = min{1, C1/m1}, k1 = 1 - b1/l1c, and m1 ¼ d1=l1e;
set the initial point u as the centroid point of RCH(D-, l1), i.e.,

set aj ¼ 1=jI�j; j 2 I�:
2
 Stopping condition: Find the point uopt

r ¼ arg minr hur ;uiG
� �

;

where ur ¼
P

j2I�
bjuj; bj 2 f0; k1; l1g;

P

j2I�
bj ¼ 1: If the e-

optimality condition jjujj2G � huopt
r ;uiG\e holds, then the point

u is the e-optimal solution. Otherwise, go to Step 3
:

3
 Adaptation: Set q ¼ hu; u�uopt
r iG

jju�u
opt
r jj2G

if u� uopt
r 6¼ 0; otherwise q = 0;

update u ¼ uþ qðuopt
r � uÞ;i.e., set aj ¼ aj þ qðbj � ajÞ; j 2

I�: Continue with Step 2
:

For this algorithm, it has almost the same complexity as

the Gilbert’s algorithm; the same caching scheme can be

used, with only Oðl�Þ storage requirements.

5 Experiments

To validate the effectiveness of our proposed method, we

compare the performances of TSVH, TSVM, and SVM on

some data sets. All these algorithms are implemented in

Matlab 7.8 [41] on Windows XP running on a PC with sys-

tem configuration Intel(R) Core(TM)2 Duo CPU (2.26 GHz)

with 2 GB of RAM. We simulate them on several artificial

and UCI benchmark data sets2 which are commonly used in

testing machine learning algorithms. Note that we only

consider the Gaussian kernel in the experiments. To fairly

compare these algorithms, we demonstrate the performances

of these algorithms using the accuracy and CPU time for

learning. Another important problem is the parameter

selection for these algorithms. To fairly reflect the perfor-

mances of these algorithms, we select the parameters C’s and

m’s from the set of values {2i� l ± |i = -9, -8, …, 10} and

select the kernel parameters c’s from the set of values

{2i|i = - 9, - 8, …, 10} by tuning a set comprising of

about random 10–30 percent of the sample set in the simu-

lations. For the learning of the SVM and TSVM, we employ

the geometric methods to learn their separating hyperplanes,

see Refs. [18, 19, 27]. In addition, the kernel matrices (or the

inversions of kernel matrices) of these algorithms are cached

in memory before learning.

5.1 Toy examples

In order to illustrate graphically the effectiveness of our

TSVH, we first test its ability to learn the artificially gen-

erated Ripley’s synthetic data set [42] in two dimensions.

In this Ripley’s data set, both class ‘‘?’’ and class ‘‘-’’ are

generated from mixtures of two Gaussians with the classes

overlapping to the extent that the Bayes accuracy is around

92 %.

Figure 1 shows the classification results of SVM,

TSVM, and TSVH with Gaussian kernels on this Ripley’s

data set. It can be seen that the hyperspheres of TSVH

effectively cover the different classes of samples and the

corresponding separating hyperplane obtains the best

classification result. While the nonparallel hyperplanes of

TSVM do not effectively reflect the distributions of two

classes of samples, they only cross as many as possible

samples of the corresponding classes. Table 1 also lists the

test accuracies of these algorithms. It can be seen that our

TSVH obtains the best accuracy (about 92.1 %) among

these methods, which is close to the Bayes classification

result. Whereas the TSVM obtains the worst test accuracy

(about 90.2 %) among these methods, which effectively

confirms the analysis on TSVM, that its nonparallel hy-

perplanes do not effectively describe the characterizations

of two classes of samples. A more possible reason for the

good performance of TSVH is that the hyperspheres of

TSVH are more effective to depict the class information of

data.

Another artificial example is the checkerboard problem.

For the checkerboard problem, it consists of a series of

uniform points in R2 of red and blue points taken from

2 Available at: http://archive.ics.uci.edu/ml/.

1214 Neural Comput & Applic (2014) 24:1207–1220

123

http://archive.ics.uci.edu/ml/

4 9 4 red and blue squares of a checkerboard. This is a

tricky test case in data mining algorithms for testing per-

formances of nonlinear classifiers. In the simulations, we

consider the one non-overlapping and two overlapping

cases for the checkerboard problem, that is, three sets of

800 (Class ?: 400, Class -: 400) randomly generated

training points on a 2-dimensional checkerboard of 4 9 4

cells are used. Each sample attribute ranges from 0 to 4 and

the margins are 0, -0.05, and -0.1, respectively (the

negative value indicating the overlapping between classes,

that is, the overlapping of the cells), and the 3200 test

samples are randomly generated with margin 0.

Figures 2 and 3 show the simulation results of these

three algorithms on the first two training set because of the

limitation of paper. It can be seen that our TSVH still

obtains the best classification results, while TSVM obtains

the worst results among these methods, especially for the

overlapping case. Formally, the two hyperspheres of TSVH

effectively cover the corresponding classes of samples,

while the hyperplanes of TSVM do not reflect the infor-

mation of samples. For the latter, they still pass through as

many as possible samples of the corresponding classes,

leading TSVM to obtain the worst separating hyperplane.

However, we can obtain a pair of more smooth hyperplanes

for the TSVM if we add the terms �iðjjw�jj2 þ
b2
�Þ=2; ki [0; i ¼ 1; 2 into the objective functions of the

TSVM. Table 1 also gives the test accuracies and learning

(a) (b)

(c)

Fig. 1 Classification results of

SVM (a), TSVM (b), and TSVH

(c) on Ripley’s data set. The two

classes of training samples are

symbolled by ‘‘ 9 ’’ and ‘‘?,’’

the separating hyperplanes are

shown with solid curves, and the

nonparallel hyperplanes/

hyperspheres of TSVM/TSVH

are shown with dashed curves

Table 1 Performance comparisons on Ripley and checkerboard data

sets

Dataset SVM TSVM TSVH

Ripley

Accuracy (%) 90.6 90.2 92.1

Time (s) 0.087 0.029 0.021

Checkerboard

ma = 0a

Accuracy 95.56 95.52 96.69

Time 26.45 6.77 6.51

Checkerboard

ma = -0.05

Accuracy 93.44 92.94 96.56

Time 27.52 6.85 6.71

Checkerboard

ma = -0.10

Accuracy 91.19 87.19 96.13

Time 28.12 6.99 6.92

a ma is the margin

Neural Comput & Applic (2014) 24:1207–1220 1215

123

CPU time of these methods on these cases with 30 inde-

pendent runs, which confirm effectively our results. As for

the learning CPU time, Table 1 shows that the TSVH and

TSVM are about four times faster than the SVM, indicating

the learning speed of the TSVH is much faster than the

SVM, whereas the learning speed of the TSVH is slightly

faster than the TSVM. However, if we consider the extra

time for matrix inversions in the TSVM, the learning time

of the TSVM will be obviously larger than the TSVH. In

addition, we should point that the TSVH introduces an

extra parameter compared with the TSVM, which means

the total CPU time required for cross-validation may be

much larger than the TSVM and SVM. Hence, an impor-

tant further work is to discuss a suitable method for

determining the parameters of TSVH.

5.2 Benchmark data sets

To further test the performance of TSVH, we run these

models on several publicly available benchmark data sets,

which are commonly used in test machine learning algo-

rithms, and investigate the results in terms of accuracy and

training CPU time. We use the one-vs-one method to deal

with the multi-classification data sets and take the average

CPU time as the learning time. Table 2 lists the descrip-

tions of these benchmark data sets. Note that we use the

tenfold cross-validation method to simulate the data sets in

Table 2.

Table 3 lists the average learning results of SVM,

TSVM, and TSVH on these benchmark data sets with

tenfold cross-validation run, including the accuracies and

learning CPU time. It can be seen that the TSVH obtains

the comparable generalization with the SVM and TSVM.

As for the learning CPU time, it can be found that both

methods are about four times faster than that of the SVM.

This is because they solve two smaller sized QPPs instead

of a single QPP in the classical SVM. Besides, as the

artificial examples, the learning time of the TSVH is sim-

ilar to that of the TSVM for the same reason. However, the

CPU time for the model selection of the TSVH is larger

0 1 2 3 4

0

1

2

3

4

0 1 2 3 4

0

1

2

3

4

0 1 2 3 4

0

1

2

3

4

(a)

(c)

(b)

Fig. 2 Classification results of SVM (a), TSVM (b), and TSVH

(c) with Gaussian kernel on checkerboard problem with margin 0. The

separating hyperplanes are shown with solid curves, and the

nonparallel hyperplanes/hyperspheres of TSVM/TSVH are shown

with dashed curves

1216 Neural Comput & Applic (2014) 24:1207–1220

123

than the TSVM and SVM since an extra penalty factor is

introduced in it.

We now use the Wilcoxon signed-ranks test [43], which

is a simple, yet safe and robust nonparametric tests for

statistical comparisons of classifiers, to compare the

generalization performance of the TSVH, TSVM, and

SVM. Let di be the difference between the test accuracies

of the two classifiers on ith out of N data sets. The dif-

ferences are ranked according to their absolute values. Let

r? be the sum of ranks for the data sets on which the

second algorithm outperformed the first, and r- the sum of

ranks for the opposite. Ranks of di = 0 are split evenly

among the sums; if there is an odd number of them, one is

ignored. Let T be the smaller of the sums, T = min(r?, r-).

Then, the statistics

Z ¼ T � NðN þ 1Þ=4
ffi
NðN þ 1Þð2N þ 1Þ=24

p

is distributed approximately normally.

Table 4 shows the comparisons on the benchmark data

sets between the results of TSVH and TSVM, TSVH and

SVM, and TSVM and SVM, respectively. It can be seen

that, given a = 0.05 (then, Za/2 = -1.96), our TSVH

derives the obviously better generalization than the

TSVM and SVM, while the TSVM obtains the compa-

rable generalization with the SVM. Therefore, our TSVH

is the better machine learning algorithm for classifica-

tions than the SVM and TSVM. This confirms that the

hyperspheres of TSVH can more effectively describe the

0 1 2 3 4

0

1

2

3

4

0 1 2 3 4

0

1

2

3

4

0 1 2 3 4

0

1

2

3

4

(a) (b)

(c)

Fig. 3 Classification results of

SVM (a), TSVM (b), and TSVH

(c) with Gaussian kernel on

checkerboard problem with

margin -0.05. The separating

hyperplanes are shown with

solid curves, and the nonparallel

hyperplanes/hyperspheres of

TSVM/TSVH are shown with

dashed curves

Table 2 Descriptions of the UCI benchmark data sets

Dataset No. samples Attribute Class

German 1,000 20 2

Harberman 306 3 2

Heart 270 13 2

Iris 150 4 3

Optdigits 5,620 64 10

Pendigits 10,992 16 10

Ringnorm 400 20 2

Segemention 2,210 19 7

Splice 3,175 60 2

Thyroid 215 5 2

Titanic 2,201 3 2

Twonorm 400 20 2

USPS 9,298 256 10

Waveform 5,000 21 3

Neural Comput & Applic (2014) 24:1207–1220 1217

123

data information than the nonparallel hyperplanes of

TSVM.

6 Conclusions

In this paper, we have proposed a novel SVM approach to

data classification, termed the TSVH. The introduction of

TSVH is motivated by the SVDD, a special case of the

OCSVM, and the TSVM, that is, in the TSVH, we solve two

QPPs of smaller sizes instead of a large sized one as we do

in the classical SVM, each QPP is based on the SVDD,

which requires the samples of one class to be covered by a

hypersphere as many as possible, while the samples of the

other class to be as possible as far from this hypersphere.

The strategy that solving two smaller sized QPPs, roughly

of size (l/2), makes the TSVH be almost four times faster

than a classical SVM classifier. Compared with the TSVM,

Table 3 Performance comparisons on the UCI benchmark data sets

Dataset SVM TSVM TSVH

Accuracy Time Accuracy Time Accuracy Time

German 75.13 ± 2.67 39.76 75.49 ± 2.79 10.96 75.48 ± 2.61 10.35

Harberman 73.72 ± 1.97 0.50 73.12 ± 2.31 0.15 74.21 ± 1.64 0.13

Heart 80.22 ± 4.31 1.12 80.25 ± 4.22 0.30 80.31 ± 3.41 0.29

Iris 99.00 ± 1.61 0.017 98.67 ± 1.72 0.0041 99.00 ± 1.61 0.0025

Optdigits 98.37 ± 1.74 115.70 98.55 ± 1.69 29.84 98.94 ± 1.53 27.35

Pendigits 99.21 ± 1.91 470.33 98.82 ± 2.72 118.47 99.26 ± 1.29 112.31

Ringnorm 96.43 ± 0.61 8.19 96.31 ± 0.73 2.12 96.62 ± 0.64 2.01

Segemention 98.31 ± 3.16 52.50 98.35 ± 3.41 13.62 98.46 ± 3.32 12.34

Splice 89.83 ± 1.64 843.41 89.78 ± 1.95 214.62 89.82 ± 1.79 207.25

Thyroid 96.14 ± 2.93 0.65 96.19 ± 2.71 0.16 96.11 ± 2.68 0.15

Titanic 77.43 ± 6.67 433.83 77.15 ± 6.79 109.45 77.36 ± 6.31 107.63

Twonorm 96.69 ± 0.61 8.37 96.47 ± 0.59 2.18 96.82 ± 0.57 2.06

USPS 98.51 ± 1.45 517.53 98.69 ± 1.53 136.63 98.58 ± 1.72 133.91

Waveform 92.31 ± 1.41 658.41 92.60 ± 1.65 148.46 92.48 ± 1.57 144.52

Average 90.81 90.75 90.96

Table 4 Statistics comparisons of accuracies of TSVH, TSVM, and SVM

Dataset TSVH versus TSVM TSVH versus SVM TSVM versus SVM

Difference Rank Difference Rank Difference Rank

German -0.01 1 0.35 12 0.36 12

Harberman 1.09 14 0.49 13 -0.60 14

Heart 0.06 3 0.09 7 0.03 1

Iris 0.33 10 0 1 -0.33 11

Optdigits 0.49 13 0.57 14 0.18 6.5

Pendigits 0.44 12 0.05 4 -0.39 13

Ringnorm 0.31 9 0.19 11 0.12 5

Segemention 0.11 5.5 0.15 9 0.04 2

Splice 0.04 2 -0.01 2 -0.05 3.5

Thyroid -0.08 4 -0.03 3 0.05 3.5

Titanic 0.21 8 -0.07 5.5 -0.28 9

Twonorm 0.35 11 0.13 8 -0.22 8

USPS -0.11 5.5 0.07 5.5 0.18 6.5

Waveform -0.12 7 0.17 10 0.29 10

Z -2.20 -2.64 -0.69

1218 Neural Comput & Applic (2014) 24:1207–1220

123

the TSVH has some obvious merits. First, it does not need to

find the inversion matrices in its pair dual QPPs, while the

TSVM needs the inversions of two matrices of size

(l ? 1) 9 (l ? 1). This leads the TSVH to be more suitable

large-scale problems by combining efficient SVM algo-

rithms. Second, the TSVH uses two hyperspheres but not

hyperplanes to describe the samples of two classes, which

leads the TSVH to be more suitable for general cases; for

instance, the hyperplanes in the TSVM cannot effectively

describe the samples in Ripley’s data set. Computational

comparisons with the TSVM and SVM in terms of classi-

fication accuracy and learning time have shown that the

proposed TSVH is not only faster than the other two

methods, but also obtains comparable generalization.

The further work is to validate the performance of

TSVH in more real classification problems, such as face

recognition, image classification, and text categorization.

Another important further work is to discuss the theoretical

illustration for TSVH since TSVH is an indirect classifier.

The third important further work is to find an efficient

prediction algorithm for TSVH in further because of the

loss of sparsity in TSVH. Last, notice that TSVH intro-

duces more parameters, which makes the efficiency of

model selection for TSVH be low; thus, it is necessary to

find some efficient method for determining the parameters

in TSVH.

Acknowledgments The authors would like to thank the anonymous

reviewers for their constructive comments and suggestions. This work

is supported by the National Natural Science Foundation of China

(61202156), the National Natural Science Foundation of Shanghai

(12ZR1447100), the Innovative Project of Shanghai Municipal Edu-

cation Commission (11YZ81), and the program of Shanghai Normal

University (DZL121, SK201204).

References

1. Burges CJC (1998) A tutorial on support vector machines for

pattern recognition. Data Min Knowl Discov 2(2):121–167

2. Christianini V, Shawe-Taylor J (2002) An introduction to support

vector machines. Cambridge University Press, Cambridge

3. Vapnik VN (1995) The natural of statistical learning theory.

Springer, New York

4. Vapnik VN (1998) Statistical learning theory. Wiley, New York

5. Lee S, Verri A (2002) Pattern recognition with support vector

machines. In: First international workshop, SVM 2002, Springer,

Niagara Falls

6. Osuna E, Freund R, Girosi F (1997) Training support vector

machines: an application to face detection. In: Proceedings of

IEEE computer vision and pattern recognition, San Juan, Puerto

Rico, pp 130–136

7. Joachims T, Ndellec C, Rouveriol C (1998) Text categorization

with support vector machines: learning with many relevant fea-

tures, In: European conference on machine learning No.10,

Chemnitz, Germany, pp 137–142

8. Brown MPS, Grundy WN, Lin D, et al (2000) Knowledge-based

analysis of microarray gene expression data by using support

vector machine. Proc Natl Acad Sci USA 97(1):262–267

9. Ebrahimi T, Garcia GN, Vesin JM (2003) Joint time-frequency-

space classification of EEG in a brain–computer interface appli-

cation. J Apply Signal Process 1(7):713–729

10. Huang Z, Chen H, Hsua C-J, Chen W-H, Wu S (2004) Credit

rating analysis with support vector machines and neural networks:

a market comparative study. Decis Support Syst 37:543–558

11. Cortes C, Vapnik VN (1995) Support vector networks. Mach

Learn 20:273–297

12. Osuna E, Freund R, Girosi F (1997) Support vector machines:

training and applications. Technical report AIM1602, MIT Arti-

ficial Intelligence Laboratory, Cambridge, MA

13. Platt J (1999) Fast training of support vector machines using

sequential minimal optimization. In: Schölkopf B, Burges CJC,

Smola AJ (eds) Advances in Kernel methods–support vector

learning. MIT Press, Cambridge, MA, pp 185–208

14. Keerthi SS, Shevade SK, Bhattacharyya C, Murthy KRK (2001)

Improvements to platt’s SMO algorithm for SVM classifier

design. Neural Comput 13(3):637–649

15. Suykens JAK, Vandewalle J (1999) Least squares support vector

machine classifiers. Neural Process Lett 9(3):293–300

16. Suykens JAK, Lukas L, van Dooren P, De Moor B, Vandewalle J

(1999) Least squares support vector machine classifiers: a large

scale algorithm. In: Proceedings of European conference of cir-

cuit theory design, pp 839–842

17. Bennett KP, Bredensteiner EJ (2000) Duality and geometry in

SVM classifiers. In: Langley P (ed) Proceedings of the 17th

international conference on machine learning. Morgan Kauf-

mann, Los Altos, CA, pp 57–64

18. Mavroforakis ME, Theodoridis S (2006) A geometric approach to

support vector machine (SVM) classification. IEEE Trans Neural

Netw 17(3):671–682

19. Tao Q, Wu G, Wang J (2008) A general soft method for learning

SVM classifiers with L1-norm penalty. Pattern Recogn 41(3):

939–948

20. Wang J, Tao Q, Wang J (2002) Kernel projection algorithm for

large-scale SVM problems. J Comput Sci Tech 17(5):556–564

21. Mangasarian OL, Wild EW (2006) Multisurface proximal support

vector classification via generalized eigenvalues. IEEE Trans

Pattern Anal Mach Intell 28(1):69–74

22. Jayadeva, Khemchandani R, Chandra S (2007) Twin support

vector machines for pattern classification. IEEE Trans Pattern

Anal Mach Intell 29(5):905–910

23. Kumar MA, Gopal M (2009) Least squares twin support vector

machines for pattern classification. Expert Syst Appl 36(4):

7535–7543

24. Kumar MA, Gopal M (2008) Application of smoothing technique

on twin support vector machines. Pattern Recogn Lett

29(13):1842–1848

25. Ghorai S, Dutta PK, Mukherjee A (2010) Newton’s method for

nonparallel plane proximal classifier with unity norm hyper-

planes. Signal Process 90(1):93–104

26. Ghorai S, Mukherjee A, Dutta PK (2009) Nonparallel plane

proximal classifier. Signal Process 89(4):510–522

27. Peng X (2010) A m-twin support vector machine (m-TSVM) clas-

sifier and its geometric approaches. Inf Sci 180(15):3863–3875

28. Ye Q, Zhao C, Ye N, Chen X (2011) Localized twin SVM via

convex minimization. Neurocomputing 74:580–587

29. Peng X (2010) TSVR: an efficient twin support vector machine

for regression. Neural Netw 23(3):365–372

30. Peng X (2010) Primal twin support vector regression and its

sparse approximation. Neurocomputing 73(16-18):2846–2858

31. Peng X (2011) TPMSVM: A novel twin parametric-margin

support vector machine for pattern recognition. Pattern Recogn

44(10–11):2678–2692

32. Peng X (2012) Efficient twin parametric insensitive support

vector regression model. Neurocomputing 79:26–38

Neural Comput & Applic (2014) 24:1207–1220 1219

123

33. Tax D, Duin R (1999) Support vector domain description. Pattern

Recogn Lett 20:1191–1199

34. Tax D, Duin R (2004) Support vector data description. Mach

Learn 54:45–66

35. Schölkopf B, Platt J, Shawe-Taylor J, Smola AJ, Williamson RC

(2001) Estimating the support of a high-dimensional distribution.

Neural Comput 13(7):1443–1471

36. Mercer J (1909) Functions of positive and negative type and the

connection with the theory of integal equations. Philos Trans R

Soc Lond Ser A 209:415–446

37. Peng X (2011) Building sparse twin support vector machine

classifiers in primal space. Inf Sci 181(18):3967–3980

38. Shao Y, Zhang C, Wang X, Deng N (2011) Improvements on

twin support vector machines. IEEE Trans Neural Netw 22(6):

962–968

39. Gilbert EG (1966) An iterative procedure for computing the

minimum of a quadratic form on a convex set. SIAM J Control

4(1):61–79

40. Crisp DJ, Burges CJC (2000) A geometric interpretation of m-

SVM classifiers. In: Solla S, Leen T, Muller K-R (eds) Advances

in neural information processing systems, vol 12, pp 244–250

41. MATLAB, User’s guide, the MathWorks, Inc., 1994–2001,

http://www.mathworks.com

42. Ripley BD (1996) Pattern recognition and neural networks.

Cambridge University Press, Cambridge

43. Demšar J (2006) Statistical comparisons of classifiers over mul-

tiple data sets. J Mach Learn Res 7:1–30

1220 Neural Comput & Applic (2014) 24:1207–1220

123

http://www.mathworks.com

	Twin support vector hypersphere (TSVH) classifier for pattern recognition
	Abstract
	Introduction
	Background
	Support vector machine
	Twin support vector machine
	Support vector data description

	Twin support vector hypersphere
	Learning algorithm for TSVH
	Experiments
	Toy examples
	Benchmark data sets

	Conclusions
	Acknowledgments
	References

