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Abstract In this study, artificial neural networks (ANNs)

were used to predict the settlement of one-way footings,

without a need to perform any manual work such as using

tables or charts. To achieve this, a computer programme

was developed in the Matlab programming environment

for calculating the settlement of one-way footings from five

traditional settlement prediction methods. The footing

geometry (length and width), the footing embedment

depth, the bulk unit weight of the cohesionless soil, the

footing applied pressure, and corrected standard penetra-

tion test varied during the settlement analyses, and the

settlement value of each one-way footing was calculated

for each traditional method by using the written pro-

gramme. Then, an ANN model was developed for each

method to predict the settlement by using the results of the

analyses. The settlement values predicted from each ANN

model developed were compared with the settlement val-

ues calculated from the traditional method. The predicted

values were found to be quite close to the calculated val-

ues. Additionally, several performance indices such as

determination coefficient, variance account for, mean

absolute error, root mean square error, and scaled percent

error were computed to check the prediction capacity of the

ANN models developed. The constructed ANN models

have shown high prediction performance based on the

performance indices calculated. The results demonstrated

that the ANN models developed can be used at the pre-

liminary stage of designing one-way footing on cohesion-

less soils without a need to perform any manual work such

as using tables or charts.

Keywords Artificial neural networks � Cohesionless soils �
One-way footing � Settlement � Standard penetration test

1 Introduction

Sand deposits are generally much more heterogeneous than

their clay counterparts [1]. Therefore, differential settle-

ments are probably to be higher in sand deposits than in

clay profiles [2]. Settlement occurs in cohesionless soils in

a short time due to their high degree of permeability [3].

This immediate settlement creates relatively rapid defor-

mation of superstructures, which causes the incapacity to

remedy damage to prevent further deformation [1]. Fur-

thermore, excessive settlement occasionally brings about

the structural failure [4]. Usually, the settlement of shallow

foundations for example pad or strip footings are limited to

25 mm [5].

Two major criteria (bearing capacity and settlement

criteria) control the design of shallow foundations. The

settlement criterion is more critical than the bearing

capacity criterion in the design of shallow foundations on

cohesionless soils. Thus, settlement criterion usually con-

trols the design process, rather than bearing capacity,

especially when the breadth of footing exceeds 1 m [6].

In order to propose an indirect estimation by empirical

equations, the statistical methods are traditionally used [7].

In recent years, new techniques such as artificial neural

networks (ANNs) and fuzzy interference system were

employed for developing predictive models to estimate the

needed parameters [7–13]. ANN is now being used as

alternate statistical tool [7]. ANNs are very sophisticated

modeling techniques, enable the modeling of extremely

complex functions [14]. Recently, ANNs have been used

successfully to many problems in geotechnical engineering
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owing to their successful performance in modeling nonlinear

multivariate problems. ANNs currently attract many

researchers studying the settlement prediction of shallow

foundations on cohesionless soils (i.e., Shahin et al. [1],

Sivakugan et al. [15]). The basic characteristics of ANNs in

tackling quantitative and qualitative indexes contain the

large-scale parallel-distributed processing, continuously

nonlinear dynamics, collective computation, high fault tol-

erance, self organization, self learning, and real-time treat-

ment [16]. In this study, ANNs, with respect to the above

advantages, were utilized to predict the settlement of one-

way strip footings, without a need to perform any manual

work such as using tables or charts. To achieve this, a

computer programme [17] was developed in the Matlab

programming environment for calculating the settlement of

one-way footings from five traditional settlement prediction

methods such as Meyerhof [18], Terzaghi and Peck [19],

Pary [20], Peck et al. [21], Burland and Burbidge [22]. The

footing geometry (length, L, and width, B), the footing

embedment depth, Df, the bulk unit weight, c, of the cohe-

sionless soil, the footing applied pressure, Q, and corrected

standard penetration test, Ncor varied during the settlement

analyses, and the settlement value of each one-way footing

was calculated for each method by using the written pro-

gramme. Then, an ANN model for each traditional method

was developed by using the results of the analyses to predict

the settlement. The settlement values predicted from the

ANN model were compared with the settlement values

calculated from the traditional method for each method.

Additionally, several performance indices such as determi-

nation coefficient (R2), variance account for (VAF), mean

absolute error (MAE), root mean square error (RMSE), and

scaled percent error (SPE) were calculated to check the

prediction capacity of the ANN models developed. Sensi-

tivity analyses were also carried out to examine the relative

importance of the factors affecting settlement prediction.

2 Calculation of settlement of one-way footings

on cohesionless soils

In this study, a computer program [17] was written in the

Matlab programming environment to calculate the settle-

ment, Dh, of one-way footings on cohesionless soils based

on standard penetration test from five traditional methods,

namely, Meyerhof [18], Terzaghi and Peck [19], Pary [20],

Peck et al. [21], Burland and Burbidge [22], given by Eqs.

(1)–(5), respectively.

Dh ¼ Dha

qnet

qa

ð1Þ

Dh ¼ qnet

qa

25 ð2Þ

Dh ¼ aBqnet

Nm

CDCTCw ð3Þ

Dh ¼ qnet

qaCw

25 ð4Þ

Dh ¼ qnetB
0:7Ic ð5Þ

In Eqs. (1)–(5), Ic is the compressibility index, qnet is the

net applied pressure, qa is the allowable bearing capacity,

Dha is the absolute maximum allowable settlement, Cw is

the correction for water table depth, a is a constant and

taken as 200 in SI units, CD is the factor for the influence of

excavation, CT is the factor for the thickness of the

compressible layer, and Nm is the measured average

standard penetration value.

The footing geometry (length, L, and width, B), the

footing embedment depth, Df, the bulk unit weight, c, of

the cohesionless soil, the footing applied pressure, Q, and

corrected standard penetration test, Ncor varied during the

settlement analyses as follows: The B value was varied 1,

2, and 3 m. For each B value, the L value was varied as 10,

20, and 30 m. The c value for each B–L pair was varied as

16, 18, 20, and 22 kN/m3. The Df value was changed as

0.5–3.5 m with step of 1.0 m. The Q value was varied from

2,500 to 5,000 kN with step of 500 kN. The Mcor value was

varied from 5 to 45 with step of 10. Then, the settlement

value of each one-way footing was calculated for each

method by using the written program. The effect of the

water table is already reflected in the measured SPT blow

count [18]. Thus, the depth of water table is not included in

this study. Square and rectangular footings are taken into

account in this study. As found by Burbidge [23], there is

no important difference between the settlement of circular

and square footings having the same width (B) on the same

soil. Therefore, circular footings are also considered to be

equivalent to as square footings. A summary of the results

are given in Table 1. It can be noted from the table that

Terzaghi and Peck [19] method generally yielded the

highest settlement values; Pary [20] and Burland and

Burbidge [22] methods yielded lower settlement values;

Meyerhof [18] and Peck et al. [21] generally yielded

similar settlement values lower than those predicted by

Terzaghi and Peck [19] and higher than those predicted by

Pary [20] and Burland and Burbidge [22] methods.

3 Artificial neural network models

3.1 Brief overview of artificial neural networks

ANNs are the form of artificial intelligence which is based

on the function of human brain and nervous system [24].

An ANN consists basically of simple processing elements
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called neurons, which are highly interconnected. Typically,

the neurons are organized logically into groupings called

layers. An ANNs architecture (Fig. 1) is constructed by

three or more layers, which contain an input layer, one or

more hidden layers, and an output layer. This ANN

architecture is commonly referred to as a fully intercon-

nected feedforward multi-layer perceptron (MLP). Each

neuron in a given layer is connected to all the neurons in

the next layer by means of weighted connections.

ANNs learn from the data examples fed to them and

utilize these data to adjust their weights in an attempt to

find a relationship between model inputs and corresponding

outputs [24]. Once the learning or training phase of the

model has been successfully accomplished, the perfor-

mance of the trained model has to be validated using an

independent validation set. Details of ANNs are beyond the

scope of this study and are given elsewhere (e.g., Flood and

Kartam [25]).

3.2 Development of artificial neural network models

An ANN model for each traditional method is designated

for predicting the settlement, Dh, value of the one-way

footing on cohesionless soils by using the neural network

toolbox written in Matlab environment (Math Works 7.0

Inc. 2006). In each ANN model, the footing geometry

(length, L, and width, B), the footing embedment depth, Df,

the bulk unit weight, c, of the cohesionless soil, the footing

applied pressure, Q, and corrected standard penetration

test, Ncor were used as the input parameters, while the

calculated Dh value was the output parameter. The

boundaries of the input and output parameters for each

Inputs OutputHidden layer

4 neurons 
in the hiden layer

B

L

Ncor

Q

Df

γ

Δh

Fig. 1 The ANNs architecture

Table 1 A summary of the results

Ncor Q (kN) Df (m) c (kN/m3) B (m) L (m) Settlement calculated (mm)

Meyerhof

[18]

Terzaghi and

Peck [19]

Parry

[20]

Peck et al.

[21]

Burland and

Burbidge [22]

5 2,500 2.5 18 3 10 17.626 28.787 13.016 17.866 14.859

5 3,000 1.5 16 3 20 11.955 19.525 7.552 12.118 10.079

5 3,000 3.5 20 3 10 13.794 22.529 11.514 13.982 11.629

5 3,500 1.5 18 1 10 120.156 192.262 45.658 150.541 58.028

5 4,000 0.5 18 3 20 26.515 43.306 13.579 26.877 22.354

15 3,000 0.5 20 3 30 3.576 3.879 1.831 3.331 1.943

15 3,500 1.5 16 1 10 40.424 44.997 15.361 46.533 12.58

15 4,000 0.5 18 2 10 26.749 28.556 10.602 27.263 11.974

15 4,000 2.5 18 3 10 13.538 14.684 9.998 12.609 7.355

15 4,500 3.5 16 1 10 48.856 54.382 26.583 48.856 15.204

15 5,000 0.5 22 3 20 11.086 12.025 5.678 10.325 6.023

25 2,500 0.5 20 2 10 9.663 9.928 3.83 10.219 3.526

25 3,000 3.5 16 3 10 4.046 4.132 3.377 3.91 1.792

25 3,500 2.5 18 1 20 9.672 10.518 4.561 9.672 2.454

25 5,000 3.5 18 3 10 9.533 9.735 7.958 9.212 4.222

35 3,000 0.5 18 3 10 5.977 6.011 3.061 5.988 2.314

35 4,000 1.5 20 1 20 9.034 9.769 3.433 11.199 2.003

35 4,500 2.5 18 1 30 5.58 6.034 2.631 5.580 1.237

35 5,000 1.5 22 2 10 13.024 13.275 6.774 14.280 4.154

45 3,000 0.5 22 2 10 6.489 6.558 2.572 7.054 1.872

45 3,500 1.5 20 1 10 13.227 14.133 5.026 16.239 2.652

45 5,000 0.5 20 1 10 20.253 21.641 5.271 24.866 4.062
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method are given in Table 2. The input and output data

were then scaled to lie between 0 and 1, by using Eq. (6). In

Eq. (6), where xnorm is the normalized value, x is the actual

value, xmax is the maximum value, and xmin is the minimum

value.

xnorm ¼
ðx� xminÞ
ðxmax � xminÞ

ð6Þ

Overfitting makes MLPs memorize training patterns in

such a way that they cannot generalize well to new data

[14, 26]. As a result, cross-validation technique [27],

considered to be the most effective method to ensure

overfitting does not occur [28], was used as the stopping

criterion in this study. In this technique [27], the database

is divided into three subsets: training, validation, and

testing. The training set is used to adjust the connection

weights [29]. The testing set is utilized to check the

performance of the model at various stages of training

and to determine when to stop training to prevent

overfitting [29]. The validation set is used to predict the

performance of the trained network in the deployed

environment [29]. Shahin et al. [29] investigated the

impact of the proportion of the data used in various

subsets on the performance of ANN model developed for

estimating the settlement of shallow foundations and

found no exact relationship between the proportion of the

data and model performance. However, they obtained the

optimal model performance when 20 % of the data were

utilized for validation and the rest data were divided into

70 % for training and 30 % for testing. Therefore, to

avoid overfitting, the database was randomly divided into

three sets: training, testing, and validation. In total, 56 %

of the data (i.e., 2,150 data sets), 24 % (i.e., 922 data

sets), and 20 % (i.e., 768 data sets) were used for training,

testing, and validation sets, respectively, in each ANN

model developed in this study.

The neural network toolbox of MATLAB7.0, a popular

numerical computation and visualization software [19],

was used for training, validation, and testing of MLPs in

each ANN model. The Levenberg–Marquardt back-propa-

gation learning algorithm [30] was used in the training

stage. One hidden layer with a sufficient number of hidden

neurons is capable of approximating any continuous

function [31]. Therefore, in this study, one hidden layer

was used. Then, the optimum number of neurons in the

hidden layer of the model was determined by varying their

number starting with a minimum of 1 then increasing in

steps by adding one neuron each time. Log-sigmoid

transfer (activation) function, the most commonly used to

construct the neural networks, was used in each ANN

model to achieve the best performance in training as well

as in testing. Two momentum factors, l, (=0.01 and 0.001)

were selected for the training process to search for the most

efficient ANN architecture in each ANN model. The

coefficient of determination, R2, and the MAE were uti-

lized to evaluate the performance of each developed ANN

model. The performance of the network during the training

and testing processes was examined for each network size

until no significant improvement occurred. The flow chart

showing the determination of NN’s weights is also given in

Fig. 2. The optimal ANN’s performance for each tradi-

tional method was obtained with the model having

four neurons in the hidden layer and a 0.001 momentum

factor.

4 Results and discussion

A comparison of Dh values calculated from five tradi-

tional methods with the Dh values predicted from the

ANN models developed is depicted in Figs. 3, 4, 5, 6 and

7. As seen from the figures that the predicted Dh values

are quite close to the calculated Dh values, as their R2

values are much close to unity, which indicates no

significant difference between calculated and predicted

Dh values.

In fact, the coefficient of correlation between the

measured and predicted values is a good indicator to

evaluate the prediction performance of the any model

developed. In this study, variance VAF, given by Eq. (7),

and the RMSE, given by Eq. (8), were also computed to

control the performance of the prediction capacity of

predictive models developed in the study, as employed by

[12, 13, 32–36].

Table 2 Boundaries of the parameters used for the models developed

Input parameters Output parameter

Ncor Q (kN) c (kN/m3) Df (m) B (m) L (m) Meyerhof

[18]

Terzaghi and

Peck [19]

Parry

[20]

Peck et al.

[21]

Burland and

Burbidge [22]

Dh (mm) Dh (mm) Dh (mm) Dh (mm) Dh (mm)

Minimum value 5 2,500 16 0.5 1.0 10.0 0.00 0.00 0.00 0.00 0.00

Maximum value 45 5,000 22 3.5 3.0 30.0 184.02 292.85 89.87 229.30 88.39
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VAF ¼ 1� varðy� ŷÞ
varðyÞ

� �
� 100 ð7Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

ðyi � ŷiÞ2
vuut ð8Þ

where var denotes the variance, y is the measured value, ŷ

is the predicted value, and N is the number of the sample. If

VAF is 100 % and RMSE is 0, the model is treated as

excellent. The performance indices calculated for the ANN

models developed in this study are given in Table 3. Each

ANN model has exhibited high prediction performance

based on the computed performance indices (Table 3).

In addition to the performance indices, a graph between

the SPE, (as given by Eq. (9) and employed by Kanibir

et al. [37] and Erzin et al. [38]), and cumulative frequency

was also drawn in Figs. 8, 9, 10, 11 and 12 for Meyerhof

[18], Terzaghi and Peck [19], Pary [20], Peck et al. [21],

Burland and Burbidge [22] methods, respectively, to show

the performance of the models developed.

SPE ¼ ðDhp � DhcÞ
ððDhcÞmax � ðDhcÞminÞ

ð9Þ

where Dhp and Dhc are the predicted and the calculated

settlements; and (Dhc)max and (Dhc)min are the maximum

and minimum calculated settlements, respectively. As seen

from Figs. 8, 9, 10, 11 and 12, about 95, 97, 95, 91, and

96 % of settlements predicted from the ANN model

developed for Meyerhof [18], Terzaghi and Peck [19], Pary

[20], Peck et al. [21], Burland and Burbidge [22] methods,

respectively, fall into ±2 of the SPE, indicating a perfect

estimate for the settlement of one-way strip footings. From

here, it can be concluded that the Dh value of one-way

footings for each traditional method could be predicted

from the footing geometry (length, L, and width, B), the

footing embedment depth, Df, the bulk unit weight, c, of

the cohesionless soil, the footing applied pressure, Q, and

corrected standard penetration test, Ncor using trained

ANNs values, with acceptable accuracy, at the preliminary

stage of designing the one-way strip footing.

Sensitivity analyses were also carried out on the trained

work to determine which of the input parameters has the

most significant effect on the settlement predictions. A

Fig. 2 The flow chart showing the determination of NN’s weights

[13]

Fig. 3 Comparison of calculated Dh values from Meyerhof [18]

method with predicted Dh values from the ANN model developed for

a training, b testing, and c validation data sets
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simple and innovative technique proposed by Garson [39],

as employed by Shahin et al. [1], was utilized to interpret

the relative importance of the input parameters by exam-

ining the connection weights of the trained network. For a

network with one hidden layer, the technique involves a

process of partitioning the hidden output connection

weights into components associated with each input node

[1]. When the ratio of the number of free parameters (e.g.,

connection weights) to the data points in the training set is

too large, it is difficult to interpret the physical meaning of

the relationship found by the ANN [1]. The sensitivity

analyses repeated for networks trained with different initial

random weights to control the robustness of the model in

relation with its ability to obtain information about the

relative importance of the physical factors influencing the

settlement of one-way footings. In this study, the ratio of

the number of weights to the number of data points in the

training set is approximately 1:77, and training of the

network is repeated four times with different random

starting weights. The results of the sensitivity analysis for

each traditional method used are given in Table 4. From

the results of the sensitivity analysis (Table 4), for each

traditional method, Ncor is found to be the most important

Fig. 4 Comparison of calculated Dh values from Terzaghi and Peck

[19] method with predicted Dh values from the ANN model

developed for a training, b testing, and c validation data sets Fig. 5 Comparison of calculated Dh values from Parry [20] method

with predicted Dh values from the ANN model developed for

a training, b testing, and c validation data sets
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parameter, followed by L, B, Q, Df, and c for Terzaghi and

Peck [19], Pary [20], Peck et al. [21], Burland and Bur-

bidge [22] methods, and followed by B, L, Q, Df, and c for

Meyerhof [18] method.

5 Conclusions

In this study, efforts were made to develop ANN model

that can be employed for estimating the settlement, Dh, of

one-way footings, without a need to perform any manual

work such as using tables or charts. To achieve this, a

computer program was developed in the Matlab pro-

gramming environment to calculate the Dh value of one-

way footings from five traditional settlement prediction

methods such as Meyerhof [18], Terzaghi and Peck [19],

Pary [20], Peck et al. [21], Burland and Burbidge [22].

The footing geometry (length, L, and width, B), the

footing embedment depth, Df, the bulk unit weight, c, of

the cohesionless soil, the footing applied pressure, Q, and

corrected standard penetration test, Ncor varied during the

settlement analyses, and the Dh value of each one-way

Fig. 6 Comparison of calculated Dh values from Peck et al. [21]

method with predicted Dh values from the ANN model developed for

a training, b testing, and c validation data sets

Fig. 7 Comparison of calculated Dh values from Burland and

Burbidge [22] method with predicted Dh values from the ANN

model developed for a training, b testing, and c validation data sets
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footing was calculated for each method by using the

written programme. From the results, Terzaghi and Peck

[19] method generally yielded the highest Dh values; Pary

[20] and Burland and Burbidge [22] methods yielded

lower Dh values; Meyerhof [18] and Peck et al. [21]

generally yielded similar Dh values lower than those

predicted by Terzaghi and Peck [19] and higher than

those predicted by Pary [20] and Burland and Burbidge

[22] methods.

Then, an ANN model was developed for each traditional

method to predict the Dh value of one-way footings by

using the results of the settlement analyses. The Dh values
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Fig. 8 Scaled percent error of the settlements predicted from the

ANN model for Meyerhof [18] method
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Fig. 9 Scaled percent error of the settlements predicted from the

ANN model for Terzaghi and Peck [19] method
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Fig. 10 Scaled percent error of the settlements predicted from the

ANN model for Parry [20] method
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Fig. 11 Scaled percent error of the settlements predicted from the

ANN model for Peck et al. [21] method

Table 3 The details of the performance indices of the ANN models

Method R2 MAE (mm) RMSE (mm) VAF (%)

Training Testing Validation Training Testing Validation Training Testing Validation Training Testing Validation

Meyerhof [18] 0.994 0.995 0.994 1.16 1.25 1.30 1.67 1.77 1.79 99.47 99.54 99.47

Terzaghi and Peck [19] 0.996 0.996 0.996 1.54 1.68 1.70 2.29 2.50 2.40 99.61 99.65 99.63

Parry [20] 0.991 0.989 0.988 0.65 0.77 0.74 0.98 1.35 1.14 99.09 98.77 98.83

Peck et al. [21] 0.990 0.989 0.990 1.67 1.90 1.82 2.57 3.08 2.82 99.04 98.90 99.03

Burland and Burbidge

[22]

0.996 0.996 0.996 0.49 0.54 0.53 0.76 0.82 0.78 99.66 99.67 99.64
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predicted from the ANN model were compared with those

calculated from the traditional method for each method to

examine the performance of the prediction capacity of the

models developed in the study. The results demonstrated

that the Dh values predicted from the ANN model are in

good agreement with the calculated Dh values for each

ANN model developed.

To check the prediction performance of the ANN

models developed, several performance indices such as R2,

VAF, MAE, and RMSE were calculated. Each ANN model

has shown high prediction performance based on the per-

formance indices. In addition to that, about 95, 97, 95, 91,

and 96 % of settlements predicted from the ANN model

developed for Meyerhof [18], Terzaghi and Peck [19], Pary

[20], Peck et al. [21], Burland and Burbidge [22] methods,

respectively, fall into ±2 of the SPE, indicating a perfect

estimate for the settlement of one-way strip footings.
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Fig. 12 Scaled percent error of the settlements predicted from the

ANN model for Burland and Burbidge [22] method

Table 4 The results of the sensitivity analysis

Traditional method Trial no. Relative importance for input variables (%)

Ncor Q Df c B L

Meyerhof [18] 1 50.96 8.59 2.23 0.52 17.98 19.72

2 48.12 8.69 2.42 0.68 23.61 16.47

3 35.92 7.01 2.10 0.53 29.28 25.16

4 43.07 10.04 4.26 0.68 18.78 23.16

Average 44.52 8.58 2.75 0.60 22.41 21.13

Ranking 1 4 5 6 2 3

Terzaghi and Peck [19] 1 48.38 8.15 1.79 0.51 17.08 24.09

2 43.50 7.75 4.70 0.78 25.72 17.54

3 59.91 6.85 2.00 0.54 14.96 15.74

4 49.60 8.43 1.62 0.61 19.58 20.16

Average 50.35 7.80 2.53 0.61 19.33 19.38

Ranking 1 4 5 6 3 2

Parry [20] 1 44.81 6.49 17.41 2.64 5.35 23.29

2 43.96 8.32 16.44 2.85 9.01 19.41

3 39.11 9.31 13.85 1.85 23.41 12.47

4 44.99 9.38 13.45 1.89 11.80 18.49

Average 43.22 8.38 15.29 2.31 12.39 18.42

Ranking 1 5 4 6 3 2

Peck et al. [21] 1 54.65 4.65 2.99 0.66 26.17 10.87

2 41.35 7.58 6.28 0.96 16.90 26.94

3 62.07 7.25 4.51 0.56 12.19 13.42

4 43.47 9.66 4.44 0.39 17.84 24.20

Average 50.38 7.28 4.55 0.64 18.28 18.86

Ranking 1 4 5 6 3 2

Burland and Burbidge [22] 1 51.70 8.40 5.06 1.46 10.62 22.76

2 54.03 8.49 3.78 1.29 10.86 21.56

3 46.07 8.97 4.91 3.08 8.41 28.57

4 49.77 9.02 4.27 1.15 12.00 23.80

Average 50.39 8.72 4.50 1.74 10.47 24.17

Ranking 1 4 5 6 3 2
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Therefore, the ANN models developed in this study can be

employed for estimating the settlement, Dh, of one-way

footings, without a need to perform any manual work such

as using tables or charts.

Sensitivity analyses were also carried out on the trained

work for each traditional method to identify which of the

input parameters has the most significant influence on

settlement predictions. The results of the sensitivity anal-

ysis demonstrated that Ncor is the most important parameter

while c is the least important parameter for each method.
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