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Abstract Various computational intelligence techniques

have been used in the prediction of petroleum reservoir

properties. However, each of them has its limitations

depending on different conditions such as data size and

dimensionality. Hybrid computational intelligence has

been introduced as a new paradigm to complement the

weaknesses of one technique with the strengths of another

or others. This paper presents a computational intelligence

hybrid model to overcome some of the limitations of the

standalone type-2 fuzzy logic system (T2FLS) model by

using a least-square-fitting-based model selection algo-

rithm to reduce the dimensionality of the input data while

selecting the best variables. This novel feature selection

procedure resulted in the improvement of the performance

of T2FLS whose complexity is usually increased and per-

formance degraded with increased dimensionality of input

data. The iterative least-square-fitting algorithm part of

functional networks (FN) and T2FLS techniques were

combined in a hybrid manner to predict the porosity and

permeability of North American and Middle Eastern oil

and gas reservoirs. Training and testing the T2FLS block of

the hybrid model with the best and dimensionally reduced

input variables caused the hybrid model to perform better

with higher correlation coefficients, lower root mean

square errors, and less execution times than the standalone

T2FLS model. This work has demonstrated the promising

capability of hybrid modelling and has given more insight

into the possibility of more robust hybrid models with

better functionality and capability indices.

Keywords Hybrid artificial intelligence � Functional

networks � Type-2 fuzzy logic � Petroleum reservoir �
Least-square-fitting algorithm

1 Introduction

Porosity and permeability are two important oil and gas

reservoir properties which have to do with the amount of

fluid contained in a reservoir and its ability to flow. These

properties have significant impact on petroleum field oper-

ations and reservoir management [1]. They are usually

measured in the laboratory on plugs extracted from the core

of wells drilled for oil and gas exploration. The data are

valuable for relating the two properties whose values are not

directly measurable from well logs since they are purely

natural phenomena. Both porosity and permeability data

serve as standard indicators of reservoir quality in the oil and

gas industry. This process, called petroleum reservoir char-

acterization, is used for quantitatively describing various

reservoir properties in spatial variability by using available

field and laboratory data. The process plays a crucial role in

modern reservoir management: making sound reservoir

decisions and improving the reliability of the reservoir pre-

dictions. These properties make significant impacts on

petroleum field operations and reservoir management [2].

Since the laboratory measurements are usually costly and

time-consuming, artificial intelligence (AI) techniques have

been successfully used in the prediction of these properties

to an acceptable degree of accuracy [1, 3–5]. However, each

AI technique has certain limitations that would not make
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their use desirable in certain conditions such as in small

dataset scenarios [6, 7] and high dimensionality of data

conditions [8, 9]. Some AI techniques such as type-2 fuzzy

logic are sensitive to the dimensionality of data [9, 10] such

that even a little reduction in the number of features is

expected to make a significant improvement in their per-

formance indices. Hence, combining such techniques with

others that have the capability of addressing some of the

limitations in the former, such as reducing the data

dimensionality, would be a welcomed development. Such

hybridization tasks will improve the accuracy of predic-

tions, which would in turn, increase the confidence in the

results and hence improve the overall efficiency of oil and

gas exploration and production activities.

The hybridization of two or more AI techniques, known

as hybrid computational intelligence (HCI), to create a

single integrated model, is becoming increasingly popular.

The increased popularity lies in their extensive success in

real-world complex problems such as in the characteriza-

tion of oil and gas reservoirs [1, 6], network intrusion

detection [11], biometric face recognition [12], bioinfor-

matics [13, 14], financial credit risk assessment [15],

multimedia processing [16], and control systems [17].

In this work, the desirable qualities of LS-fitting algo-

rithm of functional networks (FN) and type-2 fuzzy logic

(T2FLS) were combined to predict two properties of oil

and gas reservoirs, namely porosity and permeability, with

better performance indicators. Our motivations for this

work include the quest for higher performance accuracy in

the prediction of oil and gas reservoir properties; the

recently increasing popularity of hybrid intelligent sys-

tems; the reported success of these hybrid systems in many

real-world complex problems; the need to complement the

weaknesses of one algorithm with the strengths of the other

and hence to combine the cooperative and competitive

characteristics of the individual techniques; and the exist-

ing theoretical and experimental justifications that hybrids

produce more accurate results than the individual tech-

niques used separately [2, 6, 18].

The considerable number of applications of hybrid tech-

niques indicate, on one hand, the keen interest of researchers

in this new concept and, on the other hand, the need for better

components that will yield hybrid models that are simpler in

architecture and more efficient in performance.

The rest of this paper is organized as follows: Sect. 2

presents some background knowledge on the petroleum

reservoir characterization process, porosity, and permeabil-

ity. Section 3 reviews some of the previous works related to

this study. Section 4 describes the datasets, experimental

methodology, and the criteria for the performance evaluation

of this work. Section 5 presents the results with a detailed

discussion. Conclusion is presented in Sect. 6 while our plan

for further research is presented in Sect. 7.

2 Background knowledge

2.1 Petroleum reservoir characterization

Oil and gas reservoir characterization plays a crucial role in

modern reservoir management. It helps to make sound

reservoir decisions and improves the asset value of the oil

and gas companies. It maximizes the integration of multi-

disciplinary data and knowledge, and hence improves the

reliability of reservoir predictions. The ultimate goal is ‘‘a

reservoir model with realistic tolerance for imprecision and

uncertainty’’ [2]. Furthermore, it is the process between the

discovery phase of a reservoir and its management phase.

The process integrates the technical disciplines of petro-

leum reservoir engineering, geology, geophysics, oil and

gas production engineering, petrophysics, economics, and

data management. The key objectives of reservoir charac-

terization focus on modelling each reservoir unit, predict-

ing well behavior, understanding past reservoir

performance, and forecasting future reservoir conditions.

The petroleum reservoir characterization process usually

involves a well logging technique that makes measure-

ments in oil and gas wells that have been drilled. Probes are

designed and lowered in these wells to measure the phys-

ical and chemical properties of rocks as well as the fluids

contained in them. Much information can be obtained from

samples of rock brought to the surface in cores or bit

cuttings, or from other clues while drilling, such as the rate

of penetration, reservoir pressure, and bottom-hole tem-

perature. However, the greatest amount of information

comes from well logs which results from the probes. The

resulting measurements, known as geophysical well logs,

are recorded graphically or digitally as a function of depth.

Although the most commonly used logs are for the

correlation of geological strata and location of hydrocarbon

zones, there are many other important subsurface param-

eters that need to be detected or measured. Also, different

borehole and formation conditions can require different

tools to measure the same basic property [19]. Some of the

numerous uses of logs in petroleum engineering include the

identification of potential reservoir rocks and bed thick-

ness, determination of porosity, estimation of permeability,

location of and quantification of the amount of hydrocar-

bons, and estimation of water salinity.

2.2 Porosity and permeability

Porosity is the percentage of voids and open spaces in a

rock or sedimentary deposit. The greater the porosity of a

rock, the greater its ability to hold water and other mate-

rials, such as oil, will be. It is an important consideration

when attempting to evaluate the potential volume of

hydrocarbons contained in a reservoir. Sedimentary
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porosities are a complex function of many factors,

including but not limited to, rate of burial, depth of burial,

the nature of the carbonate fluids, and overlying sediments

which may impede fluid expulsion. Different types of

porosity are primary, secondary, fracture, and vuggy

porosity. Porosity can be further categorized as effective

and total porosity [20].

Although a rock may be very porous, it is not neces-

sarily very permeable. Permeability is a measure of how

interconnected the individual pore spaces are in a rock or

sediment. It is a key parameter associated with the char-

acterization of any hydrocarbon reservoir. In fact, many

petroleum engineering problems cannot be solved accu-

rately without having an accurate value of permeability.

Permeability can also be categorized as absolute, effective,

and relative permeability [21].

Together, these two reservoir properties are key indi-

cators of reservoir viability and quality. They are also very

essential attributes in the determination of other properties

such as pressure–volume–temperature (PVT), hydraulic

units, water saturation, oil/gas ratio, and wellbore stability.

3 Related works on hybrid computational intelligence

in oil and gas

The application of HCI has been widely appreciated in

petroleum engineering, as well as in other fields. Some of

the areas of petroleum technology in which AI has been

successfully used include seismic pattern recognition,

porosity and permeability predictions, identification of

sandstone lithofacies, drill bit diagnosis, and analysis and

improvement of oil and gas well production [2, 6, 18, 22].

A number of hybrid models combined artificial neural

networks (ANN) and fuzzy logic [1, 3, 4, 23]. In some of

these models, the fuzzy logic component was used to select

the best related well logs with core porosity and perme-

ability data while the ANN component was used as a

nonlinear regression method to develop transformation

between the selected well logs and core measurements.

Both ANN and fuzzy logic, as implemented in those

studies, have limitations that hamper their choice for such

roles. ANN suffers from the following deficiencies [24]:

• There is no general framework to design the appropri-

ate network for a specific task.

• The number of hidden layers and hidden neurons of the

network architecture are determined by trial and error.

• A large number of parameters are frequently required to

fit a good network structure.

• ANN uses pre-defined activation functions without

considering the properties of the phenomena being

modelled.

Fuzzy logic, on the other hand, especially T2FLS, was

reported to be very complex and hence requires more time

for execution when applied on high-dimensional data [10].

It also performs poorly when applied on datasets of small

size [9, 25]. Hence, there is the need for another technique

that does not have these limitations. It is necessary to state

here that the work in [25] contained the initial results of the

present work in its rather ad hoc implementation without

much attention to the need to optimize the parameters. It

was initial test run of the hybrid model. This work extends

the previous by paying much more careful attention to the

algorithms that were combined. The results presented here

are much better.

Other hybrid techniques incorporated genetic algorithms

(GA) in their components. These include [5] who devel-

oped a hybrid model of GA and fuzzy/neural inference

system methodology that provides permeability estimates

for all types of rocks in order to determine the volumetric

estimate of permeability. Their proposed hybrid system

consists of three modules: one that serves to classify the

lithology and categorizes the reservoir interval into user-

defined lithology types, a second module containing GA to

predict permeability facies, and the third module that uses

neuro-fuzzy inference systems to form a relationship for

each permeability facies and lithology. Similar hybrid

configurations incorporating GA were used by [26–31].

However, GA, with its exhaustive search algorithm and a

very robust optimization algorithm, is known for its long

execution time, its need for high processing power due to

its complexity and sometimes inefficiency [32, 33].

Among the most popular hybrid techniques used in the

modelling of oil and gas reservoir properties is the adaptive

neuro-fuzzy inference system (ANFIS), which combines

the functionalities of ANN and fuzzy logic techniques. This

featured in the study of [34] where it was used to predict

the permeability of tight gas sands using a combination of

core and log data. Combining the limitations of ANN and

fuzzy logic, as earlier discussed, in a single hybrid model

could only result in a combined overall inefficiency despite

their reported good performance.

Various studies to address these reported problems of

ANN through the development of other algorithms such as

cascade correlation and radial basis function did not

improve its overall performance [35]. It has not been

proved in the literature that the use of fuzzy logic and GA

components in hybrid models was able to effectively

neutralize the limitations of ANN.

Due to the limitations of ANN, fuzzy logic, and GA

used in the reported hybrid techniques, the objective of this

paper is to use a technique with simple architecture and

more robust fitting algorithm to extract the most relevant

and dimensionally reduced set of input variables for the use
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of T2FLS model resulting in better performance with

reduced time complexity and FN fits perfectly to this need.

An overview of FN, T2FL, and hybrid systems has been

succinctly presented in [6]. More details about these

techniques can further be found in [36–38] for FN, [1, 9,

10, 31] for T2FL and [3, 5, 22, 26] for hybrid systems.

4 Data description, experimental design, and model

framework

4.1 Description of data

The same sets of porosity and permeability data from six

wells (three for porosity and three for permeability) from

previous studies [2, 6] were used in this work. Table 1

shows the six predictor variables for porosity from Site 1;

Table 2 shows the eight predictor variables for perme-

ability from Site 2, and the six datasets with their number

of data points as well as their divisions into training and

testing sets are shown in Table 3. Site 1 is a heterogeneous

platform that is made up of carbonate and dolomite while

Site 2 is majorly of carbonate and sandstone formations.

Hence, the datasets are the representative of the major oil-

bearing geological structures found in most parts of the oil-

producing world.

4.2 Experimental design

The methodology employed in this study follows the

standard computational intelligence approach to hybrid-

ization of AI techniques, and in the case of this study, a

combination of the LS-fitting algorithm of FN and T2FLS

techniques. In this work, the MATLAB codes for the

iterative least-squares FN classifier obtained from the

software repository of Enrique Castillo’s AI Research

Group [39] were partly used. For T2FLS, the Interval

Type-2 version and the MATLAB codes provided at

Mendel’s software repository [40] were used. The use of

Interval T2FLS was preferred over the general Type-2

version because, according to [9, 10], the former is too

complicated as the process of calculating the meet

operations for each fired rule and the procedures for type

reduction are prohibitive, time-consuming, and memory-

intensive. Hence, Interval T2FLS is more practical for

implementation than the general Type-2.

The hybrid model was designed to benefit immensely

from the strength of the LS-based FN by complementing

some of the weaknesses of T2FL such as increased com-

plexity of implementation with increased input data

dimensionality and extracting the best variables to improve

its performance, and hence to combine the cooperative and

competitive characteristics of the individual techniques.

4.2.1 Framework of the hybrid model

The proposed hybrid model is composed of two blocks

containing, respectively, LS-FN and T2FLS. The LS-FN

block, with its least-squares-fitting algorithm, was used

to select the best variables from the input data and then

the input data were divided into training and testing

subsets using the stratified sampling approach previously

used in [2, 6, 18, 25, 36]. The dimensionally reduced

variables of both the training and testing subsets are

applied on the T2FLS block for training and prediction.

A schematic diagram of this model is shown in Fig. 1.

Only the part of FN that performs the least-square fitting

as part of its training procedure was used in this work.

No testing occurred in the FN block. Each dataset was

passed through the FN block and the output contains

only the variables that were found to be most relevant to

the target (porosity and permeability). These are shown

in Tables 4 and 5.

Table 1 Predictor variables for Site 1 well log for porosity

Predictors for porosity

1 CR Core

2 TP Top interval

3 GD Grain density

4 GV Grain volume

5 LT Length

6 DM Diameter

Table 2 Predictor variables for Site 2 well log for permeability

Predictors for permeability Full meaning

1 GR Gamma ray log

2 PHIE Porosity log

3 RHOB Density log

4 SWT Water saturation

5 RT Deep resistivity

6 MSFL Microspherically focused log

7 NPHI Neutron porosity log

8 CALI Caliper log

Table 3 Division of datasets into training and testing

Site 1 (porosity) Site 2 (permeability)

Wells 1 2 3 1 2 3

Data size 415 285 23 355 477 387

Training (70 %) 291 200 16 249 334 271

Testing (30 %) 124 85 7 106 143 116
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For the LS–FN component, the iterative least-squares-

fitting algorithm segment of the FN technique was used for

the implementation of the hybrid model. This algorithm has

the ability to learn itself and to use the input data directly, by

minimizing the sum of squared errors, in order to obtain the

parameters, namely the number of neurons and the type of

kernel functions needed for the fitting process. It works by

building an initial model, simplifying the model, and

selecting the best parameters for the simplified model. The

backward–forward function of the algorithm takes different

combinations of the input variables and determines their

correlation with the target variable. Using the criteria of the

mean square errors and minimum description length

(MDL), the functions iteratively add and remove one vari-

able at a time to determine the most correlated of the set of

variables with the target variable. The model that evolves

corresponds to those variables that gave the least values

mean square errors and the MDL.

With model initialization, the value of porosity and

permeability of a well is determined by the parameters

shown in Tables 1 and 2. The parameters (represented here

by x, y, z for simplicity) were modelled in an initial net-

work like the one shown in Fig. 2 and were then reduced to

the simplified version equivalent of the initial network as

shown in Fig. 3.

With model selection, part of the steps in FN training is

the model selection procedure using the MDL principle.

This measure allows comparisons not only of the quality of

different approximations, but also of different FN models.

It is also used to compare models with different parameters

due to the use of a penalty term for overfitting. Moreover, it

is distribution-independent making it a convenient method

for solving the model selection problem. Accordingly, the

best FN model for a given problem corresponds to the one

with the smallest description length value. This was cal-

culated using the backward-elimination and forward-

selection methods.

The backward-elimination process starts with the com-

plete model with all parameters, and it sequentially

removes the one that will lead the model to the smallest

value of the MDL measure, repeating the process until

there is no further improvement in the measure. Next, the

forward-selection process is applied, but starting from the

final model of the backward process, and it sequentially

adds the variable that leads to the smallest value of MDL

Fig. 1 Design framework of the hybrid model

Table 4 Initial and selected parameters for porosity

Initial variables 6: core, top interval, grain density, grain

volume, length, and diameter

Best subset

selected by FN

4: top interval, grain density, grain volume, and

length.

Table 5 Initial and selected parameters for permeability

Initial variables 8: GR, PHIE, RHOB, SWT, RT, MSFL,

NPHI, and CALI

Best subset selected

by FN

4: PHIE, RHOB, SWT, and MSFL

Fig. 2 Initial topology of FN corresponding to the combined

functional equations [36]
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measure. This process is repeated until there is no further

improvement in MDL measure obtained either by remov-

ing or adding a single variable. The learning process of the

LSFN includes obtaining the neural functions from a set of

training data based on minimizing the sum of squared

errors between the input and the target output by suggest-

ing an approximation to each of the functions and selecting

the best among them [36–38]. For simplicity, we used

polynomial functions with degree = 1.

Generally, the least-square algorithm attempts to find

the least of the mean differences between the actual

observations, y and the outputs of the evolved models, X,

called the residuals and denoted as:

r ¼ y� X að Þ ð1Þ

The aim is to find the a’s that make the residuals as

small as possible. Hence, minimizing the sum of the

squares of the residuals:

rk k2¼
Xm

1

r2
i ð2Þ

MDL is generalized as follows: For a given set of

hypothesis H and dataset D, the aim is to find the subset of

hypothesis in H that learns D most.

Let H(1), H(2), …, H(k) be a list of candidate models each

containing a set of point hypotheses. The best point

hypothesis H e H(1) U H(2) U … U H(k) to explain the data

D is the one which minimizes the sum L(H), the length of the

description of the hypothesis. The model to explain D ade-

quately is the smallest model containing the selected H. This

helps to avoid overfitting while choosing a trade-off between

goodness of fit and complexity of the models involved. Such

trade-offs lead to much better predictions of test data than

one would get by adopting the ‘‘simplest’’ (one degree) or

most complex (n - 1-degree) polynomial. MDL provides

one particular means of achieving such a trade-off [41].

Interval T2FLS with Gaussian membership functions

was used because they are simple to implement and at

present, it is very difficult to justify the use of any other

kind. When the T2FLS is Interval Type-2, all secondary

grades (flags) are equal to 1 and the rules were extracted

directly from the input data using the back-propagation

(steepest descent) method. This option was preferred

over the extraction of rules from a subset of the data,

because this ensures all data points are completely

represented in the rule base. This leads to more time

spent in implementation, but better accuracy and effi-

ciency are guaranteed. To be able to use T2FLS effec-

tively, the standard steps as suggested by [9, 10] were

followed.

For inferencing, the rules are of the general form:

R1: IF x1 is Fl
1 and x2 is Fl

2 and . . . and xp is Fl
p THEN y is Gl ð3Þ

representing a Type-2 fuzzy relationship between the input

space x1 9 x2 9 … 9 xp and the output space Y of the

system. The membership function of this Type-2 relation is

denoted by:

lFl
1

x...x Fl
p!Glðx; yÞ ð4Þ

where F1
l x…x Fp

l denotes the Cartesian product of F1
l , F2

l ,

…,Fp
l and x = {x1, x2, …, xp}. This was then converted to a

Type-2 fuzzy set by applying the extension principle,

details of which can be found in [9, 10].

The output set corresponding to each rule of the T2FLS

is a Type-2 set. There is then the need to reduce it to 1, in

order to give room for defuzzification. The type-reducer

combines all these output sets to a sum of 1 using this

formula:

CA ¼
PN

i¼1 XilAðxiÞPN
i¼1 lAðxiÞ

ð5Þ

The type-reduced set of a T2FLS is the centroid of a

Type-2 output set for the FLS. The type-reduced set was

defuzzified to get a crisp output from the T2FLS. The most

natural way of doing this is by finding the centroid of the

type-reduced set. The learning parameter, alpha, was set to

0.1 as recommended in [9, 10].

The T2FLS was run independently and simultaneously

with the hybrid model under the same input data condi-

tions. In order to ensure the most fairness in the results,

several iterations were made and the average values of the

results were taken. This is necessary due to the behavior of

the stratified sampling approach used to divide the input

data into training and testing sets. Since the input data were

randomized during the stratification processes, hence,

slightly different results were obtained for each run of the

experiments.

Fig. 3 Simplified network [36]
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4.2.2 Justification for the proposed framework

With the excellent LS-fitting capabilities of FN and the

ability of T2FLS to handle uncertainties that might be

present in data, combining LS-FN and T2FLS is expected

to overcome the limitations of the previously reported

studies of hybrid techniques [9, 10, 24, 32–34]. Basically,

the LS–FN block of the proposed hybrid will select the best

subsets of the input data for the training and testing of the

T2FLS block. This will ensure that the T2FLS block is

supplied with both the best of the variables and a version of

the same data with reduced dimensionality. The latter

would reduce the complexity of the T2FLS processing and

the former will ensure that the variables that are irrelevant

to the prediction process are filtered out and hence would

not pollute the overall performance of the proposed hybrid

model.

To our knowledge, LS–FN has not been used as a best-

model selector in any of the reported hybrid techniques.

With the recent advances in data acquisition tools in the oil

and gas industry such as logging while drilling (LWD) and

measurement while drilling (MWD), many logs are pro-

duced and there is the need to extract from these logs only

those variables that are most relevant to our target reservoir

properties.

4.3 Computing environment and model evaluation

The computing environment used for the simulation in this

study consists of a 32-bit MATLAB 2010a software that

runs on a 64-bit Personal Computer with Windows 7 Pro-

fessional Edition version 2009. The processor is based on

Intel Core 2 Quad CPU with a speed of 3 GHz and a RAM

size of 6 GB.

The performance of the models was evaluated using the

correlation coefficient (CC), root mean-squared error

(RMSE), and execution time (ET). CC measures the sta-

tistical correlation between the predicted and actual values.

RMSE is one of the most commonly used error measures of

success for numeric prediction as it computes the average

of the squared differences between each predicted value

and its corresponding actual value. ET is simply the total

time taken for a technique to run from the beginning to its

end using the CPU time.

5 Experimental results and discussion

All the results obtained from the simulation are shown in

Tables 6, 7, 8, 9, 10, and 11. Tables 6 and 7 presented

the comparative correlation coefficients for the porosity

and permeability wells, respectively. Tables 8 and 9

showed the comparative root mean square errors while

Table 6 Correlation coefficient results for porosity wells

Wells Training Testing

T2FL FN-T2FL T2FL FN-T2FL

1 0.83569 0.868561 0.756021 0.844328

2 0.742781 0.836016 0.686023 0.814673

3 0.804283 0.817494 0.788061 0.921438

Table 7 Correlation coefficient results for permeability wells

Wells Training Testing

T2FL FN-T2FL T2FL FN-T2FL

1 0.791102 0.812469 0.758849 0.794979

2 0.859088 0.891122 0.846123 0.86618

3 0.702918 0.812158 0.731261 0.79865

Table 8 Root mean square error results for porosity wells

Wells Training Testing

T2FL FN-T2FL T2FL FN-T2FL

1 7.25699 6.90762 7.26232 7.10594

2 7.968 6.78391 8.29779 7.35157

3 5.58098 5.49339 7.42699 6.69004

Table 9 Root mean square error results for permeability wells

Wells Training Testing

T2FL FN-T2FL T2FL FN-T2FL

1 0.78905 0.75328 0.82061 0.79909

2 0.66425 0.63462 0.71684 0.66506

3 0.95728 0.92315 0.96747 0.93699

Table 10 Execution time results for porosity wells

Wells Training (s) Testing (s)

T2FL FN-T2FL T2FL FN-T2FL

1 185.79 178.3 37.02 34.06

2 87.14 85.75 17.08 14.5

3 0.33 0.27 0.05 0.04

Table 11 Execution time results for permeability wells

Wells Training (s) Testing (s)

T2FL FN-T2FL T2FL FN-T2FL

1 164.78 153.59 32.41 29.76

2 407.36 333.01 84.99 63.31

3 187.61 179.74 36.88 34.98
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Tables 10 and 11 displayed the comparative execution

time for porosity and permeability wells, respectively.

Figures 4 and 5 showed the plots of the actual and

predicted values of porosity and permeability with

T2FLS and the LS-FN-T2FLS hybrid models from Site 1

well 1 and Site 2 well 2 datasets. Figures 6, 7, 8, 9, 10,

11, and 12 showed the comparisons of the porosity and

permeability predictions indicating the comparative per-

formance of the models with respect to CC, RMSE, and

ET.

Fig. 4 Sample of actual-predicted porosity for training and testing with T2FL

Fig. 5 Actual and predicted porosity of training and testing for Site 2 well 2 dataset using FN-T2FL hybrid model

Fig. 6 Porosity training and

testing correlation coefficients

for all wells
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The results showed the better performance of the LS-FN-

T2FLS hybrid over the original T2FLS technique. From the

visual analysis of the plots, the plot lines of the actual and

the predicted values are closer for LS-FN-T2FLS (Fig. 5)

than in the original T2FLS (Fig. 4). This indicates the

superior performance of the FN-T2FLS hybrid model.

Fig. 7 Permeability training

and testing correlation

coefficients for all wells

Fig. 8 Root mean square errors

for porosity training and testing

for all wells

Fig. 9 Root mean square errors

for permeability training and

testing for all wells

Fig. 10 Execution time for

porosity training and testing for

wells 1 and 2
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In terms of CC, Figs. 6 and 7 show that the predictions

of the hybrid model are more correlated with the actual

values of the target variable. Though the predictions are not

perfect since real-life field datasets were used, the perfor-

mance of the hybrid model is more significantly noticed

over T2FLS. Since it is expected that a higher correlation

should have the less error, Figs. 8 and 9 show the hybrid

model having less RMSE than the T2FLS.

Despite that there are more internal processes involved

in the hybrid model than in T2FLS, the former runs faster

in terms of CPU time than the latter. It is shown in

Figs. 10, 11, and 12 that it took the hybrid model less time

for training and testing than the T2FLS.

The better performance exhibited by the FN-T2FL

hybrid in Figs. 6, 7, 8, 9, 10, 11, and 12 can be attributed to

the role of the LS-FN block in the extraction of the most

relevant input variables for the training and testing of the

T2FLS block. This ensures that the T2FLS block handled

only the best of the datasets and hence is not corrupted by

the redundant and irrelevant variables from the original

datasets.

It would have been expected that the hybrid model

would need more time for execution than the T2FLS since

there are almost two techniques (LS-FN and T2FLS) and

two processes (best subset selection and data stratification)

that were executed before the T2FLS block, only the seg-

ment that performs the model selection procedure using the

LS-fitting algorithm was used in this work. The dimen-

sionally reduced dataset that was used by the T2FLS block

from the output of the LS-FN block also ensured that the

execution of the T2FLS block is less complex than the

original T2FLS model executed in parallel with the hybrid;

hence, less work was done in handling the input–output

data matrix.

6 Conclusions

A design framework for the hybridization of LS-FN and

T2FLS was implemented and presented. The hybrid model

was tested with six datasets from different geological for-

mations to predict the porosity and permeability of oil and

gas reservoirs. From the results presented, the following

conclusions could be reached:

• The hybrid model consisting of the combination of LS–

FN and T2FLS performed better than the original

T2FLS in terms of higher correlation coefficients, lower

root mean square errors, and reduced execution time.

• The better performance of the LS–FN–T2FLS hybrid

model was due to the dual role of LS–FN to select the

best and most relevant input variables and the conse-

quent reduction in the dimensionality of the data that

were used by the T2FLS block.

Fig. 11 Execution time for

porosity training and testing for

well 3

Fig. 12 Execution time for

permeability training and testing

for all wells
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• Hence, the subset selection improved the correlation of

the hybrid model while the reduced dimensionality of

the input data reduced the time and space complexity of

the T2FLS block, thereby reducing its processing time.

• Both the higher correlation and the reduction in

processing time would be great assets toward the

actualization of hybrid models in real-time reservoir

modelling.

The results of this study have shown that FN, with its

iterative least-square-fitting algorithm, is a good candidate

for building hybrid computational intelligence tools that

will offer improved performance and increased robustness.

This study has further confirmed that the application of

hybrid techniques in petroleum reservoir characterization

will increase the accuracy of petroleum exploration activ-

ities and hence increase the production of more oil and gas

since a fractional increase in the correlation of this hybrid

model would result in the greater precision of the predic-

tion of reservoir properties in considerably less time, which

would, in turn, increase the production capacity of oil and

gas reservoirs. This would have an overall positive effect

on the production of the energy the world needs.

7 Further research

Another similar hybrid technique, but with support vector

machines (SVM) replacing the Type-2 fuzzy systems

block, will be implemented. The performance of this will

then be compared with the standalone SVM and the LS-

FN-T2FLS model implemented in this paper. The two

hybrids will, in turn, be compared with the existing adap-

tive neuro-fuzzy inference system for possible proof of

performance improvement.
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