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Abstract For mobile communication traffic series, an

accurate multistep prediction result plays an important role

in network management, capacity planning, traffic con-

gestion control, channel equalization, etc. A novel time

series forecasting based on echo state networks and mul-

tiplicative seasonal ARIMA model are proposed for this

multiperiodic, nonstationary, mobile communication traffic

series. Motivated by the fact that the real traffic series

exhibits periodicities at the cycle of 6, 12, and 24 h, as well

as 1 week, we isolate most of mentioned above features for

each cell and integrate all the wavelet multiresolution

sublayers into two parts for consideration of alleviating the

accumulated error. On seasonal characters, multiplicative

seasonal ARIMA model is to predict the seasonal part, and

echo state networks are to deal with the smooth part

because of its prominent approximation capabilities and

convenience. Experimental results on real traffic dataset

show that proposed method performs well on the prediction

accuracy.

Keywords Multiresolution analysis � Traffic forecasting �
Fourier spectrum � Echo state networks � Multiplicative

seasonal ARIMA

1 Introduction

Time series forecasting is an active research area that has

received considerable attention for application in variety of

areas [1]. Generally, time series forecasting models can be

grouped into two types: single models and combined ones

[2]. Both theoretical and empirical investigations have

indicated that a single model may not be sufficient to

capture all the features of complex time series [1]. On the

one hand, combined models, with the property of approx-

imately onefold of each isolated component, are widely

used to improve the prediction performance [2, 3]. Actu-

ally, most combined models are based on decomposition

techniques. Fourier methods, empirical mode decomposi-

tion, and wavelet multiresolution analysis (MRA) are the

most commonly used techniques in combined models [4].

On the other hand, single models use one model to predict

time series directly. Many classical linear models such as

the autoregressive (AR), autoregressive moving average

(ARMA), and multiplicative seasonal ARIMA [5] have

been widely used, while to deal with the nonlinear time

series, an effective model is support vector machine (SVM)

[6]. The principle SVM adopted is the structure risk min-

imization. With consideration of its high accuracy and

good generalization capabilities, SVM is successfully used

in many applications of machine learning and time series

forecasting. However, it is difficult for SVM to choose

kernel functions in different applications. Another effective

nonlinear model is the artificial neural networks (ANNs).

With the flexible nonlinear mapping capability, ANNs can

approximate any continuous measurable function with

arbitrarily desired accuracy [7]. Actually, due to the slow

convergence and high computational training costs, train-

ing ANNs is hard in practice. Echo state network (ESNs)

[8] is a new architecture of ANN. The ESNs differ from
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traditional ANN methods, and in that only the connections

from the dynamic reservoir to the output neurons need to

be trained [9]. Training ESNs [8] becomes a linear

regression task, which solves the problems of slow con-

vergence and suboptimal solutions for ANNs models.

Specifically, for our mobile communication traffic ser-

ies, an accurate multistep prediction result plays an

important role in network management, capacity planning,

traffic congestion control, channel equalization, etc. The

aim of this work is to take advantage of wavelet MRA to

extract meaningful features for traffic series and improve

the prediction accuracy by wavelet-based combined

models.

The remainder of the paper is organized as follows.

Section 2.1 describes the motivation of this work. Sec-

tion 2.2 presents the framework and related works of paper,

such as wavelet methods for time series analysis and

forecasting, multiplicative seasonal ARIMA model, and

ESNs. In Sect. 2.3, we describe our traffic series fore-

casting method. The experiment results and discussions are

presented in Sect. 3. At last, we conclude in Sect. 4.

2 Method

2.1 Motivation

Our further observations on the real traffic series show the

two main characteristics are multiperiodicities and non-

stationary. So, it is difficult for a single model to capture all

the features of this traffic series, even if with this promising

echo state networks alone. The basic idea of this paper is to

take advantage of wavelet MRA to extract meaningful

features for traffic series and improve the prediction

accuracy by combined models. The main challenge in this

procedure is the process of forming a novel wavelet MRA,

in which meaningful features can be lined up. In order to

extract meaningful sublayers, Fourier spectrum was taken

as prior knowledge for this multiple scales traffic series

analysis. Actually, we showed that the real traffic series

exhibits periodicities at the cycle of 6, 12, and 24 h, as well

as 1 week. Motivated by this finding, we isolated most of

mentioned above features for each cell using our modified

wavelet MRA and integrated all the wavelet multiresolu-

tion sublayers into two parts, for consideration of allevi-

ating the accumulated error. After that, appropriate models

were employed to predict each of them individually. With

consideration of seasonal character, we use the multipli-

cative seasonal ARIMA model to predict the seasonal part,

while use echo state networks to predict the smooth part

because of its prominent approximation capabilities and

convenience.

2.2 Framework

Combining with prior knowledge of Fourier spectrum, a

novel wavelet multiresolution analysis and forecasting

method, based on echo state networks and multiplicative

seasonal ARIMA model, are proposed in this paper. Fig-

ure 1 presents the framework of our proposed method. Our

method first calculates the Fourier spectrum for this mul-

tiperiodic series, then lists prominent period components

with clear physical meanings as prior knowledge. After

that, it extracts meaningful features with wavelet multi-

resolution analysis technique based on the above prior

knowledge. Further, with the consideration of alleviating

the accumulated error, we integrate all the sublayers into

two parts, that is, the smooth part and seasonal part by

adding all the details in our multiresolution analysis. At

last, a combined model is employed to predict the corre-

sponding two parts, and the results are integrated to gain

the final prediction value. With consideration of seasonal

character, we use the multiplicative seasonal ARIMA

model to predict the seasonal part, while we use ESN to

predict the smooth part because of its prominent approxi-

mation capabilities and convenience.

Verify each component

ESNs
forecast

MSARIMA 
forecast

FFT 
analyze

Modified 
wavelet
analyze

Integrate
Add

Traffic 
series

Details 
Trend 

Prominent
period

components

Seasonal part

Smooth part 

Final
Prediction

results

Forecasts

Forecasts

Fig. 1 Proposed framework

884 Neural Comput & Applic (2014) 24:883–890

123



2.2.1 Wavelet MRA

To meet the needs for adaptive time–frequency analysis,

the wavelet theory was developed in the late 1980s by

Mallat and Daubechies [10, 11]. The wavelet transform is

an effective tool in signal processing due to its attractive

properties such as time–frequency localization and mult-

irate filtering [12]. Using these properties, one can extract

the desired features from an input signal characterized by

certain local properties in time and frequency.

The aim of this work is to take advantage of wavelet

MRA to extract meaningful features for traffic series

and improve the prediction accuracy by wavelet-based

combined models. One essential question in this pro-

cedure is the process of forming a wavelet MRA, in

which meaningful features can be lined up; this process

involves the choice of wavelet decomposition algo-

rithms, filters, and decomposition levels [2]. To date,

these wavelet decomposition algorithms, filters, and

decomposition levels are mainly chosen subjectively

based on experience [7] or trial and error method [12].

The main drawback of choice based on these methods

is that the performance of the corresponding MRA can

be evaluated only after the final prediction result is

given. The first problem is the choice of decomposition

methods. The two popular discrete wavelet algorithms

are the discrete wavelet transform (DWT) algorithm and

the maximal overlap discrete wavelet transform

(MODWT) algorithm. The major difference between

these two algorithms is that the DWT algorithm is shift-

variable, while the MODWT algorithm is shift-invari-

able. Shift-variable means that if we delete (or add) a

few values from (or to) the front or the end of the input

series, the decomposition results would be not the same

as heretofore [2]. For our real world traffic series

analysis and prediction, the shift-invariable algorithm is

preferred as the values used to establish the prediction

model should stay in the same series. Another problem

associated with wavelet MRA is the choice of wavelet

filters. In fact, the rough principle here adopted is that

the signal analyzed and wavelet filters chosen can

match each other, and the sublayers extracted can fol-

low the original signal. The number of decomposition

levels is other problem in wavelet MRA, and the basic

principle here we adopted is that lining up as many

meaningful features of minimum decomposition levels

as possible.

Combined with Fourier spectrum and MODWT algo-

rithm, a novel wavelet MRA is proposed for multiperiodic

traffic series in this paper. Notice that our modified wavelet

MRA method used is shift-invariable and associated with

zero phase filter, which allows the lining up of features in

the details and smooth meaningfully.

2.2.2 Multiplicative seasonal ARIMA model

We use Multiplicative Seasonal ARIMA models (MSAR-

IMA) for the seasonal part of traffic forecasting.

In an ARIMA (p, d, q) model, the next value of a var-

iable is assumed to be a linear function of random errors

and several past observations. That is, the underlying

mechanism that generates the time series with the mean u

has the form:

/ðBÞrdðyt � uÞ ¼ hðBÞat; ð1Þ

where at and yt are random error and the actual value at

time period t, respectively. /ðBÞ ¼ 1�
Pp

i¼1 uiBi and

hðBÞ ¼ 1�
Pq

j¼1 hjBj are polynomials in B of degree p and

q, /i i ¼ 1; 2; . . .; pð Þ and hj j ¼ 1; 2; . . .; qð Þ are model

parameters,r = (1 - B), B is the backward shift operator,

p and q are integers and often referred to as orders of the

model, and d is an integer and often referred to as order of

differencing. Random error at is assumed to be indepen-

dently and identically distributed with a mean of zero and a

constant variance of r2. The Box-Jenkins methodology for

ARIMA models forecasting includes three iterative steps of

model identification, parameter estimation, and diagnostic

checking. This three-step model building process is typi-

cally repeated several times until a satisfactory model is

finally achieved. The final selected model can then be used

for our prediction task.

Notice that stationarity is a necessary condition in

building an ARIMA model. A stationary time series is

characterized by statistical characteristics such as the mean

and the autocorrelation coefficient being constant over

time. When the observed time series presents trend (peri-

odicity), differencing (seasonal differencing) is applied to

the data to remove the trend (periodicity) before an AR-

IMA model can be fitted. MSARIMA is an extension of

ARIMA, where seasonality in the data is accommodated

using seasonal differencing [13].

MSARIMA (p, d, q)(P, D, Q)s Model: In MSARIMA

model [5], the seasonal components of the ARIMA model

are denoted by ARIMA (P, D, Q)s, where capitalized

variables represent the seasonal components of the model,

and s indicates the order of periodicity. The MSARIMA

model can be expressed as ARIMA (p, d, q)(P, D, Q)s.

/pðBÞUPðBSÞrdrD
S yt ¼ hqðBÞHQðBSÞat ð2Þ

where p is the order of nonseasonal AR process, P is the order

of seasonal AR process, q is the order of nonseasonal MA

process, and Q is the order of seasonal MA process. /pðBÞ is

the nonseasonal AR operator, hqðBÞ is the nonseasonal MA

operator, UPðBSÞ is the seasonal AR operator, HQðBSÞ is the

seasonal MA operator, B is the backshift operator, rd is the

nonseasonal dth differencing, rD
S is the seasonal Dth
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differencing at s number of lags, yt is the forecast value for

period t, s equals 168 h (or 24 h) for our traffic series.

2.2.3 Echo state networks

Figure 2 presents a typical structure of ESNs which con-

sists of input units, DR, and output units. ESNs with K

input units, N dynamic reservoir processing elements, and

L output units can be expressed as

xðnþ 1Þ ¼ f ðW inuðnþ 1Þ þWxðnÞ þWbackyðnÞÞ ð3Þ

yðnþ 1Þ ¼ f outðWoutðuðnþ 1Þ; xðnþ 1Þ; yðnÞÞÞ ð4Þ
In (3) and (4), x nð Þ ¼ x1 nð Þ; . . .; xN nð Þð Þ; y nð Þ ¼

y1 nð Þ; . . .; yL nð Þð Þ; u nð Þ ¼ u1 nð Þ; . . .; uK nð Þð Þ are activa-

tions of the DR processing elements, output units, and

input units at time step n, respectively. The functions f ¼
f1; . . .; fNð Þ are activation functions for DR processing

elements (implemented as tanh functions in this paper).

The functions f out ¼ ðf out
1 ; . . .; f out

L Þ are the output units’

output functions. By an N 9 K input weight matrix

W in ¼ ðwin
ij Þ, the input is tied to DR processing elements.

The DR processing elements are connected by an N 9 N

matrix W = (wij). Wback ¼ ðwback
ij Þ is an N 9 L matrix for

the connections that project back from the output to DR.

And DR is tied to the output units by an L 9 (K ? N ? L)

matrix Wout ¼ ðwout
ij Þ. The variable (u(n ? 1), x(n ? 1),

y(n)) is the input, internal, and output vectors [8].

One advantage of ESN is high accuracy. Another one is

that the training process of ESN is a simple linear regres-

sion task. One disadvantage of ESN is that it is not suitable

for long-term forecasting. With the property of ‘‘short-term

memory’’, ESN is not suitable for long-term forecasting

and then we extend the mobile communication traffic series

with ARIMA model before using ESN.

2.3 Procedure

The raw data were collected in cells, on an hourly basis, by

the China Mobile Communications Corporation (CMCC)

Heilongjiang Company, Limited. Initial observations on

this traffic show long-term trends, multiperiodicities, and

self-similar properties. Our goal is to provide prior

knowledge for mobile communication traffic MRA. Fig-

ure 3 presents the traffic data in one cell. This figure

indicates the presence of daily and weekly periodicities.

Considering this multiperiodicities properties, we take

the Fourier spectrum, along with life experience, as the

prior knowledge for wavelet decomposition. This means

that the prominent period components revealed in the

Fourier spectrum with clear physical meaning, such as 24-

and 168-h period components, may be regarded as the

guides in choosing wavelet decomposition algorithms, fil-

ters, and decomposition levels. Correspondingly, the aim of

our MRA is to line up as many prominent period compo-

nents of minimum decomposition levels as possible. This

novel MRA and forecasting technique involve a five-step

process explained below.

Step 1. Calculate the Fourier spectrum for traffic series

[14] and list prominent period components with clear

physical meanings for each cell.

Step 2. Let X be a mobile communication traffic series

with N data points {Xt: t = 0,1,…,N - 1}. In our experi-

ments, N = 1,008. With the MODWT algorithm [15] and

its inverse, the traffic series X can be reconstructed as

X ¼
XJ

j¼1

Dj þ SJ þ at ð5Þ

Equation (5) defines a MRA of X in terms of the jth

level MODWT details Dj, the J level MODWT smooth SJ,

and the error term at, where J is the wavelet decomposition

level and at�WNð0; d2
aÞ. In the wavelet theory, the

relatively high-frequency component DJ may be viewed

as noise, thus DJ and at may be integrated as one part. We

chose the MODWT algorithm because each component of

a MODWT-based MRA is associated with a zero phase

filter, which allows the lining up of events in the details and

smooth meaningfully with events in X.

Step 3. In this step, use the Haar wavelet filter for the

MRA. The reason for this will be discussed in the experi-

ment section.

Step 4. Starting with one, increase the decomposition

level J stepwise to line up as many components as possible,
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whose dominant periods are in accordance with the pre-

vious Fourier spectrum. This means that J must be

increased and the dominant period of each sublayer must

be checked until the maximum period revealed in the

Fourier spectrum is lined up, where a dominant period

refers to the first prominent period.

Step 5. For further evaluation, undertake 1 week ahead

predictions to compare our method with several other

methods. Using the proposed MRA, we decompose the

traffic series into two parts (the smooth part SJ and seasonal

part RDj) to alleviate the accumulated error by adding all

the details [2]. Next, we use the MSARIMA model [5] to

predict the seasonal part, while use echo state networks to

predict the smooth part. After that, the results are integrated

to gain the final prediction value. For comparison, we use

MSARIMA models, echo state networks, LS-SVM models,

wavelet-MSARIMA models to predict the traffic series,

respectively.

The time complexity of proposed MRA: when N is an

integer multiple of 2J, the DWT can be computed using

O(N) multiplications, whereas our proposed MRA requires

O(Nlog2N) multiplications. There is thus a computational

price to pay for using our proposed MRA, but its compu-

tational burden is the same as the widely used FFT algo-

rithm and hence is usually quite acceptable [15].

3 Results

In this section, we validated our proposed method by

experiments on real network traffic of Cells in Heilongji-

ang Province, northeastern China. Dataset with the char-

acteristic of multiperiodicities in real world may be suitable

for our proposed method. Figure 6 in Ref. [16] shows that

the electricity price dataset in Spain market is also with the

property of multiperiodicities, so it may be suitable for our

proposed method.

3.1 Performance metrics

In this paper, two metrics have been used to quantitatively

evaluate the prediction performance, including mean

absolute error (MAE) and normalized mean square error

(NMSE). Mean absolute error (MAE) is defined as

MAE ¼ 1

M

XM

t¼1

x
^ðtÞ � xðtÞ
�
�
�

�
�
� ð6Þ

where x
^ðtÞ and xðtÞ are the predicted value and the actual

value at time t, respectively. M is the total prediction

number, in our experiments M = 168. As prediction

accuracy increases, MAE decreases. Normalized mean

square error (NMSE) is defined as

NMSE ¼ 1

r2

1

M

XM

t¼1

ðx^ðtÞ � xðtÞÞ
2

ð7Þ

where r2 is the variance of the time series over prediction

duration. The smaller the NMSE is, the better the predic-

tion performance.

3.2 Traffic data

The raw data were collected in cells, on an hourly basis, by

the China Mobile Communications Corporation (CMCC)

Heilongjiang Company, Limited. Data from two cells were

used to validate the performance of the proposed method,

spanning November 17, 2007–January 4, 2008. Cell 1 was

located in Harbin, and Cell 2 was in Daqing. Notice that the

interval between two successive data points is 1 h, thus the

duration of the traffic set lasts for 7 weeks. We divided the

mentioned above dataset into two parts: one spanning

November 17, 2007–December 28, 2007 (6 weeks) and the

other spanning December 29, 2007–January 4, 2008

(1 week). The former was used for wavelet MRA and

prediction model training, while the last 168 data points

were used for prediction test.

3.3 MRA and prediction results

In this section, we present our modified wavelet MRA and

discuss the prediction of proposed method. After that, we

compare the results with that of four other models.

According to our MRA method, we first calculated the

Fourier spectrum for Cell 1. Figure 4 illustrates the 6 most

prominent period components, that is, periods of 6, 8, 12,

24, 84, and 168 h.

Figure 5 shows the MODWT MRA of level J = 7 for

Cell 1 using the Haar wavelet filter. Note that only the final

672 points MRA results are listed for clarity and brevity.

Our choice of level J = 7 was based on the fact that the

dominant period of the resulting detail D7 was 168-h. For

further analysis, we present a detail of Fig. 5 in Fig. 6, that

is, D7 for X. Figure 6 shows that each undulation of D7

corresponds exactly to 7 undulations of X, implying that

the dominant period of D7 might be 168-h, since the

dominant period of X is 24-h.

Likewise, Fig. 7 presents D3 for X, where each undu-

lation of X corresponds exactly to 2 undulations of D3; this

implies that the dominant period of D3 might be 12-h.

Other sublayers can be analyzed in the same way. To

confirm our conjectures, we check the dominant period of

each sublayer with FFT, and the results are listed in

Table 1. From Table 1, we can see that 5 of the 6-period

components are isolated into detail layers in the proposed

MRA, including D7 of the 168-h dominant period and D3
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of the 12-h dominant period. In our experiments, the choice

of wavelet filter was based on the performance of D3 to

follow X, as the ease of judgment. From Fig. 7, we can see

that D3 follows the original traffic X in terms of the 12-h

dominant period component.

It is interesting to note that this conclusion is suitable for

almost all cells, including Cell 2, in our further experi-

ments. The prominent periods of X for Cell 2 and the

dominant period of each sublayer are also listed in Table 1.

It is interesting to note that we have identified the com-

ponent of the 168-h dominant period, that is, D7, which is

also of level J = 7. Four in five period components

revealed in the Fourier spectrum have been identified in our

MRA. Other MRA results for Cell 2 are similar to that of

Cell 1.

With consideration of alleviating the accumulated error,

we integrate all the details as one layer—the seasonal part.

Then, we use MSARIMA model to predict the seasonal

part as its seasonal characteristic and no obvious ‘‘trend’’

information. Parameter estimation is done using maximum

likelihood estimation. The best model is chosen as the one

that provides the smallest AIC (Akaike Information Cri-

terion) with orders which do not exceed 2. We obtain the

fitted model as follows: ARIMA(2,0,2) 9 (0,1,2)168, with

/1 ¼ �0:3643, /2 ¼ 0:6094, h1 ¼ �0:8701, h2 ¼ 0:1063,

H1 ¼ 0:8167, H2 ¼ 0:1832 for Cell 1. For Cell 2, we

obtain the fitted model as follows: ARIMA(1,0,1) 9

(0,1,0)168, with /1 ¼ 0:4469, h1 ¼ 0:7788.

We use echo state networks to predict the smooth part

for the consideration of follows: The smooth part is non-

linear without obvious seasonal feature, and ESNs has been

shown to be powerful to solve complex machine learning

tasks, especially for this kind of low-frequency sublayer

without obvious seasonal feature. Considering the conflict

between multistep forecasting demand of traffic series and

short-term memory property of ESNs, we extend the

smooth part to 1 week later with MSARIMA model, before

modeling and forecasting with ESNs.

The training of ESNs in this paper can be described as

follows: Set the parameters of ESNs including Win, W, N,

SR, IS, etc. Initialize connection matrices Win and W using

random weights, and they should be sparse. Collect x(n) by

feeding training samples into (3). Calculate Wout with

pseudo-inverse method by (4).

The size N should reflect both the length T of the

training data and the difficulty of the task. As a rule of

thumb, N should not exceed an order of magnitude of T/10–

T/2. The setting of SR is crucial for subsequent model
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performance. It should be small for fast teacher dynamics

and large for slow teacher dynamics. Typically, SR needs

to be hand-tuned by trying out several settings. Standard

settings of SR lie in a range between 0.45 and 0.85. Large

input scaling parameter IS implies that the network is

strongly driven by input, while small IS means that the

network state is only slightly excited around the dynamical

reservoir’s resting state. Typical ranges for IS are 0.1–0.5.

In this paper, the number of DR processing elements

N = 30, ESNs reservoir spectral radius SR = 0.75, and ESNs

input scaling parameter IS = 0.4. After that, we can use this

trained echo state networks to achieve 1 week ahead prediction

for the smooth part in Cell 1 and Cell 2, respectively.

After the prediction of seasonal and smooth part, the

results are integrated to gain the final prediction value.

MAE and NMSE were used, to compare the prediction

performance of our method with four other models.

Table 2 gives the MAE and NMSE of Cell 1. From

Table 2, we can see that the proposed method improved the

prediction accuracy at least 13 % over other four methods.

In summary, Cell 1 of the proposed method leads to

three main results. First, five out of the six prominent

period components revealed in the Fourier spectrum have

been identified, and all detail sublayers in our MRA have

clear physical meanings. Second, the smooth S7 can be

viewed as the long-term trend given that the dominant

period of D7 is 168 h, that is, the maximum period in

Fig. 4. Third, the proposed method improved the prediction

accuracy at least 13 % over other four methods.

Similarly, the prediction results in Table 2 for Cell 2

also demonstrate the effectiveness of proposed method and

improved the prediction accuracy at least 12 % over other

four methods.

4 Conclusions

For mobile communication traffic series, an accurate

multistep prediction result plays an important role in net-

work management, capacity planning, traffic congestion

control, channel equalization, etc. A novel wavelet multi-

resolution analysis and forecasting method, based on echo

state networks and multiplicative seasonal ARIMA model,

are proposed for mobile communication traffic in this

paper. Using our modified wavelet MRA, we decompose

the traffic series into the smooth part and seasonal part.

After that, appropriate models are employed to predict each

of them individually. Experimental results on real traffic

demonstrate that the proposed method is feasible for traffic

series forecasting.
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