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Abstract 3D image retrieval approach is a challenging

problem in the research of content-based image retrieval.

In this paper, a novel retrieval approach combined differ-

ential geometry and co-occurrence matrix is presented.

Firstly, Gaussian curvature and mean curvature are utilized

to represent the inherent characteristic of spatial surface,

and then we use co-occurrence matrix to store the shape

information of 3D images. Secondly, normalization process

is applied to the co-occurrence matrix and the invariants

independence of the translation, scaling, and rotation

transforms are proved. In comparison with the recent

methods, experiments indicate a lower computation com-

plexity and a better retrieval rate to 3D images with slight

different shape characteristic.

Keywords 3D image retrieval � Differential geometry �
Co-occurrence matrix � Pattern recognition

1 Introduction

3D image retrieval is an important problem in pattern

recognition with many applications, such as 3D image

search engine [1], automatic assembly for 3D components

[2], and other applications. In the recent decades, there has

been lots of research on 3D image retrieval; the approach

can be divided into content-based image retrieval (CBIR)

[3] and semantic-based image retrieval (SBIR) [4]. SBIR

approach can fully use the advantages of visual cognition

mechanism to improve the retrieval effect, but in some

traditional system, such as architecture and mechanical

component retrieval, CBIR approach can be more simple

and effective.

In this paper, based on CBIR system, we are focused on

the precision improvement to 3D similar image retrieval. In

some cases, the images may be similar with slight different

shape characteristic, so it is a challenging problem to search

the correct image from the database with similar shape.

In recent decades, there has been lots of research on

3D image retrieval. In this problem, a key question is the

shape characteristic representation. We can use different

approaches which include Fourier descriptor representa-

tions [5], moment invariants representations [6], shape

distributions [7], curvature-based representations [8], and

neural network approaches [9]. In these approaches, global

approaches can supply a more precise representation for

surface, and they are robust to noise and have a lower

computation complexity, but they cannot achieve a perfect

classification rate in recognition to surfaces with slight

different shape characteristics. Figure 1 shows some ima-

ges that traditional global approaches cannot distinguish.

To a spatial surface, shape detail can be represented by

inherent characteristic. According to differential geometry

principle, inherent characteristic can be described by some

local geometry parameters, such as spatial curvature of each

point [10]. If the retrieval process can fully use these

parameters, a good retrieval result will be achieved even to the

images with slight different shape characteristic. However,

spatial curvature can only describe the local characteristic of

the surface and cannot perform well in the global shape rep-

resentation, presence of noise, occlusion, and clutter.

In this paper, we propose a new solution combined the

two kinds of characteristic. After using spatial curvature to
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describe the local characteristic, we choose co-occurrence

matrix to represent the global shape characteristic. It is well

known that co-occurrence matrix is widely used to texture

analysis and can estimate image properties related to sec-

ond-order statistics [11, 12]; traditional co-occurrence

matrix has been proved to be very powerful for texture

analysis and dealt mainly with gray level to describe the

characteristic of texture.

A co-occurrence matrix can describe the gray statistical

characteristic on a texture image if the matrix stores the

gray-level information; we can deduce that a co-occurrence

matrix can represent the spatial curvature statistical char-

acteristic on a 3D surface if the matrix stores the curvature

information. Therefore, we extend the ideas of traditional

co-occurrence matrix and introduce a different solution to

match the 3D surfaces with slight different shape charac-

teristic; a new ‘‘spatial curvature co-occurrence matrix’’

can be defined to represent the local and global shape

information, and the matching problem of 3D images can

be simplified to the comparison of the new defined

co-occurrence matrix.

Our method is based on three procedures. The first is the

numerical approach that efficiently calculates the spatial

curvature of each pixel on spatial curved surface. The

second is to construct the curvature co-occurrence matrix

based on selected neighborhood factor, normalization

process to curvature co-occurrence matrix, and some

characteristic invariants independent of the translation,

scaling, and rotation transforms are illustrated. Then, we

compute the characteristic invariants of the matrix. The

third is the classification process using similarity distance

measure based on the invariants. Finally, the surfaces can

be matched based on these characteristic invariants. In fact,

co-occurrence matrix has been combined with the Gaussian

curvature for shape representation [13], so the idea pro-

posed in this paper is an improvement to the Gaussian

curvature co-occurrence matrix. Experiments indicate a

better classification rate and running complexity than

traditional approaches to 3D surfaces with slight different

shape characteristic.

2 The spatial curvature and co-occurrence matrix

2.1 Compute the spatial curvature

According to differential geometry principle, curvature is

the inherent characteristic of a spatial surface. When a rigid

transformation is applied to the spatial surface, curvature is

an invariant and it is independent of the parametric

approach of the surface. Therefore, Gaussian curvature and

mean curvature are employed for the representation of

spatial surface in this paper.

In 3D Euclidean space, given a parametric surface

defined as:

Sðx; yÞ ¼ ½x y f ðx; yÞ�T ; ðx; yÞ 2 D ð1Þ

where X–Y is the reference plane in 3D space, D is the

projection region of the surface to X–Y plane, f(x, y) rep-

resents the distance from the surface to point (x, y) in

reference plane.

S(x, y) can be represented by two fundamental forms.

The first fundamental form can be posed as follows [10]:

Iðdx; dyÞ ¼ dS � dS ¼ oS

ox
dxþ oS

oy
dy

� �
� oS

ox
dxþ oS

oy
dy

� �

¼ Edx2 þ 2Fdxdyþ Gdy2 ð2Þ

where E, F, G, are the parameters of the first fundamental

form:

E ¼ oS

ox
� oS

ox
;F ¼ oS

ox
� oS

oy
;G ¼ oS

oy
� oS

oy
ð3Þ

The second fundamental form can be represented as

follows:

IIðdx; dyÞ ¼ �dS � dn

¼ o2S

ox2
dx2 þ 2

o2S

oxoy
dxdyþ o2S

oy2
dy2

� �
� n

¼ Ldx2 þ 2Mdxdyþ Ndy2

ð4Þ

where L, M, N represent the parameters of the

second fundamental form, n is unit normal vector in

point [x, y S(x, y)]:

L ¼ o2S

ox2
� n;M ¼ o2S

oxoy
� n;N ¼ o2S

oy2
� n;

n ¼ oS

ox
� oS

oy

� ��
oS

ox
� oS

oy

����
���� ð5Þ

The two fundamental forms of a surface can be uniquely

determined by six parameters: E, F, G, L, M, N.

Fig. 1 3D similar images
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Gaussian curvature K and mean curvature H can be

formulated as follows:

K ¼ LN �M2

EG� F2
;H ¼ EN þ GL� 2FM

2ðEG� F2Þ ð6Þ

For a discretized parametric surface, oS
ox
; oS
oy
; o

2S
ox2 ;

o2S
oxoy

; o
2S

oy2

can be computed as follows:

oS

ox
¼ 1 0 fx½ �T ;oS

oy
¼ 1 0 fy½ �T

o2S

ox2
¼ 0 0 fxx½ �T ; o2S

oxoy
¼ 0 0 fxy½ �T ;o

2S

oy2
¼ 0 0 fyy½ �T

8>><
>>:

ð7Þ

where fx ¼ of
ox
; fy ¼ of

oy
; fxx ¼ o2f

ox2 ; fxy ¼ fyx ¼ o2f
oxoy

; fyy ¼ o2f
oy2 :

So that Gaussian curvature K and mean curvature H can

be computed according to the following formulas:

K ¼
fxxfyy � f 2

xy

1þ f 2
x þ f 2

y

� �2
;

H ¼
ð1þ f 2

x Þfyy þ ð1þ f 2
y Þfxx � 2fxfyfxy

2 1þ f 2
x þ f 2

y

� �3=2

ð8Þ

For digital range image surface, approximations can be

computing by local polynomial fitting approach, n 9 n

operator is usually utilized to the convolution operation

with original range image:

fx ¼ Dx � f ; fy ¼ Dy � f ; fxx ¼ Dxx � f ; fxy ¼ Dxy � f ;

fyy ¼ Dyy � f
ð9Þ

where D is n 9 n operator. For n = 7, the parameters can

be computed as follows:

Dx¼d0dT
1 ;Dy¼d1dT

0 ;Dxx¼d0dT
2 ;Dyy¼d2dT

0 ;Dxy¼d1dT
1

d0¼
1

7
1 1 1 1 1 1½ �T

d1¼
1

28
�3 �2 �1 0 1 2 3½ �T

d2¼
1

84
5 0 �3 �4�3 0 5½ �T

8>>>>>>>><
>>>>>>>>:

ð10Þ

where d0, d1, d2 are column vectors for window operator

computing.

2.2 The gray-level co-occurrence matrix

Traditional co-occurrence matrix can well describe the

texture characteristic, and it is computed based on gray

level. Gray-level co-occurrence matrix is one of the most

known texture analysis methods, and its main idea is to

characterize the relationship between the values of neigh-

boring pixels [14].

Let f(x, y) be an image of size M 9 N. Suppose that the

gray value of each pixel is normalized into n levels. A

d-dependent co-occurrence matrix may be defined as a

two-dimensional array whose generic element pd(i, j) rep-

resents the joint probability, approximated by the relative

frequency, of the occurrence of a pair of points, spatially

separated by d pixels, one having gray level i and the other

with gray level j.

In recent decades, gray-level co-occurrence matrix has

been extended to some area, such as texton co-occurrence

matrix [12] and color co-occurrence matrix [15].

3 Spatial curvature co-occurrence matrix

3.1 Construct spatial curvature co-occurrence matrix

In this paper, the surface of 3D objects can be considered to

be composed of spatial pixel points characterized by spatial

curvature, spatial distribution of the curvatures discrimi-

nates different shape classes. Therefore, spatial curvature

co-occurrence matrix can be used to represent the traversal

of adjacent pixel shape difference in a 3D image.

In our approach, the co-occurrence matrix will be

computed based on the curvature value of each pixel, and

then we will construct some invariants, which are inde-

pendent of the translation, scaling, and rotation transforms.

Before the construction of curvature co-occurrence

matrix, we must normalize all the Gaussian and mean

curvature values into n levels. To a point in 3D image, the

Gaussian and mean curvature must be both considered to

represent the shape characteristic. In a 3D surface

S; 8p 2 S, the complex curvature C(p) is defined as

follows:

CðpÞ ¼ KðpÞ þ HðpÞ ð11Þ

where K(p) is the Gaussian curvature of point p, and H(p) is

the mean curvature of point p.

After the computation of complex curvature, we can

define a d-dependent co-occurrence matrix whose element

pd(i, j) represents the occurrence of a pair of points, spa-

tially separated by d pixels, one having complex curvature

level i and the other with level j.

However, in many cases, a lot of plane points, whose

complex curvature are closely to zero can exist in the

surface. They cannot contribute to the matching but will

occupy large computing and reduce the matching effi-

ciency. So that these plane points will be discarded before

matching. Therefore, the definition of curvature co-occur-

rence matrix is proposed as follows:

Definition 1 Let S be a spatial curved surface,a curvature

co-occurrence matrix named pd(i, j) is defined as:
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where D(p1, p2) is the Euclidean distance between point p1

and p2, j#j represents the cardinality of a set, r is to dis-

card plane points, N is the number of the points.

3.2 Normalization and invariants

In Definition 1, pd(i, j) represents the occurrence of a pair

of points, spatially separated by d, one having complex

curvature level i and the other with level j. After a rotation

transform, the spatial relationship and complex curvature

level of each pair will not be changed. Therefore, complex

curvature co-occurrence matrix will be independent to

rotation transform.

We consider a scaling transform with a scaling factor.

After this transform, complex curvature of every pixel

point will be changed according to the scaling factor. So

the normalized complex curvature level value n is invari-

ant. In addition, the size of neighborhood d must change

with the scaling factor. In our approach, we define the

value of d as follows:

d ¼ k
ffiffiffiffiffiffi
jSj

p
ð12Þ

where k [ 0 is a neighborhood factor.

In formula 12, jSj represents the number of pixel in the

surface. The reason for computing the square root of jSj is

to make the scaling transform to be linear. By choosing k,

we can get a suitable pixel distance, thereby obtaining

suitable co-occurrence matrix.

Hence, the independence of the curvature co-occurrence

matrix to scaling transforms can be guaranteed by neigh-

borhood factor k.

Measure of co-occurrence matrix uniformity may be

used for discrimination. Several parameters have been

proposed to analyze texture in [14]. To curvature co-

occurrence matrix, we define four invariants to describe the

shape characteristic of 3D images:

CON : T1 ¼
P
ði� jÞ2Pdði; jÞ

ASM : T2 ¼
P

P2
dði; jÞ

ENT : T3 ¼ �
P

Pdði; jÞ lg Pdði; jÞ
COR : T4 ¼ 1

rxry

P
ijPdði; jÞ � lxly

	 


8>><
>>:

ð13Þ

where lx and rx are the mean and standard deviation of the

row sums of the curvature co-occurrence matrix, and ly

and ry are analogous statistics of the column sums.

3.3 Similarity measurement

In the image retrieval system, we will firstly compute

the Gaussian and mean curvature of each pixel on each

3D surface, after normalize all the Gaussian and mean

curvature values into n levels, then compute the

complex curvature of each point. Secondly, a neigh-

borhood factor k will be selected to construct the

curvature co-occurrence matrix according to Definition

1. Again, the shape characteristic invariants will be

computed.

Finally, similarity measurement process will be per-

formed through measuring the similarity distance to every

pair of surfaces in the gallery. In our algorithm, one-order

Minkowski distance is employed to measure the difference

of each two surfaces in the gallery. Let S and S00 be two

spatial curved surfaces, the one-order Minkowski distance

between S and S00 is defined as follows:

DIFðS; S0Þ ¼ 1

4

X4

i¼1

jTi � T 0i j
minðTi; T

0
i Þ

ð14Þ

In our algorithm, a neighborhood factor can be chosen

for the similarity measurement, and we can choose a

threshold value to measure whether S and S00 are the same

object.

4 Experimentation results

4.1 Common 3D image retrieval

The goal of the first experimentation is to verify the

retrieval performance of curvature co-occurrence matrix. In

this experimentation, image database is established referred

to the literature [16]. In this database, we have selected 15

image categories, every category containing 100 images of

size. The 15 3D images are shown in Fig. 2.

In this experiment, some traditional approaches for

image retrieval and our algorithm will be applied in

retrieval process for performance comparison. To each

surface, we firstly compute the complex curvature of each

pixel. Secondly, a neighborhood factor k will be selected to

construct the curvature co-occurrence matrix according to

Definition 1; in our algorithm, a neighborhood factor is

Pdði; jÞ ¼ jfp1; p2 2 SjCðp1Þ ¼ i;Cðp2Þ ¼ j;Dðp1; p2Þ ¼ d;Cðp1Þ þ Cðp2Þrg
r ¼ 1

N

Pn
i¼1

jCðp1
i Þj

� �8<
: ð12Þ
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chosen as 0.4 for the performance comparison and the

threshold value is 20 %. In addition, we apply some tra-

ditional approach such as Fourier descriptor representations

[5], moment invariants representations [6], shape distribu-

tions [7], curvature-based representations [8], and neural

network approaches [9] for comparison. We design retrie-

val precision to represent the percentage of correct retrieval

quantity in the gallery. The average retrieval precision [17]

of applying these approaches is shown in the Table 1. In

this table, the third column illustrates the running time of

every algorithm (CPU: PIV2.0GHZ, RAM: 1 GB, Soft-

ware: MATLAB7.0).

The result shows that the algorithm in this paper has a

good retrieval precision and takes low running time.

However, this approach has no obvious advantage in

comparison with some other algorithms.

4.2 3D similar image retrieval

In the second experimentation, we will construct a database

containing some 3D images with slight different shape

characteristic. In this database, we select 10 image cate-

gories but some categories are similar, every category

containing 100 images of size. The 10 3D images are

shown in Fig. 2.

We apply the same image retrieval approach in this

database. The average retrieval precision of applying these

approaches is shown in the Table 2.

As we can see from Table 2, our algorithm can get a

correct result. Although the moment invariants represen-

tation takes the least running time, the average retrieval

precision is not good. Our algorithm cost only 17,540 ms in

the experiment because the plane points are discarded

Fig. 2 3D database containing 15 image categories

Table 1 Average retrieval precision for the first image retrieval

Algorithm Average retrieval

precision (%)

Running time

(ms)

Fourier descriptor 68.23 34,152

Moment invariants

representation

67.85 15,784

Shape distribution 72.38 38,547

Curvature-based

representation

79.86 45,725

Neural network approach 82.15 58,694

Our algorithm 78.87 32,106

Table 2 Average retrieval precision for the second image retrieval

Algorithm Average retrieval

precision (%)

Running time

(ms)

Fourier descriptor 61.57 19,578

Moment invariants

representation

53.47 8,547

Shape distribution 58.23 20,487

Curvature-based

representation

62.31 23,574

Neural network approach 71.26 31,854

Our algorithm 83.59 17,540
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before matching. Therefore, the idea based on curvature

co-occurrence matrix can get better classification result to

surfaces with slight different shape characteristic.

4.3 The selection of neighborhood factor

In our algorithm, the selection of neighborhood factor

k is very important. The neighborhood factor can guar-

antee the independence of the curvature co-occurrence

matrix to scaling transforms. In the first and second

experiment, the neighborhood factor is chosen as 0.4 and

this value is selected based on the third experiment

Fig. 3.

In fact, when k is bigger, the average retrieval preci-

sion will be higher. However, a bigger neighborhood

factor will cost more running time. We choose 20 dif-

ferent neighborhood factors and apply the first experi-

ment; the relationship between neighborhood factor and

retrieval precision is shown in Fig. 4, and the relationship

between neighborhood factor and running time is shown

in Fig. 5.

It can be seen from the two figures, we can get a better

result if the size of neighborhood factor is suitably selected.

Generally, when neighborhood factor is selected close to

0.5, our algorithm will get a good effect.

4.4 Noise robustness

It is well known that the computation of Gaussian curva-

ture and means curvature is notoriously sensitive to noise

and local perturbation. In the fourth experiment, firstly, we

add Gaussian noise [N(0, r)] on each surface in the data-

base mentioned in the first experiment. In this experiment,

r increases from 0 to 1.0 mm. We classify the various

noisy surfaces using curvature co-occurrence matrix and

some traditional approaches. The retrieval precision is

shown in Fig. 6 for various r values.

Fig. 3 3D database containing 10 image categories

Fig. 4 Relationship between neighborhood factor and retrieval

precision

Fig. 5 Relationship between neighborhood factor and running time
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From the figure, we can see that our algorithm does not

have good noisy robustness. At present, our approach can

get encouraging matching efficiency and running time

complexity in case of high signal-to-noise ratio. However,

our algorithm can keep a good classification rate when

r\ 0.1 mm, the future work will concentrate to the

problem of noise robustness.

5 Conclusion

This paper proposes a novel approach for 3D image

retrieval. Gaussian curvature and mean curvature are

employed to represent the inherent characteristic of spatial

curved surfaces; the conception of traditional co-occur-

rence matrix in texture analysis is extended to the idea of

basing on the spatial points, and then the curvature co-

occurrence matrix is constructed to describe the shape

characteristic of 3D images. Normalization process is

applied to the co-occurrence matrix, and the invariants

independence of the translation, scaling, and rotation

transforms is proved. For 3D images with slight different

shape characteristic, experiments indicate a lower compu-

tation complexity and a better retrieval rate in comparison

with the recent methods.

However, the efficiency of this approach would be

reduced when the noise increase. In future work, we will

focus on the research of the recognition problems for noise

robustness and the improvement of the algorithm.
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