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Abstract Roof fall is one of the most important problems

connected with underground coal mines because it plays a

significant role in financial and human losses. Hence, it is

essential to accurately predict the roof fall rate for the

purpose of controlling, reducing, and/or even eliminating

the risk of the involved problems. On the other hand, there

are many different parameters that make a considerable

impact on the occurring roof rate. Most of these factors are

not completely known or measurable. Therefore, the

problem of predicting roof fall is vague, sophisticated, and

complex. Adaptive neuro-fuzzy inference system (ANFIS)

is a powerful and robust tool for modeling linear and non-

linear patterns in science and engineering problems. In this

paper, the ANFIS system is applied to model the roof fall

rate in coal mines. The constructed model uses the sub-

tractive clustering method to generate fuzzy rules based on

109 data of roof performance from US coal mines. The

results demonstrate that prediction of roof fall rate by the

ANFIS model is satisfactory.

Keywords Roof fall rate � ANFIS � MVR � Underground

coal mines

1 Introduction

Roof fall is a crucial component in underground mine

safety because it has a great impact on the cost and pro-

duction of a mine. It accounted for 18.18 % of all fatal

accidents in coal mines, contributing to about 35.29 % of

all fatal accidents in below-ground operations in 2005 [1].

For this reason, various studies are conducted to find the

relationship between the roof falls and different parameters

that have a significant effect on events of falling roofs in

coal mines. Table 1 lists several studies that formulate the

relationship between the roof fall and other effective

factors.

However, the aforementioned models are not capable of

simultaneously handling both complexity and inherent

uncertainty connected with the roof fall problem. Hence,

with respect to importance of the roof fall problem,

applying a proper technique can help designers to analyze

the problem more accurately and precisely. Adaptive

neuro-fuzzy inference system (ANFIS) has been a powerful

tool for formulating complex problems over the last decade

and has demonstrated its capabilities and effectiveness as a

problem-solving tool in modeling different aspects of

engineering and management problems [16–30]. Some

applications of ANFIS in geotechnical engineering can be

found in [31]. This method is found to be a viable con-

tender in competition with various conventional models

[18, 22, 25].
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The unique features of ANFIS can be on account of the

existing advantages in the two methods, artificial neural

network (ANN) and fuzzy inference system (FIS), that

form the ANFIS structure. However, ANN is capable of

modeling all types of the existing complexity and non-

linearity in the structure of the data under consideration.

Likewise, FIS is successful in the face of uncertain data

and can take into account the human knowledge in

modeling.

The main aim of the study is to develop an ANFIS

model for predicting the roof fall rate in order to obtain a

more accurate, precise, and sure equation. To show the

capability and effectiveness of the constructed model, the

results are compared with multivariate regression (MVR)

based on three indices, including coefficient of determi-

nation (R2), mean absolute error (MAE), and root mean

square error (RMSE).

The rest of this paper is organized as follows: multi-

variate regression is briefly illustrated in the next section.

The basic concepts of adaptive neuro-fuzzy inference

system (ANFIS) are presented in Sect. 3. Section 4

explains the indices employed for evaluating model per-

formance. Dataset is described in Sect. 5. In Sect. 6,

development of the ANFIS model is implemented to for-

mulate the roof fall rate and its performance is investigated

in comparison with the MVR model. In Sect. 7, results and

discussion are discussed. Section 8 includes the conclu-

sions of the study.

Table 1 A list of several studies on modeling roof fall

Proposed by Parameters used in modeling Application

Kidybinski

[2]

Average roof rock strength Investigations, estimation and classification of roofs in mines

in the United States of America for the selection of suitable

mechanized support for longwalls

Unrug and

Szwilski

[3]

Roof quality index (RQI) Influence of strata control parameters on longwall mining

design

Newman and

Bieniawski

[4]

Strata weatherability, high horizontal stresses, and the roof

support reinforcement factor

Entry and roof support design in underground room-and-pillar

coal mines.

Molinda and

Mark [5]

Groundwater, surcharge, rock strength, strong bed,

discontinuities, spacing, cohesion, roughness, persistence,

bedding contact, and moisture sensitivity

Quantifying descriptive geological information for use in coal

mine design and roof support selection

Mark [6] Entry width, coal mine roof rating (CMRR), Cut depth, and

cover

Stability of extended cut

Molinda

et al. [7]

CMRR Roof stability

Mark et al.

[8]

Rock quality designation (RQD), uniaxial compressive

strength (UCS), and diametral point load testing

Longwall tailgate design, roof bolt selection, longwall mining

through open entries and recovery rooms, and roof fall

evaluations

Deb [9] Intersection diagonal span (IS), CMRR, primary roof support

(PRSUP), and depth of mine

Analysis of coal mine roof fall rate

Duzgun and

Einstein

[10]

Injury, equipment damage, interruption and delay in operation,

and clean up

Assessment and management of roof fall risks in underground

coal mines

Duzgun [11] Distribution function of the annual roof fall and Cost model Risk assessment and management methodology for roof fall

hazards in underground mines of the Zonguldak coal basin

Torabi et al.

[12]

UCS Prediction of the roof rock strength in underground coal mines

Palei and Das

[1]

Number of bolts per row, anchorage strength of bolt, Spacing

between the bolts, width of gallery, mean rock density, and

rock mass rating (RMR)

Predicting the effects of contributing parameters on roof falls

in underground coal mines

Javanshir

et al. [13]

UCS, tensile strength, moisture sensitivity, joints, bedding

thickness, orientation and dips of discontinuities relevant to

face, and surface of working area

Modeling and classification of roof behavior in coal mines

Palei and Das

[14]

Width of gallery, mining height (MH), depth of cover (DOF),

seam thickness, roof support status, immediate roof, face and

specific mine

Prediction of roof fall risks in bord and pillar workings in coal

mines by using logistic regression model

Ghasemi and

Ataei [15]

CMRR, PRSUP, IS, and DOF Predicting roof fall rate in coal mines
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2 Multivariate regression analysis

Regression analysis is widely used for modeling relation-

ship between inputs and output variables. Based on basic

concepts of multivariate regression (MVR), the relation-

ship between input variables and the output variable is

generally explored by the function that is fitted to a dataset.

The standard form of the MVR model in statistical analysis

can be defined as

y ¼ b1x1 þ b2x2 þ � � � þ bnxn þ c ð1Þ

where y is the dependent variable, xn (n = 1, 2, …, n) is

independent variable, b1, b2, …, bn are the regression

coefficients, which represent the amount the dependent

variable changes when the corresponding independent

variables change 1 unit. c is the constant term, which

represents the amount the dependent variable will be when

all the independent variables are 0.

The major conceptual limitation of all regression tech-

niques is that one can only ascertain relationships, but

never be sure about the underlying causal mechanism [25].

3 ANFIS modeling

A fuzzy inference system applied in the form of a neuro-

fuzzy system with crisp functions in consequents is the

Takagi–Sugeno-type fuzzy system, well known as ANFIS.

ANFIS was first introduced by Jang [32]. The ANFIS can

be trained to tune its parameters and learn the existing

structures in the dataset. The relationships between input

and output variables are represented by means of fuzzy if–

then rules with unclear predicates. The ANFIS model is

established by adapting the antecedent parameters and

consequent parameters so that a specified objective func-

tion (usually a difference between the model output and the

actual output) is minimized [33]. Several methods are

developed for learning rules [32, 34]. In this paper, the

hybrid learning algorithm developed by Jang [32], that is a

combination of least square estimation and back-propaga-

tion algorithms, is applied.

Suppose that the rule base contains of the following two

Sugeno-type fuzzy if-then rules:

Rule 1 : If x is A1 and y is B1, then f1 ¼ p1xþ q1yþ r1

Rule 2 : If x is A2 and y is B2, then f2 ¼ p2xþ q2yþ r2

where x and y are two inputs; Ai and Bi are the terms which

are represented by fuzzy sets. fi is the output variable

within the fuzzy region specified by the fuzzy rule the

membership function parameters of which are premise

parameters. pi, qi, and ri are designing parameters which

are obtained during the learning process [35]. The ANFIS

architecture with two rules is depicted in Fig. 1. The output

of each node in every layer is indicated by Oi
l (ith node

output in lth layer). The performance of each layer can be

described as follows:

The first layer is the fuzzifying layer in which Ai and Bi

are the linguistic terms. The output of the layer is the

membership functions of these linguistic terms are given as

Ol
i ¼ lAi

ðxÞ ð2Þ

Ol
i ¼ lBi

ðyÞ

In the second layer, the rules’ firing strengths are

calculated by multiplying each node with each other as

presented in the following equation:

wi ¼ lAi
ðxÞlBi

ðyÞ; i ¼ 1; 2 ð3Þ

where lAi
and lBi

are the membership functions of the

input variables x and y, respectively.

In the third layer, the firing strengths obtained in the

previous layer of the nodes are normalized. Every node in

the layer computes the ratio of the ith rule’s firing strength

to the sum of all rules’ firing strengths by using Eq. (4):

�wi ¼
wi

w1 þ w2

; i ¼ 1; 2 ð4Þ

In the fourth layer, every node calculates a linear

function where the function coefficients are adapted using

the back-propagation algorithm of the artificial neural

networks [36]. The output of this layer is derived from

multiplication of normalized firing strength obtained in the

third layer by the first order of the Sugeno fuzzy rule.

�wifi ¼ �wiðpixþ qiyþ riÞ; i ¼ 1; 2 ð5Þ

In the fifth layer, the overall output is calculated as a

summation of all the incoming signals through Eq. (6):

X2

i¼1

�wifi ¼
P2

i¼1 wifiP2
i¼1 wi

ð6Þ

The first and fourth layers in ANFIS structure are

adaptive layers. The consequent coefficients (pi, qi, and ri)

are continuously adjusted using fuzzy membership

functions in order to minimize the errors between the

model outputs and the observations [36].

Fig. 1 ANFIS architecture with two rules
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4 Model performance

Since there are no unique and more appropriate unbiased

estimators applied to see how far the model is able to

forecast the values of roof fall, several measures of accu-

racy are employed. For this reason, the models are evalu-

ated by three estimators containing the coefficient of

determination (R2), the root mean square error (RMSE),

and the mean absolute error (MAE).

The above-mentioned estimators are obtained by

R2 ¼ 1�
PN

i¼1 ðAi � PiÞ2PN
i¼1 ðAi � �AiÞ2

ð7Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 ðAi � PiÞ2

N

s

ð8Þ

MAE ¼
PN

i¼1 Ai � Pij j
N

ð9Þ

where Pi is the predicted value, Ai is the observed value, �Ai

is the average of observed set, and N is the number of

datasets.

R2 shows how much of the variability in the dependent

variable can be explained by independent variable(s). R2 is

a positive number that can only take values between zero

and one. A value for R2 close to one shows a good fit of the

forecasting model and a value close to zero presents a poor

fit.

MAE would reflect if the results suffer from a bias

between the actual and modeled datasets [37]. RMSE is a

used measure in order to calculate the differences between

values predicted by a model and the values observed from

the thing being modeled. RMSE and MAE are non-nega-

tive numbers that for an ideal model can be zero and have

no upper bound.

5 Dataset

The dataset involved in this study includes 109 observa-

tions of the roof fall rate against its affecting parameters

[38]. In order to construct ANFIS model for the roof fall

rate, the existing dataset is separated into training and test

sets. For achieving the aim, 82 observations (75 %) are

randomly selected to formulate the model and the rest of

the observations (25 %) are used to reflect the performance

of the different constructed models. Based on the MVR

model, the affecting parameters on the roof fall rate are

extracted as described in the following part.

One of the most important steps in developing a suc-

cessful predicting model is the selection of the input vari-

ables, which determine the architecture of the model.

Based on the literature, five input parameters for predicting

the roof fall rate (RFR) are identified, including CMRR

(i.e., the quality of roof rock plays a significant role in the

rate of roof fall [38]), PRSUP (i.e., roof fall rate is influ-

enced by roof bolt density [15]), IS (i.e., most of the falls in

the total database occur in intersections, so that they are

much more likely to fall than entry or crosscut segments

between intersections [38]), DOF (i.e., increasing depth

leads to increase in virgin stress levels in the rock mass

[15]), and MH (i.e., mining height influences the rate of

roof fall [39]). Basic descriptive statistics on the dataset

involved in modeling are presented in Table 2.

6 Prediction model

Based on classical assumptions of the linear model, the

best forecast of Y (variable Y regressed on X) is Y
_

can be

calculated by Eq. (10):

Y
_

¼ XðXT XÞ�1
XT ð10Þ

here, Y is RFR and X = [1, CMRR, PRSUP, IS, DOF, MH]

is the set of independent variables defined, respectively, as

the constant term, Coal Mine Roof Rating, Primary roof

support, Intersection diagonal span, Depth of cover, and

Mining height, so that the model is results in the following:

RFR ¼ 5:26� 0:1 CMRR½ � þ 0:482 PRSUP½ � þ 0:0114 IS½ �
� 9:854E� 5 DOF½ � � 0:136 MH½ �

The performance measures of the MVR model for the

dataset are listed in Table 3. From the last row of Table 3,

Table 2 Statistical parameters of each dataset

Type of data Mean Median Maximum Minimum SD Skewness Kurtosis

CMRR Input 47.72477 45 78 28 11.10461 0.854792 3.667385

DOF Input 445.5505 400 1,100 40 226.57 1.182488 4.064498

MH Input 6.284404 6.5 10 3 1.940226 0.093543 2.704866

IS Input 63.44771 63 78.4 50 5.607594 0.373796 3.418295

PRSUP Input 5.711009 5.32 14.67 2.46 2.286372 1.186847 4.747508

FALL Output 2.750826 0.52 31.82 0 5.251759 2.955404 12.82796
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it can be seen that the MVR model is not satisfactory.

Therefore, the ANFIS model is implemented in the

following part.

According to the basic concepts of ANFIS design and

using productive algorithm in MATLAB 7.11 package

software, the development of the ANFIS model is imple-

mented. In order to obtain the optimum network architec-

ture, several network architectures are established to select

the best-fitted ANFIS model. The established model is

schematically depicted in Fig. 2.

Before constructing the ANFIS model, all variables are

normalized to the interval of 0 and 1 using Eq. (11):

Xnorm ¼ ðX � XminÞ=ðXmax � XminÞ ð11Þ

There are different methods to generate the fuzzy rules.

Two of the most popular methods are Grid partition [32] and

subtractive clustering [40]. The subtractive clustering

method is more used when there are many input variables.

For instance, let it be assumed that there are 10 input

variables and three MFs for each input variable; the rules will

be 310 (59049 rules) that results in the computations being

long and time-consuming. With this reason, the authors use a

subtractive fuzzy clustering to generate the relationship

between the input and output variables. This method uses the

given search radius to measure the density of data points in

the feature space [40]. A small cluster radius will usually

yield many small clusters in the data and lead to generating

many rules, and a large cluster radius will usually result in a

few large clusters in the data and cause fewer rules [41–44].

In this paper, the most appropriate value for the cluster radius

is identified by a trial and error approach by changing the

cluster radius value from 0.1 to 0.9 (in increments of 0.1).

The results of testing data, as seen in Table 3, show that the

optimum value for the cluster radius is 0.4 since it produces

the highest R2 of 0.856 with the lowest MAE and RMSE of

1.215 and 1.738, respectively (As highlighted in Table 3).

The optimal number of rules for the best-fitting model is 71.

After forming the initial ANFIS structure, the training

stage is accomplished. In order to train the ANFIS model,

Table 3 Comparison among

performances of different

constructed models

Cluster radius Number of rules In sample Out of sample

R2 MAE (10-2) RMSE R2 MAE RMSE

0.1 84 0.983 0.36 0.023 0.562 2.738 4.132

0.2 80 0.985 0.32 0.022 0.673 1.349 3.298

0.3 78 0.971 0.47 0.034 0.765 1.897 2.345

0.4 71 0.984 0.33 0.022 0.856 1.215 1.738

0.5 63 0.977 0.47 0.035 0.71 1.964 2.098

0.6 52 0.978 0.42 0.037 0.656 1.317 3.314

0.7 43 0.969 0.54 0.045 0.632 1.354 3.422

0.8 27 0.987 0.37 0.03 0.375 3.896 6.465

0.9 21 0.979 0.40 0.039 0.456 3.858 5.442

MVR 0.105 313.26 3.473 0.017 18.01 3.162

Fig. 2 Structure of fuzzy model

Fig. 3 Trend of errors during epochs
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1. If (CMRR is in1cluster1) and (PRSUP is in2cluster1) and (IS is in3cluster1) and (DOF is in4cluster1) and (MH is in5cluster1) then (RFR is out1cluster1) (1)        
2. If (CMRR is in1cluster2) and (PRSUP is in2cluster2) and (IS is in3cluster2) and (DOF is in4cluster2) and (MH is in5cluster2) then (RFR is out1cluster2) (1)        
3. If (CMRR is in1cluster3) and (PRSUP is in2cluster3) and (IS is in3cluster3) and (DOF is in4cluster3) and (MH is in5cluster3) then (RFR is out1cluster3) (1)        
4. If (CMRR is in1cluster4) and (PRSUP is in2cluster4) and (IS is in3cluster4) and (DOF is in4cluster4) and (MH is in5cluster4) then (RFR is out1cluster4) (1)        
5. If (CMRR is in1cluster5) and (PRSUP is in2cluster5) and (IS is in3cluster5) and (DOF is in4cluster5) and (MH is in5cluster5) then (RFR is out1cluster5) (1)        
6. If (CMRR is in1cluster6) and (PRSUP is in2cluster6) and (IS is in3cluster6) and (DOF is in4cluster6) and (MH is in5cluster6) then (RFR is out1cluster6) (1)        
7. If (CMRR is in1cluster7) and (PRSUP is in2cluster7) and (IS is in3cluster7) and (DOF is in4cluster7) and (MH is in5cluster7) then (RFR is out1cluster7) (1)        
8. If (CMRR is in1cluster8) and (PRSUP is in2cluster8) and (IS is in3cluster8) and (DOF is in4cluster8) and (MH is in5cluster8) then (RFR is out1cluster8) (1)        
9. If (CMRR is in1cluster9) and (PRSUP is in2cluster9) and (IS is in3cluster9) and (DOF is in4cluster9) and (MH is in5cluster9) then (RFR is out1cluster9) (1)        
10. If (CMRR is in1cluster10) and (PRSUP is in2cluster10) and (IS is in3cluster10) and (DOF is in4cluster10) and (MH is in5cluster10) then (RFR is out1cluster10) (1) 
11. If (CMRR is in1cluster11) and (PRSUP is in2cluster11) and (IS is in3cluster11) and (DOF is in4cluster11) and (MH is in5cluster11) then (RFR is out1cluster11) (1) 
12. If (CMRR is in1cluster12) and (PRSUP is in2cluster12) and (IS is in3cluster12) and (DOF is in4cluster12) and (MH is in5cluster12) then (RFR is out1cluster12) (1) 
13. If (CMRR is in1cluster13) and (PRSUP is in2cluster13) and (IS is in3cluster13) and (DOF is in4cluster13) and (MH is in5cluster13) then (RFR is out1cluster13) (1) 
14. If (CMRR is in1cluster14) and (PRSUP is in2cluster14) and (IS is in3cluster14) and (DOF is in4cluster14) and (MH is in5cluster14) then (RFR is out1cluster14) (1) 
15. If (CMRR is in1cluster15) and (PRSUP is in2cluster15) and (IS is in3cluster15) and (DOF is in4cluster15) and (MH is in5cluster15) then (RFR is out1cluster15) (1) 
16. If (CMRR is in1cluster16) and (PRSUP is in2cluster16) and (IS is in3cluster16) and (DOF is in4cluster16) and (MH is in5cluster16) then (RFR is out1cluster16) (1) 
17. If (CMRR is in1cluster17) and (PRSUP is in2cluster17) and (IS is in3cluster17) and (DOF is in4cluster17) and (MH is in5cluster17) then (RFR is out1cluster17) (1) 
18. If (CMRR is in1cluster18) and (PRSUP is in2cluster18) and (IS is in3cluster18) and (DOF is in4cluster18) and (MH is in5cluster18) then (RFR is out1cluster18) (1) 
19. If (CMRR is in1cluster19) and (PRSUP is in2cluster19) and (IS is in3cluster19) and (DOF is in4cluster19) and (MH is in5cluster19) then (RFR is out1cluster19) (1) 
20 If (CMRR is in1cluster20) and (PRSUP is in2cluster20) and (IS is in3cluster20) and (DOF is in4cluster20) and (MH is in5cluster20) then (RFR is out1cluster20) (1)

Fig. 4 A sample of rules generated for the ANFIS model

Table 4 Testing dataset applied for performance measurement

No. CMRR PRSUP IS (ft) DOF (ft) MH (ft) RFR

Actual Predicted

MVR ANFIS

1 59 5.32 65.9 150 6 0 2.049 6.21E-08

2 75 3.93 60 400 7 0 -0.158 6.31E-05

3 45 4.55 59 350 5.5 0.23 2.361 1.57E?00

4 55 5.47 75.2 1,050 10 4.05 1.501 3.51E-12

5 55 7.89 75.2 1,050 10 0.35 2.866 9.27E-13

6 37 5.52 58 400 10 2.25 2.981 2.20E?00

7 58 3.1 64.8 800 6 0 0.376 3.74E-01

8 50 4.92 63 350 7 0 2.15 5.55E-01

9 39 6.98 60 400 4.3 0.36 4.221 1.86E?00

10 49 4.64 57 150 3 0 2.493 2.32E-02

11 47 5.3 62.9 500 3 0 2.822 5.22E-01

12 47 3.98 66.3 300 3 0 2.268 3.70E?00

13 40 5.9 63 400 7 0 3.336 8.70E-07

14 30 9.14 56 300 6 2.8 5.906 4.17E?00

15 52 3.93 63 400 7 3.17 1.421 4.74E-01

16 35 6 64 200 7.5 0 3.84 8.50E-08

17 50 7.95 60 300 6 20 3.948 2.25E?01

18 40 5.9 63 400 7 0 3.336 8.70E-07

19 39 5.89 69 500 7.5 0.16 3.357 2.62E?00

20 55 3.71 62.7 1,000 6.5 0.28 0.702 1.14E-01

21 55 8.21 75.2 1,050 10 0.79 3.047 1.29E-12

22 38 4.32 60 600 4 0.65 2.669 5.41E-01

23 45 4.55 59 350 5.5 0.29 2.361 1.57E?00

24 44 4.36 62 350 3.5 0 2.544 1.16E?00

25 58 3.1 75.7 800 6 3.33 0.519 2.79E-02

R2 0.039 0.856

MAE 2.834 1.215

RMSE 4.034 1.738
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the number of iteration of the hybrid algorithm for cor-

rection of model parameters and objective error is taken

into account as 30 and 10-9, respectively. Figure 3 shows

the trend of errors when the number of epochs is increased.

A sample of rules generated by the ANFIS model is pre-

sented in Fig. 4.

Then, the constructed model is checked by the testing

dataset. For achieving the aim, the input vectors from the

test dataset are presented to the trained network and

the predicted outputs are compared with the actual ones for

the performance measurement as shown in Table 4.

The interdependency of input and output parameters

derived from the rules generated by subtractive clustering

can be shown using the control surface as depicted in

Fig. 5. As seen in the figure, Fig. 5a shows the interde-

pendency of RFR on CMRR and PRSUP, Fig. 5b depicts

the interdependency of RFR on CMRR and IS, Fig. 5c

shows the interdependency of RFR on CMRR and DOF,

and Fig. 5d depicts the interdependency of RFR on CMRR

and MH.

7 Results and discussion

The performance measures of the ANFIS and MVR models

for testing dataset are listed in the last three rows of Table 4.

It can be seen that the R2 value for the ANFIS model is 0.856,

which is dramatically greater than that obtained in MVR,

which is 0.039 (R2 \ 60 % is unacceptable).

The MAE value for the ANFIS model is 1.215, which is

significantly smaller than that resulting from MVR, which

is 2.834. The RMSE value for the ANFIS model is 1.738,

which is smaller than that yielded by MVR, which is 4.034.

According to the yield results, the capability and efficiency

of the ANFIS model for predicting RFR is more accurate

and precise than the MVR model. This is due to the fact

that the problem of RFR is such a complex and vague

problem that linear methods are not capable to model such

behaviors.

8 Conclusion

Roof fall is an important and critical problem in under-

ground coal mines, which has a significant impact on the

activity continuity of mining and producing. Therefore,

accurate prediction of the problem can help decision

makers reduce or eliminate risks associated with the

problem of roof fall. This problem is a vague and uncertain

issue because there are a number of parameters that can

affect the problem of roof fall and often these parameters

are ill defined or immeasurable. Therefore, according to the

sophisticated structure of the problem, imprecise data, less

of information, and inherent uncertainty, the usage of the

fuzzy sets can be useful. On the other hand, ANN is widely

used for modeling different problems of science and

engineering. Fuzzy logic is integrated with ANN, well

known as ANFIS, to take into account advantages of the

Fig. 5 Control surface of RFR on a CMRR and PRSUP; b CMRR and IS; c CMRR and DOF; and d CMRR and MH
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two methods for modeling complex problems under a

fuzzy environment.

In this paper, using the ANFIS model based on the

subtractive clustering method, a model is constructed to

predict roof fall rate. The results of the established model

demonstrate that the ANFIS is a more powerful and

capable tool than the MVR to improve the safety of coal

mines. The output of the model can be used for selecting

the proper reaction strategy in order to reduce or eliminate

the risk of roof fall.
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electricity prices forecasting in a competitive market by a hybrid

PSO–ANFIS approach. Int J Electer Power 39(1):29–35

25. Yilmaz I, Kaynar O (2011) Multiple regression, ANN (RBF,

MLP) and ANFIS models for prediction of swell potential of

clayey soils. Expert Syst Appl 38:5958–5966
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