
ORIGINAL ARTICLE

Predicting the performance measures of a message-passing
multiprocessor architecture using artificial neural networks

Elrasheed Ismail Mohommoud Zayid •

Mehmet Fatih Akay

Received: 14 July 2012 / Accepted: 31 October 2012 / Published online: 10 November 2012

� Springer-Verlag London 2012

Abstract In this paper, we develop multi-layer feed-

forward artificial neural network (MFANN) models for

predicting the performance measures of a message-passing

multiprocessor architecture interconnected by the simulta-

neous optical multiprocessor exchange bus (SOME-Bus),

which is a fiber-optic interconnection network. OPNET

Modeler is used to simulate the SOME-Bus multiprocessor

architecture and to create the training and testing datasets.

The performance of the MFANN prediction models is

evaluated using standard error of estimate (SEE) and mul-

tiple correlation coefficient (R). Also, the results of the

MFANN models are compared with the ones obtained by

generalized regression neural network (GRNN), support

vector regression (SVR), and multiple linear regression

(MLR). It is shown that MFANN models perform better (i.e.,

lower SEE and higher R) than GRNN-based, SVR-based,

and MLR-based models for predicting the performance

measures of a message-passing multiprocessor architecture.

Keywords Artificial neural networks � Multiprocessor

architectures � Message passing � Performance evaluation

1 Introduction

Parallel computing is the simultaneous use of multiple

compute processing units to solve a computational

problem. Parallel computing takes hold in many areas of

mainstream computing [1]. Some important domains for

parallel computing today include scientific applications

which model physical phenomena; engineering applica-

tions such as those in computer-aided design, digital signal

processing, automobile crash simulation, and even simu-

lations used to evaluate architectural tradeoffs; graphics

and visualization applications that render scenes or vol-

umes into images; media processing applications such as

image, video and audio analysis and processing, speech

and handwriting recognition; information management

applications such as databases and transaction processing;

optimization applications such as crew scheduling for an

airline and transport control; artificial intelligence appli-

cations such as expert systems and robotics; multipro-

grammed workloads; and the operating system itself, which

is a particularly complex parallel application [2].

Developing parallel applications that are robust and

provide good speed-up across current and future multi-

processors is a critical task and requires a tremendous

amount of computational power, in addition to a deep

understanding of forces driving parallel computers.

Essentially, parallel computer architecture has matured to

the point where it needs to be studied from a basis of

engineering principles and quantitative evaluation of per-

formance and cost. Parallel programming models are

evolving apace and can truly utilize large-scale parallel

computing systems. Several parallel programming models

exist in common use [3], and message passing and shared-

memory programming models are the most popular ones.

In the message-passing model, a set of nodes use their own

local memory during computation. Nodes exchange data

through communications by sending and receiving mes-

sages, and data transfer usually requires cooperative

operations to be performed by each process. The drawback

E. I. M. Zayid

Department of Electrical-Electronics Engineering,

Cukurova University, Adana 01330, Turkey

M. F. Akay (&)

Department of Computer Engineering,

Cukurova University, Adana 01330, Turkey

e-mail: mfakay@cu.edu.tr

123

Neural Comput & Applic (2013) 23:2481–2491

DOI 10.1007/s00521-012-1267-9



of message passing is the programmer’s responsibility for

determining and orchestrating all parallelism. In the

shared-memory-programming model, tasks share a com-

mon address space, which they read and write asynchro-

nously. An advantage of this model is that the notion of

data ‘‘ownership’’ is lacking so there is no need to specify

explicitly the communication of data between tasks,

therefore program development can often be simplified [4–

6].

The performance analysis of a multiprocessor architec-

ture is a very crucial factor in designing message passing

and shared-memory multiprocessor systems. Very often,

simulation is the only feasible method because of the nat-

ure of the problem and because analytical techniques

become too difficult to handle. Simulation occurs at many

levels, from circuit to system, and at different degrees of

detail as the design evolves. Execution-driven and trace-

driven multiprocessor simulations have been extensively

used to obtain a reliable and accurate prediction of the final

design. One of the problems with simulation is that

although these simulations can be done at a high level of

abstraction, they still are extremely time consuming. There

are several reasons why this is the case. First, the bench-

marks that need to be simulated typically consist of several

hundreds of billions of dynamically executed instructions.

Second, multiple of these benchmarks need to be simulated

to cover a representative set of applications. Third, the

complexity of the target system reflects itself in the com-

plexity of the simulator making the simulator at least four

orders of magnitude slower than native hardware execu-

tion. Fourth, during design space exploration, all bench-

marks need to be simulated multiple times to identify the

optimal design for a given cost function covering perfor-

mance, power, area, cost, and reliability [7].

With the objective of reducing simulation time without

losing accuracy, some interesting proposals have appeared

in the last years. The first one is the sampled simulation,

which chooses in an intelligent way a small portion of the

program trace to simulate [7]. The second one is using a

reduced set of the inputs of a benchmark [7]. Finally, there

is statistical modeling and simulation, which characterizes

the behavior of the program and architecture with some

probability distributions [8, 9]. A statistical simulation is a

robust, flexible, and suitable tool in multiprocessor design,

but it can still be time consuming especially when multi-

processor systems to be simulated have many parameters

and these parameters have to be tested with different

probability distributions or values.

There exist three studies in literature [7, 9, 10], which

prove the fact that artificial intelligence techniques could

be applied to predict the performance measures of a mul-

tiprocessor architecture. In [7], a broadcast-based multi-

processor architecture called the SOME-Bus employing the

distributed shared-memory programming model was con-

sidered. The statistical simulation of the architecture was

carried out to generate the dataset. The dataset contained

the following variables: ratio of the mean message channel

transfer time to the mean thread run time (T/R), probability

that a block can be found in modified state (Pm), proba-

bility that a data message is due to a write miss (Pw),

probability that a cache is full (Pcf), and probability of

having an upgrade ownership request (Puor). SVR was used

to build prediction models for predicting average network

response time (NRT), average channel waiting time

(CWT), and average processor utilization (PU). It was

concluded that SVR model is a promising tool for pre-

dicting the performance measures of a distributed shared-

memory multiprocessor.

In [9] and [10], MFANN models were developed to

predict the measures of the SOME-Bus architecture

employing the message-passing protocol with (ACK’s),

and the hybrid message-passing protocols. The perfor-

mance of the models was evaluated by calculating the

mean absolute error (MAE), root mean squared error

(RMSE), relative absolute error (RAE), and root relative

squared error (RRSE). The results of the MFANN-based

models were compared with the ones obtained by GRNN,

SVR, and MLR. It is concluded that MFANN models

shortens the time quite a bit for obtaining the performance

measures of a message-passing multiprocessor employing

the message-passing protocol with ACK’s and can be used

as an effective tool for this purpose.

The difference between this study and [10] is that the

dataset used in [10] is a hybrid one in the sense it includes

simulation results both for message passing with acknowl-

edgments (ACK’s) and without ACK’s. This study uses the

dataset which includes simulation results for message

passing with ACK’s only. This study extends our previous

work [9] by including three new methods (i.e., SVR,

GRNN, and MLR) for performance measures prediction.

In this paper, MFANNs have been used to predict the

performance measures of the SOME-Bus architecture

employing the message-passing programming model with

ACK’s. OPNET Modeler [11] is used to statistically sim-

ulate the message-passing SOME-Bus architecture. The

input variables of the prediction model include T/R, node

number, thread number, and traffic pattern. The output

variables of the prediction model include average CWT,

average channel utilization (CU), average NRT, average

PU and average input waiting time (IWT). The perfor-

mance of the prediction models have been evaluated by

calculating their SEE and R values. The results are com-

pared with the ones obtained by GRNN, SVR, and MLR. It

is shown that MFANNs perform better than GRNN, SVR,

and MLR analysis for predicting the performance measures

of a message-passing multiprocessor architecture.

2482 Neural Comput & Applic (2013) 23:2481–2491

123



This paper is organized as follows. Section 2 gives an

overview of the SOME-Bus architecture. Section 3 pre-

sents details of message-passing protocol. Section 4 sum-

marizes the basics of MFANNs, GRNN, SVR, and MLR.

Section 5 describes the simulation framework and dataset

generation. Section 6 gives the MFANN prediction mod-

els, performance metrics, results, and discussion. Finally,

Sect. 7 concludes the paper and outlines the future work.

2 Overview of the simultaneous optical multiprocessor

exchange bus (SOME-Bus)

One implementation of an architecture which can support

simultaneous multicasts from all nodes has been presented

in [12]. This architecture, called the SOME-Bus, incorpo-

rates optoelectronic devices into high-performance network

architecture. The unique architecture of the SOME-Bus

provides for strong integration of the transmitter, receiver,

and cache controller hardware to produce a highly inte-

grated system-wide coherence mechanism. It is a low-

latency, high-bandwidth, fiber-optic network which directly

connects each processing node to all other nodes without

contention. One of its key features is that each of N nodes

has a dedicated broadcast channel which can operate at

GBytes/s, depending on the configuration. Figure 1 depicts

the fully connected SOME-Bus network architecture. The

receiver array does not need to perform any routing, and

consequently its hardware complexity is small. It contains

an optical interface which performs address filtering, length

monitoring, and type decoding. If a valid address is detected

in the message header, the message is placed in a queue,

otherwise the message is ignored. The address filter can

recognize broadcast addresses in addition to recognizing the

address of the home node. The receiver array also contains a

set of queues such that one queue is associated with each

input channel, allowing messages from any number of

nodes to arrive and be buffered simultaneously. This

organization supports multiple simultaneous broadcasts.

Messages exchanged between nodes contain a header

field with information on the message type (data or syn-

chronization), length, and destination address. Once the

logic level signal is restored from the optical data, it is

directed to the input channel interface, which consists of

two parts: the optical interface, which includes physical

signaling, address filtering, length monitoring, and type

decoding and the processor interface, which includes a

routing network and a queuing system. One queue is

associated with each input channel, allowing messages

from any number of processors to arrive and be buffered

simultaneously, until the local processor is ready to

remove them. Arbitration may be required only locally in

a receiver array when multiple input queues contain

messages.

The SOME-Bus may appear to be equivalent to a mesh,

but it has much more functionality. It avoids the latency of

arbitration, switching setup, and informing the sending

node that the connection is complete. The ability to support

multiple simultaneous broadcasts is a unique feature of the

SOME-Bus, which efficiently supports distributed barrier

synchronization mechanisms and cache consistency

protocols.

3 Message-passing protocol

A message-passing system typically combines the local

memory and processor at each node of the interconnection

network. There is no global memory so it is necessary to

move data from one local memory to another by means of

message-passing paradigm. This is typically done by a

Send/Receive pair of commands, which must be written

into the application software by a programmer. Thus,

programmers must learn its complicated paradigm which

involves data copying and dealing with consistency issues

accurately. Simultaneous message processing and problem

calculating are handled by the underlying operating system

and protocols. Processes running on a given processor use

mean named internal channels to exchange messages

among themselves. Processes running on different proces-

sors use the external channels to exchange messages. Data

exchanged among processors cannot be shared; it is rather

copied (using send/receive messages). An important

advantage of this form of data exchange is the elimination

of the need for synchronization constructs, such as sema-

phores, which results in performance improvement. In

addition, a message-passing scheme offers flexibility in

accommodating a large number of processors [13].

The basic programming model used in message-passing

architectures is based on the idea of matching a send

Fig. 1 Parallel receiver array

Neural Comput & Applic (2013) 23:2481–2491 2483

123



request on one processor with a receive request on another.

In such scheme, send and receive are blocking; that is, send

blocks until the corresponding receive is executed before

data can be transferred. Message-passing communication

protocol supports end-to-end packet acknowledgment. For

every packet sent by a source node, there is a returned

ACK’s after the packet has reached the destination node.

This allows source nodes to discover packet loss. Auto-

matic retransmission of a packet is made if the ACK’s is

not received within a preset time interval. A message-

passing programming style is the preferred style for per-

formance on such model. Also, message passing without

ACK’s protocol can be defined as above neglecting the fact

that the source is not in need learn whatever the sent packet

has arrived or not (only broadcasts the packet). There are

problems associated with message-passing systems. These

include communication overhead and difficulty of pro-

gramming [14–16].

4 Overview of methods

4.1 Multi-layer feed-forward artificial neural networks

The ANN employs the model structure of a neural network

which is a powerful computational technique for modeling

complex non-linear relationships particularly in situations

where the explicit form of the relation between the vari-

ables involved is unknown [17, 18]. An MFANN consists

of at least three layers—input, output, and hidden layer.

The schematic diagram of a MFANN is shown in Fig. 2.

Each neuron in a layer receives weighted inputs from a

previous layer and transmits its output to neurons in the

next layer. The summations of weighted input signals are

calculated and this summation is transferred by a nonlinear

activation function. The results of the network are com-

pared with the actual observation results and the network

error is trained until the error reaches an acceptable value

[18].

In Fig. 2, Xi is the neuron input, Wij and Wkj are the

weights, M is the number of neurons in the hidden layer,

and Y is the output value.

4.2 Generalized regression neural networks

The GRNN is a generalization of both radial basis function

networks and probabilistic neural networks that can per-

form linear and nonlinear regression [19]. These feed-for-

ward networks use basis function architectures which can

approximate any arbitrary function between input and

output vectors directly from training samples, and they can

be used for multidimensional interpolation [20, 21]. The

main function of a GRNN is to estimate a linear or non-

linear regression surface on independent variables (input

vectors) U, given the dependent variables (desired output

vectors) X. That is, the network computes the most prob-

able value of an output, Ox, given only training vectors

U. Specifically, the network computes the joint probability

density function of U and X. The expected value of X given

U is expressed as [19]:

E½X=U� ¼
R1
�1 Xf ðU;XÞdx
R1
�1 f ðU;XÞdx

ð1Þ

An important advantage of the GRNN is its simplicity

and fast approximation procedure. Another attractive

feature is that, unlike back propagation-based neural

networks, GRNN does not converge to local minima

[22]. The topology of a GRNN consists of four parts. First,

there is an input layer that is fully connected to the pattern

layer. Second, there is a pattern layer that has one unit for

each pattern. It computes the pattern Gaussian function

expressed by

hi ¼ exp½�D2
i =2r2�; ð2Þ

where

D2
i ¼ ðu� UiÞTðu� UiÞ ð3Þ

r denotes the smoothing parameter, u is the input pre-

sented to the network, and Ui is each of the training vector.

Third, there is a summation layer which has two units

N and P. The first unit computes the weighted sum of the

hidden layer outputs. The second unit has weights equal to

‘‘1,’’ and therefore sums exponential terms (hi) alone.

Fourth, there is an output unit that divides N by P to pro-

vide the prediction result.

4.3 Support vector regression

4.3.1 Linear support vector regression

We are given the training data ðxi; yiÞ; ði ¼ 1; . . .; lÞ, where

x is a d-dimensional input with x 2 <d and the output is

X1

X2

XN

1

M

Input Hidden Layer Output 

Wij

Wkj

Y

Fig. 2 A typical multi-layer feed-forward neural network

architecture

2484 Neural Comput & Applic (2013) 23:2481–2491

123



y 2 <. The linear regression model can be written as fol-

lows [23]:

f ðxÞ ¼ x; xh i þ b; x; x 2 <d; b 2 <; ð4Þ

where f(x) is an unknown target function and :; :h i denotes

the dot product in <d.

In order to measure the empirical risk [24], we should

specify a loss function. The most common loss function is

the e-insensitive loss function proposed by Vapnik [25] and

is defined by the following function:

LeðyÞ ¼
0 for f ðxÞ � yj j � e

f ðxÞ � yj j � e otherwise

�

ð5Þ

The optimal parameters x and b in (4) are found by solving

the primal optimization problem [26]:

min
1

2
xk k2þC

X‘

i¼1

n�i þ nþi
� �

ð6Þ

with constraints

yi � x; xih i � b� eþ nþi ;

x; xih i þ b� yi� eþ nþi ;

nþi ; n
�
i � 0; i ¼ 1; . . .; ‘

ð7Þ

where C is a pre-specified value which determines the

trade-off between the flatness of f(x) and the amount up to

which deviations larger than the precision e are tolerated.

The slack variables n� and nþ represent the deviations

from the constraints of the e-tube.

Usually, the dual problem is solved. The corresponding

dual optimization problem is defined as

max
a;a�
� 1

2

X‘

i¼1

X‘

j¼1

a�i � ai

� �
a�j � aj

� �
xi; xj

� �

�
X‘

i¼1

yi a�i � ai

� �
� e
X‘

i¼1

a�i þ ai

� �
ð8Þ

with constraints

0� ai; a
�
i �C; i ¼ 1; . . .; ‘;

X‘

i¼1

ai � a�i
� �

¼ 0
ð9Þ

Solving the optimization problem defined by (8) and (9)

gives the optimal Lagrange multipliers a and a�, while w

and b are given by

x ¼
P‘

i¼1

a�i � ai

� �
xi;

b ¼ � 1
2

x; ðxr þ xsÞh i;
ð10Þ

where xr and xs are support vectors [26].

4.3.2 Nonlinear support vector regression

For nonlinear regression problems, a nonlinear mapping /
of the input space onto a higher dimension feature space

can be used, and then linear regression can be performed in

this space [27]. The nonlinear model is written as

f ðxÞ ¼ x;/ðxÞh i þ b; x; x 2 <d; b 2 <; ð11Þ

where

x ¼
X‘

i¼1

ai � a�i
� �

/ðxiÞ;

x;/ðxÞ
D E

¼
X‘

i¼1

ai � a�i
� �

/ðxiÞ;/ðxÞh i

¼
X‘

i¼1

ai � a�i
� �

Kðxi; xÞ;

b ¼ �
1

2

X‘

i¼1

ai � a�i
� �

ðKðxi; xrÞ þ Kðxi; xsÞÞ

ð12Þ

where xr and xs are support vectors. Note that we express

dot products through a kernel function K that satisfies

Mercer’s conditions [25]. (11) can be written as follows if

the term b is accommodated within the kernel function:

X‘

i¼1

ai � a�i
� �

Kðxi; xÞ ð13Þ

Several kernel functions have appeared in the literature.

The radial basis function (RBF) has received significant

attention, most commonly with a Gaussian of the form:

Kðx; x0Þ ¼ expð� x� x0k k2

2q2
Þ: ð14Þ

where q is the width of the RBF kernel.

4.4 Multiple linear regression

MLR is a statistical technique that uses several explana-

tory variables to predict the outcome of a response vari-

able. The goal of MLR is to model the relationship

between the explanatory and response variables. MLR

models are often used in the prediction of network per-

formance analysis, being represented by the relationship

between network inputs and a set of predictor output

variables in (15).

yi ¼ B0 þ B1xi1 þ B2xi2 þ . . .þ Bpxip þ Ei ð15Þ

where i = 1, 2, …, n; Bi is the residual, Ei is the difference

between the value of the dependent variable predicted by

the model and the dependent variable, and x is the inde-

pendent parameter.

Neural Comput & Applic (2013) 23:2481–2491 2485

123



5 Simulation and dataset generation

OPNET Modeler [11] is used to simulate the SOME-Bus

architecture employing the message-passing protocol with

ACK’s. Figure 3 shows the node model of the simulated

architecture. Each node contains a processor station in

which the incoming messages are stored and processed,

and also a channel station in which the outgoing messages

are stored before transferring them onto the network.

The underlying process model which controls queue

modules’ behavior is OPNET’s built-in acb_fifo model

which is shown in Fig. 4. The model has its own server and

can concentrate multiple incoming packets streams into its

single internal queuing resource. It also supports the First-

in-First-out service ordering discipline and a way to control

service times. The ‘‘init’’ state is used to initialize the

process and setting the appropriate variables. If a packet

arrives when the process is in ‘‘init’’ state, the process

transitions to the ‘‘arrival’’ state, else it transitions to the

‘‘idle’’ state where it waits for packet arrival. The ‘‘arrival’’

state is used for receiving packets and starting service. In

the ‘‘arrival’’ state, if the server is not busy then the process

moves into the ‘‘svc_start’’ state, which in turn transitions

to the ‘‘idle’’ state, where it waits either for packet arrival

or service completion. While in the ‘‘idle’’ state, if the

processing of a packet is completed, the process moves into

the ‘‘svc_compl’’ state. While in the ‘‘svc_compl’’ state, if

the queue is not empty, the process moves into the

‘‘svc_start’’ state.

The important parameters of the simulation are the

number of nodes (selected as 16, 32, and 64), the number of

the threads executed by each processor (ranging from 1 to

6), T/R, (ranging from 0.05 to 1), thread run time

(exponentially distributed with a mean value of 100), and

traffic pattern (uniform, hot-region, bit reverse, and perfect

shuffle). In the uniform traffic, the destination node is

selected using uniform distribution among the nodes. In the

hot-region pattern, the destinations of the 25 % of the

packets are chosen randomly within a small hot region

consisting of 12.5 % of the nodes [12]. Bit permutations

such as bit reverse and perfect shuffle are those in which

each bit di of the b-bit destination address is a function of

the one bit of the source address [8]. The dataset obtained

as a result of the simulation contains four input and five

output variables. The input variables of the prediction

model include T/R, node number, thread number, and

traffic pattern. The output variables of the prediction model

include average CWT (i.e., the time interval between the

instant when a packet is enqueued in the output channel

until the instant when the packet goes under service),

average CU (i.e., average fraction of time that the channel

server is busy), average NRT (i.e., the time interval

between the instant when a message is enqueued in the

output channel until the instant when the corresponding

acknowledge message arrives at the input queue), average

PU (i.e., average fraction of time that threads are execut-

ing), and average IWT (i.e., the time interval between the

instant when a message is enqueued in the input queue until

the instant when the message gets service from the

processor).

The dataset obtained as a result of the statistical simu-

lation includes 792 samples. Table 1 gives the descriptive

statistics of the dataset.

6 Results and discussion

The MFANN prediction model is shown in Fig. 5. As is

seen in Fig. 5, the neural network structure contains two

hidden layers. The first hidden layer has 9 neurons and the

second hidden layer has 6 neurons. These numbers have

been obtained by trial-and-error (i.e., after testing the

Fig. 3 A typical N-node SOME-Bus architecture by message-passing

protocol Fig. 4 A typical process model for the queues

2486 Neural Comput & Applic (2013) 23:2481–2491

123



neural network with several different configurations and

observing that these numbers yield the lowest error rates

for prediction). A tansigmoid activation function is used in

the hidden layers. A pure-linear activation function is used

in the output layer. The Levenberg–Marquardt (LM)

algorithm is utilized for training the network. The other

important parameters of the MFANN model are the num-

ber of epochs (selected as 500), the learning rate (selected

as 0.02), and momentum (selected as 0.5).

The performance of the ANN prediction model is

evaluated using R and SEE, the formulas of which are

given in Eqs. (12) and (13), respectively

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
Pn

i¼1 Y � Y 0ð Þ2
Pn

i¼1 Y � Y
�� �2

vu
u
u
t ð16Þ

SEE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

Y � Y 0ð Þ2
s

ð17Þ

where n is the number of data points used for testing, Y is

the observed value, Y0 is the predicted value and Y is the

average of the observed values.

The results of the MFANN prediction model are com-

pared with the ones obtained by GRNN, SVR, and MLR.

Tables 2, 3, 4, 5, 6, 7, 8, and 9 show the performance of all

prediction models in terms of R and SEE using different

number of cross-validation folds. In Tables 2, 3, 4, 5, 6, 7,

8, and 9, RBF stands for radial basis function and L stands

for linear.

Based on the results, the following points can be made:

1. For all performance measures, the MFANN-based

prediction model performs better (i.e., higher R and

lower SEE) than SVR-based, GRNN-based, and

MLR-based prediction models.

2. SVR-RBF model shows the second best performance

for prediction.

3. The SEE of the MFANN-based prediction model

decreases as the number of folds in the test set

increases from 10 to 80. However, it is observed that

the SEE of the ANN-based model increases as the

number of folds exceeds 80.

4. The MFANN-based model performs a perfect job in

predicting CU and PU (i.e., the SEE is almost zero

for both predictions). The prediction errors related to

NRT and IWT are higher than the ones related to

CWT. This is because of the high standard deviation

of NRT and IWT in the dataset.

5. Although the MLR-based prediction model yields

good performance for prediction of CU and PU, it

does not show the same performance for prediction

Table 1 Descriptive statistics of the dataset

Statistics name Performance measures

CWT CU NRT PU IWT

Mean 19.0801 0.2322 449.4143 0.4649 167.8480

Maximum 186.3973 0.8541 1,027.3580 0.9509 356.9148

Minimum 0.0031 0.0007 20.6056 0.0119 2.1585

SD 28.8380 0.2129 240.3182 0.2892 94.7545

Fig. 5 MFANN model for

prediction of the performance

measures

Neural Comput & Applic (2013) 23:2481–2491 2487

123



of CWT, NRT, and IWT. This is because of the non-

linear characteristics of CWT, NRT, and IWT.

6. Since there is no training phase in GRNN, the

GRNN-based model produces results much faster

than MFANN-based and SVR-based prediction

models.

7. The MFANN-based prediction model yields the

lowest SEE for prediction of PU, where the SEE

changes from 0.0125 to 0.0143.

8. The MFANN-based prediction model yields the

highest SEE for prediction of NRT, where the SEE

changes from 14.2463 to 22.3406.

Table 2 R and SEE values of the MFANN, GRNN, MLR, SVR-L, and SVR-RBF models by means of tenfold cross-validation

Performance measures R SEE

ANN GRNN MLR SVR-L SVR-RBF ANN GRNN MLR SVR-L SVR-RBF

CWT 0.9956 0.9009 0.7719 0.7802 0.9926 2.5401 12.2491 17.7719 19.4299 3.5152

CU 0.9992 0.9888 0.8915 0.9911 0.9864 0.0088 0.0314 0.0948 0.0288 0.0573

NRT 0.9955 0.9927 0.7689 0.7712 0.9893 22.3406 28.0563 151.3559 153.5735 35.1874

PU 0.9993 0.9988 0.9568 0.9566 0.9883 0.0106 0.0143 0.0834 0.085 0.0566

IWT 0.9737 0.9554 0.8225 0.8251 0.9572 20.7994 27.6846 53.1487 53.6145 27.4746

Table 3 R and SEE values of the MFANN, GRNN, MLR, SVR-L and SVR-RBF models by means of 20-fold cross-validation

Performance measures R SEE

ANN GRNN MLR SVR-L SVR-RBF ANN GRNN MLR SVR-L SVR-RBF

CWT 0.9961 0.9107 0.7449 0.7794 0.9925 2.3610 11.3501 17.4882 20.9333 3.5404

CU 0.9992 0.9924 0.8869 0.9926 0.987 0.0081 0.0243 0.0941 0.0261 0.0571

NRT 0.9964 0.9934 0.76 0.7688 0.9899 19.9550 26.4159 151.9981 155.632 34.2684

PU 0.9994 0.9988 0.9548 0.9566 0.9883 0.0100 0.0134 0.0827 0.0851 0.0566

IWT 0.9757 0.958 0.8106 82.76 0.9609 19.5336 25.3917 53.4062 53.1712 26.234

Table 4 R and SEE values of the MFANN, GRNN, MLR, SVR-L and SVR-RBF models by means of 30-fold cross-validation

Performance measures R SEE

ANN GRNN MLR SVR-L SVR-RBF ANN GRNN MLR SVR-L SVR-RBF

CWT 0.9973 0.9191 0.7556 0.7781 0.9925 1.9756 10.4803 17.2198 20.9609 3.5278

CU 0.9994 0.9938 0.8827 0.9931 0.9866 0.0074 0.0223 0.094 0.0252 0.0572

NRT 0.9966 0.9933 0.7578 0.7685 0.9895 19.2222 25.9292 150.9108 155.6577 34.7925

PU 0.9994 0.9988 0.9493 0.9567 0.9884 0.0092 0.013 0.0831 0.0849 0.0566

IWT 0.9792 0.957 0.7959 0.8279 0.96 17.7565 24.4516 52.6166 53.1414 26.5457

Table 5 R and SEE values of the MFANN, GRNN, MLR, SVR-L and SVR-RBF models by means of 40-fold cross-validation

Performance measures R SEE

ANN GRNN MLR SVR-L SVR-RBF ANN GRNN MLR SVR-L SVR-RBF

CWT 0.9975 0.9264 0.7074 0.779 0.992 1.7644 9.7633 17.0384 20.9565 3.659

CU 0.9994 0.9927 0.8713 0.8977 0.9869 0.0068 0.0236 0.0939 0.0941 0.0572

NRT 0.9969 0.9923 0.7462 0.7692 0.9896 18.3303 26.5084 150.6976 155.4807 34.556

PU 0.9995 0.9988 0.9515 0.9566 0.9884 0.0090 0.0132 0.0812 0.0851 0.0565

IWT 0.9811 0.9531 0.7977 0.8279 0.9611 16.1882 23.3667 52.8934 53.1395 26.2092

2488 Neural Comput & Applic (2013) 23:2481–2491

123



9. MLR and SVR-L models show similar performance

for prediction.

10. The R values for prediction of CWT, CU, NRT, PU,

and IWT are close to 1 for all folds.

11. The training times for MFANN-based and SVR-

based models are given in Tables 10, 11, and 12. The

training times for MFANN-based models are much

lower than that of SVR-based models.

12. The training phase for SVR-RBF model consumes

the longest time to make the predictions compared

against the ones obtained by other models. This is

because of the usage of the Gridsearch algorithm in

the SVR-RBF model to compute the optimum values

of the related parameters.

13. The execution times for the SVR-RBF and SVR-L

prediction models change from 5 to 6 s, whereas the

Table 6 R and SEE values of the MFANN, GRNN, MLR, SVR-L and SVR-RBF models by means of 50-fold cross-validation

Performance measures R SEE

ANN GRNN MLR SVR-L SVR-RBF ANN GRNN MLR SVR-L SVR-RBF

CWT 0.9973 0.9234 0.68 0.7788 0.9924 1.5529 9.3122 17.131 20.9541 3.5811

CU 0.9995 0.9922 0.8615 0.8976 0.9869 0.0064 0.0225 0.0931 0.0942 0.0573

NRT 0.9974 0.9923 0.7191 0.7688 0.9896 16.6480 26.3149 150.6653 155.5459 34.7366

PU 0.9995 0.9987 0.9429 0.9571 0.9885 0.0083 0.0128 0.0822 0.0852 0.0564

IWT 0.9836 0.9531 0.7929 0.8279 0.9609 14.5471 23.4087 51.7876 53.1319 26.249

Table 7 R and SEE values of the MFANN, GRNN, MLR, SVR-L and SVR-RBF models by means of 60-fold cross-validation

Performance measures R SEE

ANN GRNN MLR SVR-L SVR-RBF ANN GRNN MLR SVR-L SVR-RBF

CWT 0.9995 0.9264 0.6057 0.7791 0.9927 1.4062 9.4494 16.313 20.9487 3.4927

CU 0.9995 0.9934 0.8745 0.8976 0.987 0.0061 0.0213 0.0936 0.0941 0.0573

NRT 0.9974 0.9929 0.6925 0.7686 0.99 16.3740 25.3646 148.9668 155.6017 34.0167

PU 0.9995 0.9986 0.9406 0.9571 0.9885 0.0076 0.0127 0.0814 0.0852 0.0565

IWT 0.9851 0.9539 0.7769 0.8281 0.9616 13.6680 22.9766 52.0667 53.1063 26.0344

Table 8 R and SEE values of the MFANN, GRNN, MLR, SVR-L and SVR-RBF models by means of 70-fold cross-validation

Performance measures R SEE

ANN GRNN MLR SVR-L SVR-RBF ANN GRNN MLR SVR-L SVR-RBF

CWT 0.9981 0.9327 0.6057 0.7788 0.9921 1.3308 8.4841 16.313 20.9572 3.5788

CU 0.9995 0.9931 0.8214 0.8975 0.987 0.0057 0.0212 0.0924 0.0942 0.0571

NRT 0.9979 0.9918 0.7137 0.7693 0.99 14.8896 25.5296 149.8528 155.4193 33.9499

PU 0.9995 0.9982 0.9411 0.957 0.9885 0.0075 0.0125 0.0806 0.0853 0.0566

IWT 0.9893 0.9401 0.7298 0.8281 0.9619 12.5396 24.2335 51.7245 53.1109 25.9861

Table 9 R and SEE values of the MFANN, GRNN, MLR, SVR-L and SVR-RBF models by means of 80-fold cross-validation

Performance measures R SEE

ANN GRNN MLR SVR-L SVR-RBF ANN GRNN MLR SVR-L SVR-RBF

CWT 0.9980 0.937 0.6198 0.7791 0.992 1.1782 8.1584 16.3505 20.9464 3.5854

CU 0.9996 0.9845 0.8578 0.9938 0.9868 0.0054 0.0213 0.091 0.0238 0.0573

NRT 0.9979 0.9915 0.6367 0.7678 0.9894 14.2463 24.5993 147.0421 154.4348 34.8452

PU 0.9994 0.9986 0.9103 0.894 0.9885 0.0072 0.0127 0.0811 0.0956 0.0565

IWT 0.9867 0.9357 0.757 0.8278 0.9618 11.9345 22.8651 51.0856 53.1457 25.9849

Neural Comput & Applic (2013) 23:2481–2491 2489

123



execution times for MFANN, GRNN, and MLR

models are negligible (close to zero).

14. The global minima has been reached for all MFANN

models.

7 Conclusion

This paper proposes to use MFANN’s to predict the per-

formance measures of a message-passing multiprocessor

architecture. The basic idea is to collect a small number of

performance measures by means of a statistical simulation

and predict the performance of the system for a large set of

input parameters based on these. OPNET Modeler is used

to statistically simulate the message-passing SOME-Bus

architecture. The obtained dataset contains five perfor-

mance measures (i.e., NRT, CWT, PU, CU, and IWT) of

the architecture. MFANN models with different number of

folds have been developed to predict these performance

measures. R and SEE values of the developed models have

been calculated. The MFANN model gives the lowest SEE

for the prediction of PU and the highest SEE for the pre-

diction of the NRT. It is shown that MFANN models show

better performance than GRNN-based, SVR-based, and

MLR-based models for predicting the performance

measures.

Table 10 Training times for

the MFANN models for

different number of folds

Fold no. Training times (s)

CWT CU NRT PU IWT

10 1.26 1.1700 1.1800 1.1500 1.2000

20 1.14 1.3200 1.1600 1.3500 1.1900

30 1.28 1.1700 1.1700 1.1700 1.2000

40 1.15 1.1800 1.3600 1.1600 1.2000

50 1.17 1.3400 1.2000 1.1500 1.2000

60 1.15 1.17 1.35 1.18 1.18

70 1.16 1.32 1.37 1.2 1.4

80 1.17 1.41 1.38 1.39 1.17

Table 11 Training times for

the SVR-L models for different

number of folds

Fold no. Training times (s)

CWT CU NRT PU IWT

10 1,723.46 73.95 201.17 96.53 175.22

20 1,579.7 75.74 202.33 98.09 176.8

30 1,607.4 75.81 204.11 98.42 176.69

40 1,642.06 76.13 203.56 97.97 176.31

50 1,692.74 75.5 203.25 98.08 176.47

60 1,572.32 75.67 203.13 98.53 176.84

70 1,658.4 75.88 203.77 98.8 175.58

80 1,760.57 75.78 203.2 98.75 176.86

Table 12 Training times for

the SVR-RBF models for

different number of folds

Fold no. Training times (s)

CWT CU NRT PU IWT

10 3,012.15 317.77 317.03 386.12 787.800

20 3,012.48 317.11 315.66 386.43 786.550

30 3,012.48 317.98 315.23 386.62 785.880

40 3,012.59 318.73 315.27 386.52 785.750

50 3,012.61 318.64 315.94 386.75 786.480

60 3,012.71 319.37 315.44 386.8 790.340

70 3,013.78 319.87 316.95 387.97 788.560

80 3,017.78 319.98 315.94 388.72 784.580

2490 Neural Comput & Applic (2013) 23:2481–2491

123



Future research can be performed in a number of areas.

The first area would be expanding the number of input

parameters in the dataset. The second area would be feature

extraction on input variables. In this case, the critical

attributes that best predict performance measures can be

selected from a candidate set of attributes through feature

selection algorithms combined with ANN’s.

Acknowledgments We would like to thank the OPNET Technol-

ogies, Inc. for letting us use the OPNET Modeler under the University

Program and to Cukurova University Scientific Research Projects

Center for supporting this work (Project no: MMF2011D8). We

would also like to thank Dr. Constantine Katsinis for letting us

include the material about the SOME-Bus architecture in this paper.

References

1. Zhou X, Lu K, Wang X, Li X (2012) Exploiting parallelism in

deterministic shared memory multiprocessing. J Parallel Distrib

Comput 72:716–727

2. Culler D, Singh JP, Gupta A (2009) Parallel computer architec-

ture: a hardware/software approach, 4th edn. Morgan Kaufmann,

New York

3. Chow ALH, Golubchik L, Khuller S, Yaoc Y (2012) Performance

tradeoffs in structured peer to peer streaming. J Parallel Distrib

Comput 72:323–337

4. Chan F, Cao J, Sun Y (2003) High-level abstractions for mes-

sage-passing parallel programming. Parallel Comput

29:1589–1621

5. Eeckhout L, Sampson J, Calder B (2005) Exploiting program

microarchitecture independent characteristics and phase behavior

for reduced benchmark suite simulation. In: Proceedings of the

IEEE international symposium on workload characterization.

Austin, TX, 6–8 October 2005, pp 2–12

6. Akay MF, Katsinis C (2008) Performance improvement of par-

allel programs on a broadcast-based distributed shared memory

multiprocessor by simulation. Simul Model Pract Theory

16:338–352

7. Akay MF, Abasıkeleş I (2010) Predicting the performance

measures of an optical distributed shared memory multiprocessor

by using support vector regression. Expert Syst Appl 37:

6293–6630

8. Genbrugge D, Eeckhout L (2007) Statistical simulation of chip

multiprocessors running multi-program workloads. In: Proceed-

ings of the 25th international conference on computer design,

Lake Tahoe, CA, 7–10 October 2007, pp 464–471

9. Zayid EIM, Akay MF (2012) Computing and estimating the

performance measures of a message passing multiprocessor

architecture by using artificial neural networks. In: Proceedings

of the 2nd international conference on computation for science

and technology, ICCST-2, Niğde, Turkey, 9–11 July 2012,

pp 76–77

10. Akay MF, Zayid EIM (2011) Predicting the performance mea-

sures of a message passing multiprocessor architecture by using

artificial neural networks. In: Proceedings of the 2nd international

symposium on computing in science and engineering, ISCSE-

2011, Kuşadası, Turkey, 1–4 June 2011, pp 53–58

11. OPNET Modeler Inc. (2012) OPNET University program.

http://www.opnet.com/university_program

12. Katsinis C (2001) Performance analysis of the simultaneous

optical multi-processor exchange bus. Parallel Comput 27:

1079–1115

13. Acacio ME, González J, Garcı́a JM, Duato J (2002) The use of

prediction for accelerating upgrade misses in cc-NUMA multi-

processors. In: Proceedings of the 11th international conference

on parallel architectures and compilation techniques. Virginia,

USA, p 155

14. Hesham E, Mostafa A (2005) Advanced computer architecture

and parallel processing. Wiley, Hoboken

15. Thiele L, Wandeler E, Chakraborty S (2005) Performance anal-

ysis of multiprocessor DSPs: a stream-oriented component

model. IEEE Signal Process Mag 22:38–46

16. Lemoff BE, Ali ME, Panatopoulos G, Flower GM, Madhavan B,

Levi AFJ, Dolfi DW (2004) MAUI: enabling fiber-to-the-pro-

cessor with parallel wavelength optical interconnects. J Light-

wave Technol 22:2043–2054

17. Pratas F, Trancoso P, Sousa L, Stamatakis A, Shi G, Kindratenko

V (2011) Fine-grain parallelism using multi-core, Cell/BE, and

GPU systems. Parallel Comput 38:365–390

18. Chen M-S, Yen H-W (2011) Applications of machine learning

approach on multi-queue message scheduling. Expert Syst Appl

38:3323–3335

19. Khashei M, Hamadani AZ, Bijari B (2012) A novel hybrid

classification model of artificial neural networks and multiple

linear regression models. Expert Syst Appl 39:2606–2620

20. Alpaydın E (2010) Introduction to machine learning, 2nd edn.

MIT press, London

21. Firat M, Gungor M (2009) Generalized regression neural net-

works and feed forward neural networks for prediction of scour

depth around bridge piers. Adv Eng Softw 40:731–737

22. Witten IH, Frank E (2005) Data mining: practical machine

learning tools and techniques. Morgan Kaufmann, San Francisco

23. Cherkassky V, Ma Y (2004) Comparison of loss functions for

linear regression. In: Proceedings of the IEEE international joint

conference on neural networks, pp 400–405

24. Cristianini N, Shawe-Taylor J (2000) An introduction to support

vector machines and other kernel-based learning methods.

Cambridge University Press, Cambridge

25. Vapnik VN (2000) The nature of statistical learning theory.

Springer, New York

26. Gunn SR (1998) Support vector machines for classification and

regression. Technical Report, Department of Electronics and

Computer Science, University of Southampton, Southampton

27. Schölkopf B, Smola AJ (2002) Learning with kernels: support

vector machines, regularization, optimization, and beyond. MIT

Press, Cambridge

Neural Comput & Applic (2013) 23:2481–2491 2491

123

http://www.opnet.com/university_program

	Predicting the performance measures of a message-passing multiprocessor architecture using artificial neural networks
	Abstract
	Introduction
	Overview of the simultaneous optical multiprocessor exchange bus (SOME-Bus)
	Message-passing protocol
	Overview of methods
	Multi-layer feed-forward artificial neural networks
	Generalized regression neural networks
	Support vector regression
	Linear support vector regression
	Nonlinear support vector regression

	Multiple linear regression

	Simulation and dataset generation
	Results and discussion
	Conclusion
	Acknowledgments
	References


