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Abstract In the present study, the Group method of data

handling (GMDH) network was utilized to predict the

scour depth below pipelines. GMDH network was devel-

oped using back propagation. Input parameters that were

considered as effective parameters on the scour depth

included those of sediment size, geometry of pipeline, and

approaching flow characteristics. Training and testing

performances of the GMDH networks have been carried

out using nondimensional data sets that were collected

from the literature. These data sets are related to the two

main situations of pipelines scour experiments namely

clear-water and live-bed conditions. The testing results of

performances were compared with the support vector

machines (SVM) and existing empirical equations. The

GMDH network indicated that using of back propagation

produced lower error of scour depth prediction than those

obtained using the SVM and empirical equations. Also, the

effects of many input parameters on the scour depth have

been investigated.

Keywords Pipeline � Scour depth � Live-bed and clear-

water condition � Group method of data handling

1 Introduction

Occasionally, pipelines are utilized to convey fluids such as

water, petroleum, and gas. These pipelines are fundamen-

tally imbedded in a cross-section of river. The pipelines

may deal with partial erosion in its surrounding due to

approaching current-induced oscillation by wake-vortex

shedding when flood take places (Fig. 1). Hence, predict-

ing the scour depth around pipelines is significant problem

for hydraulic engineering [13, 15, 40]. Several investiga-

tors have been carried out experimental and numerical

studies for prediction of scour below pipelines (e.g., [8, 10–

12, 26, 27, 33, 34, 36–38]). Numerous empirical equations

were obtained through previous investigations. Substantial

fault of these approaches is that the traditional methods

have not accurate enough to predict scour phenomena.

Hence, artificial intelligence approaches were used

widely for evaluation of hydraulic and hydrological prob-

lems. For instance, scouring around hydraulic structures

have been predicted by artificial neural networks (ANNs),

machine learning approach, adaptive neuro-fuzzy inference

systems (ANFIS), genetic programming (GP), and linear

genetic programming (LGP) (e.g., [2–7, 18, 20–25, 32,

54]). Recently, the GMDH networks with their combina-

tions are used to predict scour depth around piers and

abutments bridge [43, 45, 46]). Results of the performances

indicated that GMDH networks can be predicted well

complexity of scour process than that of empirical equa-

tions. Also, GMDH networks were utilized to solve dif-

ferent problems in engineering fields (e.g., [1, 31, 39, 47,

50, 52, 56]). The main objective of the paper is that effi-

ciency of the GMDH network is investigated to predict the

pipeline scour depth. Also, the results of performances

would be compared with those obtained using the SVM

and empirical equations.
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2 Analysis of affecting parameters on scour depth

below pipeline

Scour phenomenon fundamentally takes place in two main

flow conditions, that is, clear-water and live-bed (e.g., [30,

41, 51]). In this way, mechanism of scour process in clear-

water is very distinctive from that of live-bed condition. Dey

and Singh [15] (125 data sets), Moncada-M and Aguirre-Pe

[40] (90 data sets) have carried out experiments in clear-

water and live-bed conditions, respectively. From these

experiments, they suggested effective parameters on the

scour depth below pipelines in form of following function:

ds ¼ f ðU; y; q; qs; l; S0;B; d50;D; e; gÞ ð1Þ

where ds, U, y, q, qs, l, S0, B,d50, D, e, g are scour depth,

mean flow velocity, normal flow depth, density of water,

density of sediment, dynamic viscosity of water, the slope

of bed channel, channel width, diameter of bed material,

diameter of the pipe, gap between the pipe and the origi-

nally undisturbed bed, and the acceleration due to gravity,

respectively.

Using Buckingham’s theorem, eight independent non-

dimensional parameters have been resulted as follows:

ds=D ¼ f ðFr;Re; s�; y=D;D=d50; e=D; S0; y=BÞ ð2Þ

in which Fr, Re, and s* are the Froude number, the

Reynolds number, and nondimensional Shields parameter

due to sediment transport, respectively.

Fr ¼ U=
ffiffiffiffiffiffi

g:y
p ð3Þ

Re ¼ UD=t ð4Þ

s� ¼ u2
�=g:ðqs=q� 1Þ:d50 ð5Þ

Moncada-M and Aguirre-Pe [40] concluded that

influences of the y/B on the scour depth can be neglected

for very wide channels. Also, the slope of bed channel, S0,

was considered as a constant parameter through their

experiments. Therefore, it has not any effect on the scour

depth. Dey and Singh [15], Moncada-M and Aguirre-Pe

[40] have investigated effects of Reynolds number ðuD=tÞ
on the pipeline scour depth. From their experiments, it was

found that the Reynolds number is between 8 9 103 and

30 9 103, and it does not exert any conspicuous influence

on the scour depth [44]. Similar experimental results were

obtained for pier scour depth by [14, 16, 17, 42].

In addition, initial gap between pipe and undisturbed

erodible bed, e, has been presented in two status [15, 40].

The e parameter was reported as zero in Dey and Singh

[15] experiments. Also, e value was varied between

0 and 10 mm within Moncada-M and Aguirre-Pe’s

experiments.

Based on mentioned discussions, two following func-

tions were presented for both clear-water and live-bed

conditions:For clear-water conditions [15]

ds=D ¼ f ðFr; s�; y=D;D=d50Þ ð6Þ

For live-bed conditions [40]

ds=D ¼ f ðe=D;Fr; s�; y=D;D=d50Þ ð7Þ

Furthermore, discussion of effective parameters on the

pipeline scour depth was detailed in the literature [44]. The

ranges of data sets are presented in Table 1. The two data

sets related to the live-bed and clear-water conditions were

used for modeling of the pipeline scour depth. For the two

main flow conditions, about 75 % of data sets were

conditions, selected randomly for training, whereas the

remaining 25 % were used for testing stage.

Also, different empirical equations were obtained in

both clear-water and live-bed conditions by several inves-

tigations. In this way, the following empirical equations

were used to predict the pipeline scour depth:

ds=D ¼ 4:706ðU0=UCÞ0:89ðU0=gyÞ1:48 þ 0:06 ð8Þ

Table 1 Ranges of used data sets for clear-water and live-bed conditions

Parameters y (Cm) d50 (mm) U (Cm/s) D (Cm) e (m) ds (Cm)

Clear-water condition

Ranges 6–28 0.48–3 22.8–64.5 3–7 0 1.8–11.3

Live-bed conditions

Ranges 3.8–15.62 0.6–7.6 22–74.3 2.34–4.8 0–0.025

Fig. 1 Scour process below the pipeline [15]

630 Neural Comput & Applic (2014) 24:629–635

123



ds=D ¼ 0:9 tanhð1:4FrÞ þ 0:55 ð9Þ
ds=D ¼ 2 sec hð1:7e=DÞ ð10Þ

Equation (8) was drawn from the Ibrahim and Nalluri [27]

experiments for clear-water conditions. In addition, Eqs.

(9) and (10) were proposed by Moncada-M and Aguirre-Pe

[40] for clear-water experiments.

3 Group method of data handling (GMDH) model

GMDH is a learning machine based on the principle of

heuristic self-organizing, proposed by Ivakhnenko in the

1960s. It is an evolutionary computation technique, which

has a series of operations such as seeding, rearing, cross-

breeding, and selection and rejection of seeds correspond to

determination of the input variables, structure and param-

eters of model, and selection of model by principle of

termination [1, 29].

In fact, the GMDH network is a very flexible algorithm,

and it can be hybridized by using evolutionary and iterative

algorithms such as genetic algorithm (GA) [1, 39], GP

[28, 43], particle swarm optimization (PSO) [48], and back

propagations [43, 45, 50, 52]. Previous researches estab-

lished that hybridizations were successful in finding solu-

tions of problems in different fields of engineering.

By means of GMDH algorithm, a model can be repre-

sented as set of neurons in which different pairs of them in

each layer are connected through quadratic polynomial and

thus produce new neurons in the next layer. Such repre-

sentation can be used in modeling to map inputs to outputs.

The formal dentition of system identification problem is to

find a function f̂ that can be approximately used instead of

actual function f, in order to predict the output ŷ for a given

input vector X = (x1, x2, x3,…,xn) as close as possible to its

actual output y. Therefore, given n observation of multi-

input–single-output data pairs so that

yi ¼ f ðxi1; xi2; xi3; . . .; xinÞ i ¼ 1; 2; . . .;Mð Þ ð11Þ

It is now possible to train a GMDH network to predict

the output values ŷi for any given input vector X = (xi1, xi2,

xi3,…,xn), that is:

ŷi ¼ f̂ ðxi1; xi2; xi3; . . .; xinÞ i ¼ 1; 2; . . .Mð Þ ð12Þ

In order to solve this problem, GMDH builds the general

relationship between output and input variables in the form

of mathematical description, which is also called reference.

The problem is now to determine a GMDH network so

that the square of difference between the actual output and

the predicted one is minimized, that is:

X

M

i¼1

f̂ xi1; xi2; xi3; . . .; xinð Þ � yi

� �2 ! min: ð13Þ

General connection between inputs and output variables

can be expressed by a complicated discrete form of the

Volterra function a series in the form of:

y ¼ a0 þ
X

n

i¼1

aixiþ
X

n

i¼1

X

n

j¼1

aijxixj þ
X

n

i¼1

X

n

j¼1

X

n

k¼1

aijkxixjxk

þ . . .;

ð14Þ

which is known as the Kolmogorov–Gabor polynomial [1,

19, 29, 35, 49].

The polynomial order of PDs is the same in each layer of the

network. In this scenario, the order of the polynomial of each

neuron (PN) is maintained the same across the entire network.

For example, assume that the polynomials of the PNs located at

the first layer are those of the second order (quadratic):

ŷ ¼ Gðxi; xjÞ ¼ a0 þ a1xi þ a2xj þ a3xixj þ a4x2
i þ a5x2

j

ð15Þ

Here, all polynomials of the neurons of each layer of the

network are the same, and the design of the network is

based on the same procedure.

The weighting coefficients in Eq. (15) are calculated

using regression techniques [1, 19] so that the difference

between actual output, y, and the calculated one, ŷ, for each

pair of xi, xj as input variables is minimized. In this way,

the weighting coefficients of quadratic function Gi are

obtained to optimally fit the output in the whole set of

input–output data pair, that is, as follows:

E ¼
PM

i¼1 yi � GiðÞð Þ2

M
! min: ð16Þ

3.1 Application of BP algorithm in the topology design

of GMDH network

In this section, the GMDH network was improved using

back propagation algorithm. This method included two

main steps. The first, the weighting coefficients of qua-

dratic polynomial were determined using least square

method from input layer to output layer in form of forward

path. The second, weighting coefficients were updated

using back propagation algorithm in a backward path.

Again, this mechanism could be continued until the error of

training network (E) was minimized. The other details of

training stages were presented in the literatures [43, 50].

Furthermore, from the GMDH-BP network, corre-

sponding polynomials for the live-bed, and clear-water

conditions are as follows:

For live-bed condition

ðds=DÞ11 ¼ 0:757� 0:617e=Dþ 0:0225D=d50

þ 0:00515e=D:D=d50 � 0:3506ðe=DÞ2

� 0:00032ðD=d50Þ2 ð17Þ
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ðds=DÞ12 ¼ 1:83� 0:0036D=d50 � 0:456D=y

� 0:00575D=d50:D=y� 0:00016ðD=d50Þ2

þ 0:015ðD=yÞ2 ð18Þ

ðds=DÞ13 ¼ 1:287� 0:352D=yþ 2:1627s� � 0:2676D=y:s�

þ 0:0165ðD=yÞ2 � 4:049s�2 ð19Þ

ðds=DÞ18 ¼ 0:575� 1:149e=Dþ 3:667s� þ 0:545e=D:s�2

þ 0:3084ðe=DÞ2 � 5:237s�2 ð20Þ

ðds=DÞ22 ¼ �0:362þ 0:9441ðds=DÞ11 þ 0:7054ðds=DÞ13
þ 0:3604ðds=DÞ11:ðds=DÞ13 � 0:3981ððds=DÞ11Þ

2

� 0:20835ððds=DÞ13Þ
2 ð21Þ

ðds=DÞ25 ¼ �0:119� 0:0266ðds=DÞ12 þ 1:0267ðds=DÞ18
� 0:636ðds=DÞ18:ðds=DÞ12 þ 0:64ððds=DÞ12Þ

2

þ 0:115ððds=DÞ18Þ
2 ð22Þ

ðds=DÞ31 ¼ �0:00057þ 3:098ðds=DÞ22 � 2:0138ðds=DÞ25
� 8:665ðds=DÞ25:ðds=DÞ22 þ 2:1ððds=DÞ22Þ

2

þ 6:459ððds=DÞ25Þ
2 ð23Þ

and for clear-water conditions:

ðds=DÞ11 ¼ 0:246� 0:00026D=d50 þ 0:464y=D

þ 0:00081y=D:D=d50 � 3:64� 10�5ðD=d50Þ2

� 0:053ðy=DÞ2 ð24Þ

ðds=DÞ13 ¼ �1:08þ 67:78s� þ 4:11Fr ��60:966s�:Fr

þ 584:55ðs�Þ2 � 8:485ðFrÞ2 ð25Þ

ðds=DÞ14 ¼ 5:94� 0:062D=d50 � 269:746s�

þ 2:255D=d50:s
� þ 2:05� 10�5ðD=d50Þ2

þ 3565:247s�2 ð26Þ

ðds=DÞ21 ¼ 2:15� 0:977ðds=DÞ11 � 2:295ðds=DÞ13
þ 1:05ðds=DÞ11:ðds=DÞ13 þ 0:2149ððds=DÞ11Þ

2

þ 0:785ððds=DÞ13Þ
2 ð27Þ

ðds=DÞ22 ¼ 6:24� 4:095ðds=DÞ12 � 6:684ðds=DÞ14
þ 6:166ðds=DÞ14:ðds=DÞ12 � 0:856ððds=DÞ12Þ

2

þ 0:1977ððds=DÞ14Þ
2 ð28Þ

ðds=DÞ31 ¼ 0:2þ 0:83ðds=DÞ21 � 0:253ðds=DÞ22
þ 1:113ðds=DÞ21:ðds=DÞ22 � 0:679ððds=DÞ21Þ

2

� 0:22ððds=DÞ22Þ
2 ð29Þ

The superscript and subscript of each parameter present the

number of pertaining layer and neuron, respectively.

4 Support vector machines (SVM)

Support vector machines, like ANNs, are a kind of data-

mining approach. SVM have been successfully applied to a

number of applications ranging from particle identification,

facial identification, and text categorization to engine

knock detection, bioinformatics, and database marketing.

The classification problem is used to investigate the basic

concepts behind SVM and to examine their strengths and

weaknesses from a data-mining perspective [9]. Regression

algorithms of SVM are achieved by some modification to

the classification algorithms of SVM. To develop SVM for

each process, two main parameters of SVM namely regu-

larization parameter (C) and the type of kernel (polynomial

or Gaussian radial basis function) should be determined. In

this study, the radial basis function kernel was used to

minimize training error for both scour data set conditions.

The regularization parameter, C, and the size of error in

sensitive zone parameters control the complexity of pre-

diction. The other details of SVM algorithm are presented

in the literatures [53, 55].

5 Results and discussion

The statistical results of GMDH networks for both live-bed

and clear-water conditions were presented in this section.

In addition, the performance results were compared with

those obtained using the SVM model and empirical equa-

tions. Correlation coefficient (R), root mean square error

(RMSE), and mean absolute percentage of error (MAPE)

are commonly used indicator of errors prediction in testing

stage [2–7, 22, 23, 43].

For clear-water condition, testing results of for the

GMDH-BP, and the SVM model are given in Table 2. It

was found that GMDH-BP predicted the scour depth with

lower error (RMSE = 0.077 and MAPE = 0.87) and

higher accuracy (R = 0.96) than those resulted using the

SVM model (R = 0.93, RMSE = 0.23, and MAPE = 0.6).

Also, statistical results of empirical equation indicated that

Eq. (8) produced with remarkably higher error of scour

prediction (RMSE = 0.9 and MAPE = 1.96) and lower

coefficient of correlation (R = 0.22), compared with the

GMDH-BP and SVM model (Fig. 2).

For live-bed conditions, the performance results of

proposed artificial intelligence approaches indicated that

GMDH-BP predicted the scour depth with lower error

(RMSE = 0.161 and MAPE = 0.81) and higher accuracy

(R = 0.97) than those resulted using the SVM model

(R = 0.95, RMSE = 0.14, and MAPE = 0.63). From

Table 2, it can be said that Eq. (9) produced with relatively

higher error (RMSE = 0.46 and MAPE = 1.57) and lower
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coefficient of correlation (R = 0.31), compared with the

Eq. (10).

In fact, Eqs. (9) and (10) included those of the Fr and

e/D which are limiting factors for pipeline scour prediction.

Also, Eq. (10) predicted the scour depth more accurately

than Eqs. (8) and (9). For live-bed and clear-water flow

conditions, scatter plot between predicted and observed

scour depth values for testing stages have been illustrated

in Figs. (3, 4), respectively. Furthermore, the GMDH-BP

provided lower error of scour prediction (RMSE = 0.073

and MAPE = 0.197) for clear-water condition than that of

live-bed condition (RMSE = 0.161 and MAPE = 0.81).

To clarify the new contributions of this study, efficiency

of GMDH-BP was carried out to investigate the effects of

ds/D on y/D for different d50 values (0.48, 0.81, 1.86, 2.54,

and 3 mm). For clear-water condition, the contribution

results indicated that GMDH-BP predicted the scour depth

below pipeline in 0.48 mm of d50 with the lower error

(MAPE = 0.6) than the other performances. From Table 2,

it can be noted that the GMDH-BP provided more accurate

prediction of scour depth in fine sediment size than that of

coarse sediment sizes.

For live-bed conditions, robustness of the GMDH-BP

was performed to investigate effects of e/D on the ds/D. In

this way, variations of ds/D versus e/D for different ranges

of Fr values were shown in Fig. 4. The statistical results

indicated that GMDH-BP predicted the scour depth in

0.2–0.4 range of Fr with lower error (MAPE = 1.9) than

those of Fr ranges (Table 3).

6 Conclusions

In this study, the scour depth below pipeline in clear-water

and live-bed conditions predicted by using the GMDH-BP,

Table 2 Statistical results of performances for both flow conditions

Flow conditions R RMSE MAPE

Clear-water

GMDH-BP 0.967 0.073 0.197

SVM 0.93 0.23 0.6

Eq. (8) 0.22 0.9 1.96

Live-bed

GMDH-BP 0.97 0.161 0.81

SVM 0.95 0.14 0.63

Eq. (9) 0.31 0.46 1.57

Eq. (10) 0.5 0.45 1.27

Fig. 2 Scatter plot of observed and predicted scour depth using the

GMDH-BP, SVM models, and empirical equation for live-bed

condition

Fig. 3 Scatter plot of observed and predicted scour depth using the

GMDH-BP, SVM model, and empirical equations for clear-water

condition

Fig. 4 Modeling of pipe position on scour depth for live-bed

condition
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SVM model, and empirical equations. Several effective

parameters on the scour depth were determined using

dimensional analysis. Two functions were defined to

develop GMDH network for clear-water and live-bed

conditions. Weighting coefficients of quadratic polynomi-

als of the GMDH network were trained using the back

propagation algorithm. Performance results indicated that

GMDH network predicted the scour depth with relatively

lower error and high accuracy (R = 0.967, RMSE =

0.073, and MAPE = 0.197) for both clear-water and live-

bed conditions, compare to the SVM model. For clear-

water condition, robustness of proposed GMDH-BP

showed that it can be resulted more accurate scour pre-

diction (MAPE = 0.6) in fine sediment size than that of

coarse sediment sizes. Furthermore, the GMDH-BP pre-

dicted variations of ds/D versus e/D for 0.2–0.4 range of Fr

with relatively lower error (MAPE = 1.9), compared to the

other ranges of Fr. In general, application of the GMDH

network to investigate the pipeline scour depth was proven

that this algorithm can be used well for predicting the

complexity and physical behavior of scour process below

pipeline.
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