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Abstract For many applications in wireless sensor

network (WSN), the gathering of the holistic sensor mea-

surements is difficult due to stringent constraint on network

resources, frequent link, indeterminate variations in sensor

readings, and node failures. As such, sensory data extrac-

tion and prediction technique emerge to exploit the spatio-

temporal correlation of measurements and represent

samples of the true state of the monitoring area at a min-

imal communication cost. In this paper, we present

DLRDG strategy, a distributed linear regression-based data

gathering framework in clustered WSNs. The framework

can realize the approximate representation of original

sensory data by less than a prespecified threshold while

significantly reducing the communication energy require-

ments. Cluster-head (CH) nodes in WSN maintain linear

regression model and use historical sensory data to perform

estimation of the actual monitoring measurements. Rather

than transmitting original measurements to sink node, CH

nodes communicate constraints on the model parameters.

Relying on the linear regression model, we improved the

CH node function of representative EADEEG (an energy-

aware data gathering protocol for WSNs) protocol for

estimating the energy consumption of the proposed strat-

egy, under specific settings. The theoretical analysis and

experimental results show that the proposed framework can

implement sensory data prediction and extracting with

tolerable error bound. Furthermore, the designed frame-

work can achieve more energy savings than other schemes

and maintain the satisfactory fault identification rate on

case of occurrence of the mutation sensor readings.

Keywords Wireless sensor network �
Data gathering strategy � Distributed linear regression �
Energy efficient

1 Introduction

In recent dramatic development in low-power embedded

wireless communication devices, digital electronic tech-

nology has made possible scenarios in which thousands of

sensor nodes are seamlessly embedded in physical world and

use self-organization method to form a wireless sensor net-

work (WSN). Their wide range of applications is based on

the possible use of various sensor types (e.g., thermal, visual,

acoustic, seismic, magnetic, radar, vibrancy, etc.) in order to

monitor a wide variety of environment conditions (e.g.,

temperature, humidity, illumination, pressure, object pres-

ence and movement, noise levels, etc.). However, one of the

most severe limitations of sensor devices is their limited

energy supply and one of the most crucial goals in designing

efficient monitoring systems in WSN is minimizing energy

consumption in the network. Energy consumption depends

on many factors, such as deployed geography location,

system configuration, device property, which may differ for

different application in WSN. Because of the complex nature

of a WSN, energy-efficient protocols, algorithm designed for

all layers of the networking infrastructure are critically

important for energy conservation besides impact on actual

circumstance. In the Rivest, Shamir, and Adleman (RSA)

encryption experiment in Ref. [1], for the same volume of
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data, the energy consumption of computation with node

microprocessor is less than 1 % of that for transmission with

node radio module. It is worth noting that there have been

evidences showing that energy consumption due to compu-

tation is insignificant, compared with the communication

cost [2]. In-network data aggregation (e.g., computing

average of some values) is attractive since the amount of data

can be reduced. Unfortunately, data aggregation can lose

much of the feature structure in the sensory data, providing

only coarse statistics information. It is noteworthy that the

data prediction technology is the other one energy-efficient

approach, which builds an extraction model of monitoring

data to perform data evolution prediction. It is mainly aimed

at reducing the energy consumption by the radio communi-

cation subsystem at intermediate nodes between the sources

and the sink. The strategy not only can extract much more

complete structure feature of the sensory data than most

aggregation schemes but also use less communication

energy than methods that gather all reading for every sensor

node. The existing data prediction models for WSN have

achieved the energy-efficient monitoring based on the

observation that the sensor nodes capable of local compu-

tation implement the possibility of model training and

updating in a distributed way. However, the integrated and

energy-efficient data gathering framework combined clus-

tering technology with prediction model which conjoins

fault-tolerant strategy was not proposed and discussed.

In this paper, we proposed and evaluated a distributed

linear regression-based hierarchical date gathering frame-

work in WSN, namely, the distributed linear regression-

based data gathering (DLRDG). DLRDG is a cluster-based

hierarchical structure and uses the concept of approximation

based on linear regression by less than a prespecified

threshold. The form process takes the spatio-temporal cor-

relation sufficiently into account when the sensed data from

the environment is the generally linear tendency. By for-

warding the coefficients of the basis regression model

between cluster-head (CH) nodes and sink, the data gather-

ing framework can represent the structure of the sensed data

while decreasing the passing volumes of monitoring data for

saving node energy. On the other hand, we discussed the

model update and fault-tolerant strategy when the mutation

of the sensed data occurred in the WSN monitoring process.

The primary contributions of the paper are summarized

as follows:

1. In cluster-based hierarchical WSN, we proposed a new

linear regression-based prediction approximation strat-

egy that exploits correlations both within the value of

periodicity as well as among values of quantities (e.g.,

pressure, temperature, and humidity).

2. We present a cluster-head nodes tree-based communi-

cation topologies that can effectively support the

transmit operation of the regression model parameters

in WSN.

3. We proposed a statistical hypothesis testing-based

fault-tolerant strategy for linear regression model when

the mutation of the sensed data occured. The reliability

of sensor node was identified by inter-comparison of

the matching degree between local data reading and

statistical characteristics.

4. We present an evaluation of DLRDG framework using

WSN deploy at gymnasium in miniature and NS2

simulator, demonstrating the accuracy of the linear

regression model and analyzing the energy consumption.

The rest of this paper is organized as follows: in Sect. 2,

we briefly review some closely related works. Section 3

presents WSN model and assumptions. The proposed data

gathering framework DLRDG is derived and discussed in

Sect. 4. The validity analysis and performance evaluation

of the DLRDG is presented in Sect. 5. Finally, the con-

clusions and future work directions are described in Sect. 6.

2 Related work

In recent years, WSN has gained increasing attention from

both the research community and actual users. Typically, a

sensor node in WSN is a tiny device that includes three

components: a sensing subsystem for data acquisition from the

physical environment, a processing subsystem for local data

storage and essential computing, and a wireless communica-

tion subsystem for data transmission [3]. Sensor nodes may be

constrained in a limited power battery and deployed in a

hostile or unpractical environment. Thus, in data-centric

WSN, energy consumption is one of the most important fac-

tors to be considered in designing data gathering protocol and

in-network data processing algorithms. It has been well tes-

tified that the data transmission is the most energy consuming

among all operations of a sensor device. Many approaches for

energy-efficient monitoring have been explored to reduce the

volume of in-network data transmission, such as data aggre-

gation. The reduction in data communication through aggre-

gation is attractive since extraction of holistic sensor

measurements can be unnecessarily requiring large amounts

of communication consumption that drains the constrained

energy of sensor devices. Reference [4] considered the prob-

lem of designing a distributed schedule for data aggregation

from networks to sink node with minimum time slot delay.

The algorithm is a nearly constant approximate strategy,

which significantly reduces the aggregation delay in multi-

hop WSN. Sensor nodes consume different energy in different

radio states (transmitting, receiving, listening, sleeping, and

being idle). So, a key challenging question in WSN is to

schedule nodes’ activities to reduce energy consumption.
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Efficient scheduling for data collection and aggregation has

been extensively studied recently for sensor network [5, 6].

Besides, the optimization techniques were introduced into

optimal data gathering in WSN. The goal of the research work

is to minimize the data gathering latency and at the same time

balance the energy consumption among the nodes, so as to

maximize the network lifetime [7–11]. In a cluster-based

network, however, each cluster covers a small number of

sensor nodes within a smaller local range of the network. This

makes it more feasible to locally apply distributed source-

coding technique within each cluster. Slepian–Wolf coding

technique can completely remove data redundancy with no

need for inter-nodes communication; therefore, distributed

data aggregation using Slepian–Wolf coding for reducing

possible correlation in the data generated between different

clusters was proposed [12]. Because of the strictly limited

sensor nodes energy, the use of mobile agent has been sug-

gested as an intrinsically distributed computing technology in

the field of data aggregation for WSN. The local data of an

sensor node can be combined with the data collected by an

mobile agent from other nodes in a way that depends on the

specific program code of the mobile agent so that the total data

volume can be reduced [13]. The more powerful mobile agent

is better suited to serve as a CH to perform more tasks [14]. It is

difficult that the all sensor data were accurately extracted and

gathered. Reference [15] proposed data-aggregation tech-

niques based on statistical information extraction that capture

the effects of aggregation over different scales. An accurate

estimation of the distribution parameters of sensory data using

the expectation–maximization algorithm was designed. Some

research teams proposed a data reduction algorithm for the

dissemination of historical measurements in constraint sensor

network environments. The techniques build on the observa-

tion that the values of the collected measurements exhibit

similar patterns over time, or that different measurements are

naturally correlated, as is the case between pressure and

humidity in weather monitoring applications [16]. So, the data

compression techniques lead to a reduction in the required

inter-node communication, which is the main power con-

sumer in WSNs [17].

Although the former algorithms conserve energy, they

can lose much of the original structure in the data, providing

only coarse statistics information. Furthermore, it is not

necessary that users continuously extract all original data

from the networks for analysis and decision-making. A

prediction-based energy-efficient framework for data col-

lection in clustered WSN was proposed. The practical

algorithm for data aggregation avoids the need for rampant

node-to-node propagation of aggregates, but rather it uses

faster and more efficient cluster-to-cluster propagation [18].

The dimensionality reduction algorithm can project the

monitoring data into a lower dimensionality representation

while significantly decreasing the communication

requirements [19–21]. In order to extract much more com-

plete information about the shape and structure of sensor data

than most aggregation schemes, the presentation model in

sensor node can recognize local correlation in the measure-

ments using kernel linear regression, where the support of a

kernel function determines the set of monitoring data that are

used to estimate basis function coefficient [22–24]. The

coefficients of these basis functions and locations of kernels

then provide a prediction for the behavior of the spatio-

temporally correlated data common in WSN. However, a

complete distributed linear regression-based hierarchical

data gathering framework with fault-tolerant strategy and

increment update scheme has never been proposed in detail.

In this paper, relying on improved EADEEG protocol similar

to LEACH (low-energy adaptive clustering hierarchy) [25],

the CH node function was enhanced by integrating the linear

regression model to minimize the communication cost. The

data gathering framework not only implemented the nodes

fault recognition by statistical hypothesis testing method

when the mutation of the sensed data occurred, but also

processed linear regression model update by relatively

straightforward increment operation.

3 Network model and assumptions

The network model of the DLRDG framework was assumed

that a set of N energy-constrained sensor nodes were ran-

domly deployed in M * M two-dimensional field. The fol-

lowing assumptions are made for the sensor network.

1. All sensor nodes are not mobile and unaware of their

location.

2. The immobile sink node is only and considered to be a

powerful node endowed with enhanced communica-

tion and computation capabilities and no energy

constraints.

3. Communication from each node follows an isotropic

propagation model.

4. Sensor nodes can adjust the transmitting power

according to the distance, namely, radio transmitting

power of nodes is controllable.

5. Sensor nodes can estimate the approximate distance by

received signal strength.

6. Sensor nodes are fitted with the same radio commu-

nication model to simplify theory analysis. The radio

channel is symmetric so that the energy required to

transmit m-bit message from node i to node j is

identical to the energy required to transmit m-bit

message from j to i.

7. Sink node received the messages from the CH nodes

using cluster-based hierarchical routing approach in

WSN similar to LEACH. A subset of nodes is selected

Neural Comput & Applic (2013) 23:1999–2013 2001
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CHs to facilitate communication functions. The multi-

hop communication between CHs is different from the

direct communication between CHs and sink like

LEACH.

8. The communication radius of sensor nodes is more

than a multiple of the cluster radius for implementing

the direct communication between CH nodes.

In-cluster member nodes collect the monitoring messages

and transmit the messages to their CH according to a rea-

sonable nodes sleep scheduling strategy so the CH can com-

pute the regression model coefficients using gathered history

measurements and transmit the result to the sink node. When

CH node received the monitoring data, it compared the error

between the prediction data and actual measurement. If the

error was paranormal, then CH node can activate fault-tolerant

model to judge regression whether to update or not.

4 The proposed DLRDG framework

The existence of the spatial and temporal correlations brings

significant potential advantages for the development and

implement of efficient communication protocols well suited

for the WSN paradigm. In this section, the data gathering

framework is presented to exploit the spatio-temporal cor-

relation characteristics of the clustered sensor network

based on distributed linear regression technology that can

model the approximation of the original data while signif-

icantly reducing the communication energy consumption.

4.1 Research motivation

Depending on the specific WSN application, the physical

phenomenon information with spatio-temporal correlation

may be a prediction model approximated by sensor source

nodes in case of applications such as event monitoring. In

order to obtain a more accurate estimate of physical pro-

cesses, each node will generate an amount of sensor data.

For example, the node produces a reading every 1 min or

60 readings an hour, then one node will generate 1,440

readings in a day. Possible to be thought of or believed,

sensor-rich network system (the number of node is more

than 100 nodes) will generate an enormous amount of

sensor information for requiring the lifetime to more than

2 years. If the monitoring data were represented by using

multi-dimensional value (e.g., humidity, temperature, illu-

mination, pressure in weather monitoring application), a

leap of sensor data would lead to increase the communi-

cation energy cost between sensor nodes and the sink node.

Thus, it is disadvantageous for prolonging the lifetime of

WSN. In order to reduce the sensor data, switching to a

slower sampling rate (sensor nodes sample monitoring data

every 30 min) would reduce the amounts of data. However,

the slower sampling rate may cause system to miss high-

frequency or emergency event. The maladjustment is

especially prominent in forest fire monitoring and some

similar security control applications in WSN. An appro-

priate approach to extracting part of the monitoring mea-

surements is to build an approximation model of this data

in the sensor network and transmit only the model coeffi-

cients. The model coefficients can provide a representation

structure of the original monitoring measurements. At the

same time, organizing a collection of sensor nodes into

multi-hop clusters can decrease the number of transmitted

messages to the sink and reduce the communication cost.

The combination of predicting and clustering strategy can

be well suited to building the energy-efficient data gath-

ering framework of the spatio-temporally correlated data in

common application.

4.2 Cluster formation

In order to take advantage of the existence of nodes of

different abilities inside a WSN, data gather processing

makes use of the hierarchical protocol based on clustered

architecture. The classical LEACH offers no guarantee

about the placement and number of CH nodes. The pro-

posed framework carried out a more novel algorithm,

namely EADEEG (an energy-aware data gathering proto-

col for WSNs) that can achieve a better performance in

terms of lifetime by minimizing energy consumption for

communications and balancing the energy load among all

nodes [26]. For each node in network, the time t of the CH

request message sent can be computed from equation

t ¼ k � T � Eaver=Eresi, where k is a float randomly uniform

distributed in the interval [0.9, 1], T is a predefined dura-

tion time parameter of CH selection mechanism, Eaver

denotes the average residual energy of all neighborhood

nodes in the cluster radius of node Vi, and Eresidenotes the

residual energy of node Vt. The main parameter of the

competition for CH election is Eaver=Eresi. While there are

advantages to use the EADEEG distributed cluster forma-

tion algorithm, it offers no guarantee about the monitoring

blind spot brought or the disconnected CH nodes in some

situations. However, using an auxiliary parameter deg

(degree of the sensor node) to associate with Eaver=Eresi for

the competition for CH election may produce better clus-

ters throughout the network. In our scheme, each node Vi

computes the average residual energy Eaver of all neigh-

borhood nodes Vk from Eq. (1).

Eaver ¼
1

deg

Xd

j¼1

Ekr ð1Þ

2002 Neural Comput & Applic (2013) 23:1999–2013
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where Ekr denotes the residual energy of the node Vk. Then,

the time t of the CH request message sent can be computed

from Eq. (2), where Eini denotes the initial energy of the

node. The CH competition phase can complete in time

T. From 0 to T=2, a majority of CHs are certain. After the

phase (from T=2 to T), a few of the remaining nodes

become CH according to the large ratio of node residual

energy to initial energy.

t ¼
k � T � Eaver

Eresi
� 1

degþ1
Eresi [ Eaver

T
2
þ k � T

2
� Eresi

Eini
Eresi\Eaver

(
ð2Þ

The clustering process can be described as follows:

Step 1: the neighbor discovery phase, each node

broadcasts respective message with communication

radius, receive the message from its neighbor nodes,

initialize Eaver, deg, and compute the time t according to

Eq. (2)

Step 2: CHs find phase, when current time is lesser than

t, the nodes have received CH message from the

neighbor node, the nodes abandon the CH competition,

else broadcast CH message.

Step 3: nodes ascription phase, other nodes apart from CH

nodes broadcast join message to the CH with max energy

and update the parent information. The CH nodes receive

join message, update the deg and other parameters

The clustering process is completed. With the virtual

backbone in the sensor network, only CHs are concerned

with data transportation, and other cluster member nodes

are free to pursue their sensing tasks. This procedure can

reduce the network energy consumption.

4.3 Distributed linear regression model

In DLRDG framework, the nodes organize themselves into

local clusters, with one node acting as the CH. All non-CH

nodes transmit their data to the CH, while the CH receives

data from the active cluster members, performs linear

regression model for original measurements, estimates the

error between the measurements and the model approxi-

mation, and chooses whether transmitting the model

coefficients to the remote sink node. In this section, the

processing principle of the distributed linear regression

model was derived.

Select the last m sensory measurements at regular intervals.

Suppose that we are given a set of m data points

ðt1; y1Þ; ðt2; y2Þ; . . .; ðtm; ymÞ, where ti are sampling time

points, yiði 2 ½1;m�Þ are actual measurements subject to

errors. For these sensor data, we determined a function YðtÞ
such that the approximation errors di ¼ YðtiÞ � yi are very

small for i ¼ 1; 2; . . .;m. The form of the function YðtÞ
depends on the application at hand. Here, we assume that the

function YðtÞ can be written as YðtÞ ¼
Pn

j¼1 kjFjðtÞ, where

the number of summands n and the basis functions Fj are

chosen based on specific problem. When the outcome is

numeric, linear regression is a feasible technique to implement

the approximation of actual data. A common choice is

FjðtÞ ¼ tj�1, so the equation can be written as a polynomial of

degree n� 1 in t point, which can be meant the equation

YðtÞ ¼ k1 þ k2t þ k3t2 þ � � � þ kntn�1. By choosing n ¼ m,

we can calculate each yi exactly. However, such high-degree

YðtÞfit the noise into the sensory data and generally gives poor

results when used to predict y for previously unseen values of

t. It is usually better to choose n significantly smaller than

m and hope that by choosing the coefficients ki well, we can

obtain the approximation values of measurements yi. For

example, we can fit a cubic polynomial to the last 60 mea-

surements: YðtÞ ¼ k1 þ k2t þ k3t2 þ k4t3. Then, we only

need to extract 4 parameters from the execution nodes:

k1; k2; k3; and k4. Rather than transmitting 50 original mea-

surements to sink node, the nodes of processing the function

from the WSN communicate constraints on 4 parameters to

further reduce the communication energy cost. We transform

the polynomial model into the linear regression model using

matrix representation. So the processing nodes do not calcu-

late the high-degree polynomial and only need to execute the

maintenance of the correlative matrix. Let k ¼ ðk1; k2;

. . .; knÞT denotes the desired n vector of coefficients, y ¼
ðy1; y2; . . .; ymÞT denote m vector of the actual measurements,

the value matrix of the basis functions at the corresponding

sampling time points was denoted as matrix M:

M ¼

F1ðt1Þ F2ðt1Þ � � � Fnðt1Þ
F1ðt2Þ F2ðt2Þ � � � Fnðt2Þ

..

. ..
. . .

. ..
.

F1ðtmÞ F2ðtmÞ � � � FnðtmÞ

2
6664

3
7775

where the matrix elements mij ¼ FjðtiÞ, let Y ¼ ðYðt1Þ;
Yðt2Þ; . . .; YðtmÞÞT denote the m vector of predicted values

at ti sampling time points, then

Y ¼

Yðt1Þ
Yðt2Þ

..

.

YðtmÞ

2
6664

3
7775 ¼ Mk

¼

F1ðt1Þ F2ðt1Þ � � � Fnðt1Þ
F1ðt2Þ F2ðt2Þ � � � Fnðt2Þ

..

. ..
. . .

. ..
.

F1ðtmÞ F2ðtmÞ � � � FnðtmÞ

2

6664

3

7775

k1

k2

..

.

kn

2

6664

3

7775 ð3Þ

Thus, Eq. (4) is the m vector of approximation errors d.

d ¼ Mk� y ð4Þ

To minimize approximation errors, we choose to

minimize the norm of the error vector d. Thus

Neural Comput & Applic (2013) 23:1999–2013 2003
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Min dk k ¼
Pm

i¼1 d2
i

� �1=2
� �

, because Min dk k2¼
�

Mk� yk k2¼
Pm

i¼1

Pn
j¼1 mijkj � yi

� �2

Þ, we can minimize

dk k by differentiating dk k2
with respect to each kkðk ¼

1; 2; . . .; nÞ and then setting the result to 0, namely,

following Eq. (5):

d dk k2

dkk

¼
Xm

i¼1

2
Xn

j¼1

mijkj � yi

 !
mik ¼ 0; k ¼ ½1; n� ð5Þ

According to Eq. (4), Eq. (5) is equivalent to the single

matrix equation ðMk� yÞT M ¼ 0 or MTðMk� yÞ ¼ 0,

namely,

MT Mk ¼ MT y ð6Þ

Because the predefine basis function FjðtÞ ¼ tj�1, the

matrix M has full column rank, then MT M is positive

definite as well. Namely, ðMT MÞ�1
exists, and the solution

to Eq. (6) is Eq. (7).

k ¼ ðMT MÞ�1MT y ð7Þ

Let

A ¼ MT M ¼

hF1F1i hF1F2i � � � hF1Fni
hF2F1i hF2F2i � � � hF2Fni

..

. ..
. . .

. ..
.

hFnF1i hFnF2i � � � hFnFni

2

6664

3

7775 ð8Þ

z ¼ MT y ¼

hF1yi
hF2yi

..

.

hFnyi

2
6664

3
7775 ð9Þ

We can transform Eq. (7) to k ¼ A�1z, namely:

Ak ¼ z ð10Þ

The term Fj; j ¼ 1; 2; . . .n is the predefine basis function,

the term A is the dot-product matrix, where each element

denotes the dot product between two basis functions. The

term z is the projected measurement vector, where each

element is simply the projection of the measurement vector

into the space of a particular basis function. Thus, given the

measurement vector and the basis functions, we can

calculate the coefficients of the optimal linear regression

model Ak ¼ z with simple matrix operations.

4.4 Model update operations

For the event monitoring application in WSN, the volume

of sensor data from the monitoring environment would

become more and more excessive for the limited power

supply and memory space of the sensor device. We may

maintain the sampling data at a certain interval according

to the processing ability of the sensor nodes. With linear

regression model prediction, the CH nodes can selectively

send its model parameters of estimating data distribution to

sink node. Given an error bound e [ 0, CH node imple-

ments the fault-tolerant module to choose whether to

update the regression model or reject the false sampling

data if YðtiÞ � yij j[ e. The intuition of this choice is that if

the sampling value is close to the predicted value there is

no much benefit by transmitting it. If the monitoring

sampling data are much different from the predicted value,

it is necessary to update the linear regression model for

recomputation of sensor data distribution. Very complex

model update operation is not practical in data gathering

framework of the WSN due to the limited computational

capacity of sensor nodes. Fortunately, simple linear incre-

ment operation is sufficient to update the regression model

by the matrix operations. Suppose that we have computed

the dot-product matrix A of the basis functions and the

projected measurement vector z at times t1; t2; � � � ; tm�1,

and we observe a new monitoring measurement at time tm

as following:

AðtmÞ ¼

hF1ðtmÞF1ðtmÞi � � � hF1ðtmÞFnðtmÞi
hF2ðtmÞF1ðtmÞi � � � hF2ðtmÞFnðtmÞi

..

. ..
. ..

.

hFnðtmÞF1ðtmÞi � � � hFnðtmÞFnðtmÞi

2

6664

3

7775

zðtmÞ ¼

hF1ðtmÞyðtmÞi
hF2ðtmÞyðtmÞi

..

.

hFnðtmÞyðtmÞi

2
6664

3
7775

So the dot-product matrix A of the basis functions and

the projected measurement vector z at times t1; t2; . . .; tm

are updated by the increment operation expression (11).

A Aþ AðtmÞ; z zþ zðtmÞ ð11Þ

The scale of the linear regression model was controlled

by using the time sliding window. That is, the coefficients

of the basis functions were calculated respecting the

measurements performed in the last T min. Similar to the

operation expression (11), if measurement t1 falls outside

our time sliding window, the matrix A and vector z were

updated according to the expression (12).

A Aþ Aðt1Þ; z zþ zðt1Þ ð12Þ

Thus, the CH node can extract the coefficients of linear

regression model at any time by solving the linear system

Ak ¼ z as well as update the dot-product matrix A of the

basis functions and the projected measurement vector z by

implementing the increment operations.

2004 Neural Comput & Applic (2013) 23:1999–2013
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4.5 The fault-tolerant scheme

One of the key challenges in detecting event in a WSN is

how to devise a strategy to handle the sudden or dramatic

change of monitored sampling data. When the degree of

correlation among neighboring sensor nodes varies spa-

tially and the consecutive sensor readings of a particular

sensor depict a smooth variation over time, then the sensor

data present the spatio-temporally correlation. It is neces-

sary to exploit spatio-temporal characteristics of sensor

data to detect the emergence of event boundary accurately

and quickly transmit the information to the sink node. In

the DLRDG framework, CH node executed a fault-tolerant

strategy based on statistical hypothesis testing for elimi-

nating faulty readings or dealing with the regression model

update. Using the stochastic process to describe the tem-

porally correlation of the monitoring event, the fault sensor

nodes in event region were identified by inter-comparison

of the matching degree between local data reading

sequence and event statistical characteristics.

The sensor reading approximations from the linear

regression model were characterized as a sequence in

sampling times t1 : fYðtiÞg; i ¼ 1; 2; 3; . . .. The expectation

and variance of the sampling values sequence can present

the statistical characteristic of the stochastic process.

Suppose that uðxÞ is the probability density function of the

random variable n. We define the function g ¼ f ðnÞ, thus,

the mathematical expectation of the continuous random

variables g can be defined as the equation

Eg ¼ Ef ðnÞ ¼
Zþ1

�1

f ðxÞuðxÞdx ð13Þ

From Eq. (13), firstly, mathematical expectation Ef ðnÞ
can be computed after the probability distributions of the

random variables function f ðnÞ are derived. Considering

the complexity of the above process, we can prove that

the computing results using the distributions sum of the

random variable n are the same as using Eq. (13). So the

probability distributions of the function f ðnÞ need not be

computed beforehand.

The expected value of a random variable does not

characterize how ‘‘spread out’’ the variable’s values are.

We regard the sensor data as the random variable. The

unconventionality sensor data can be identified by ana-

lyzing the departure between the sampling data and the

mean. The notion of variance mathematically expresses

how far from the mean (mathematical expectation) a ran-

dom variable’s values are likely to be. Similar to the

expectation definition, the probability density function of

the continuous random variable n is uðxÞ, we define the

function g ¼ f ðnÞ, and thus the variance can be defined as

Eq. (14).

VarðgÞ ¼ Varðf ðnÞÞ ¼
Zþ1

�1

½x� Ef ðnÞ�2uðxÞdx ð14Þ

One of the key tasks in event monitoring of the WSN is how

to detect whether the urgent event of interest is occurring.

Therefore, the mathematical expectation function EdeventðtiÞ
and the square root function VarSqeventðtiÞ of the variance in

each normal sensor node can be obtained by the premeditated

values from sink node. The occurrence threshold and the

minimized continuance of the urgent event can be denoted by

Teventð0Þ and Tcontið0Þ, respectively. When a sequence fYðtiÞg
of the sensor reading exceeded the occurrence threshold

Teventð0Þ and the predefined count Tcount which is the number

of fYðtiÞg satisfying Eq. (15) condition, the sequence fYðtiÞg
was considered as following the statistical hypothesis testing

conditions.

dðtiÞ � EdeventðtiÞj j
VarSqeventðtiÞ

\d ð15Þ

Equation (15) denoted the correlation degree between

the sequence fYðtiÞg and the statistical characteristics of

random event process. After the continuance Tconti, the CH

nodes identified that the monitoring event was actually

occurring and sends the urgent messages to sink node when

the most cluster members have monitored the mutation of

the sensed data. Subsequently, start the update model of

linear regression model. The CH nodes maintain only

EdeventðtiÞ and VarSqeventðtiÞ at Tconti=DT integer ratio

because of the limited memory space of sensor nodes.

The following two roles are, respectively, used to

identify the misjudgment of the sensor node in the actual

event region, and then the node was marked as the fault

node. Firstly, a sequence fYðtiÞg of the sensor reading

exceeded the occurrence threshold Teventð0Þ, but it did not

satisfy the statistical hypothesis testing conditions. Sec-

ondly, a sequence fYðtiÞg of the sensor reading satisfied the

statistical hypothesis testing conditions, but the most

neighbor nodes did not detect the mutation occurrence of

sensor reading after the continuance Tconti. If the fault node

is cluster member node, the CH does not receive the

messages from it. If the fault node is the leaf CH node in

the routing tree, it may delete directly. However, the parent

CH node sends the rerouting message when the fault node

is in the midst of the routing tree.

4.6 Data approximation process

The aim is to develop better data extraction and approxi-

mation algorithms for energy savings in sensor networks.

These lead to lesser packet transmissions and reduce

redundancy, thereby helping in increasing the network

lifetime. The data approximation process is performed at
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cluster-based sensor network that CHs are selected for data

extraction and transmission instead of other nodes in the

network. As an example of presenting the data approxi-

mation process by linear regression model, suppose that we

have six relative humidity sensor readings (the unit of

relative humidity data is %) during the sampling time t1–t6,

which (1, 17.72), (2, 21.71), (3, 18.88), (4, 18.58), (5,

22.34), (6, 19.79) shown as black circle in Fig. 1. In order

to predigest computing, we wish to fit these relative

humidity sampling points with a cubic polynomial

YðtÞ ¼ k1 þ k2t þ k3t2 þ k4t3. Firstly, the basis functions

matrix M is as follows:

M ¼

1 t1 t2
1 t3

1

1 t2 t2
2 t3

2

1 t3 t2
3 t3

3

1 t4 t2
4 t3

4

1 t5 t2
5 t3

5

1 t6 t2
6 t3

6

2
6666664

3
7777775
¼

1 1 1 1

1 2 4 8

1 3 9 27

1 4 16 64

1 5 25 125

1 6 36 216

2
6666664

3
7777775

ð16Þ

Secondly, the model coefficient vector was computed by

Eq. (10) in Sect. 4.3, that is, k ¼ ð15:92; 3:2294;

�0:80738; 0:066111Þ. Therefore, the cubic polynomial is

Eq. (17). The real line denotes the regression estimate

curve of six relative humidity values in Fig. 1. The six

approximations are: (1, 18.408), (2, 19.678), (3, 20.127),

(4, 20.15), (5, 20.146), and (6, 20.51).

YðtÞ ¼ 15:92þ 3:2294t � 0:80738t2 þ 0:066111t3 ð17Þ

Figure 2 shows that the absolute value of estimate error

only with six measurements is relatively unsatisfied. Since

the scale of the regression model is relatively less, the

control about estimate error is not effective sensitivity.

How large the regression model scale needs to be set

according to the computing ability of sensor node and the

confidence interval of the regression estimate. The CH

node maintains the dot-product matrix A and projected

measurement vector z of the basis function to implement

the regression estimate. The data approximation process

shown in Algorithm 1 is at the core of our framework.

.

Algorithm 2 shows the pseudocode description of the

algorithm at the CH node. The CH maintains a set of

history data for each cluster member and builds the linear

regression model to predict measurement values. Further-

more, the CH node forwards the model parameters to the

next CH node at routing tree. Algorithm 3 shows the

pseudocode description of the algorithms at each cluster

member. Each cluster member node senses the environ-

ment readings from the monitoring region according to theFig. 1 The regression estimate of six relative humidity values

Fig. 2 The absolute value error of six relative humidity values

2006 Neural Comput & Applic (2013) 23:1999–2013

123



sleep scheduling strategy and sends the messages to the CH

node. Algorithm 4 shows the pseudocode description of the

algorithm at the sink node.

4.7 The complexity analysis of the DLRDG strategy

The hard core algorithm of the proposed data gathering

framework will be executed to solve the monitoring

reading approximation through the linear regression model

using the matrix operations, including the matrix addition,

matrix subtraction, matrix multiplication, and matrix

inversion. For forming dot-product matrix A, the matrix

multiplication operation obtained the speedups by Strassen

algorithm, which decreases the running time complexity

from Oðn3Þ to Oðn2:81Þ. To solve the linear equation

Ak ¼ z, we could compute A�1 and then multiply z by A�1,

yielding k ¼ A�1z in the ordinary way. However, the LUP

decomposition approach for solving the linear equation is

numerically stable and has further advantage of being

faster in practice. The main idea of the LUP decomposition

of the matrix A is to find three matrices L, U, and P such

that PA = LU, where L is a unit lower-triangular matrix,

U is an upper-triangular matrix, and P is a permutation

matrix. It has been proved that every non-singular matrix A

possesses such decomposition by the matrix characteristics.

Computing the LUP decomposition for the matrix A has

the advantage that we can more easily obtain the solutions

of the linear system. Because of the matrix A is a sym-

metric positive-definite matrix, we can prove that matrix

inversion is no harder than matrix multiplication relies on

some properties of symmetric positive-definite matrix. That

is, suppose two real n� n matrices were multiplied in time

TðnÞ, where TðnÞ ¼ Xðn2Þ and TðnÞ satisfies two regularity

conditions Tðnþ kÞ ¼ OðTðnÞÞ for any k in the range

0� k� n and Tðn=2Þ�C � TðnÞ for some constant

C\1=2. Then, we can compute the inverse of any real

non-singular n� n matrix in time OðTðnÞÞ.
In DLRDG framework, the complexity is also related to

the scale of the regression model when the dot-product

matrix A and the projected vector z were transmitted

between CH nodes in routing tree for improving the esti-

mate precision. Let S be the scale of the sampling data of

the model in the sensor network. The messages between

any two CH nodes are, in the worst, of size S2 ? S, that is,

dot-product matrix Aand the projected vector z. For a

sensor network with N nodes, the sum of all messages

required to propagate the regression model information

throughout the network is, in the worst case, 2NðS2 þ SÞ. If

we would like to upload the regression model coefficients

to the sink node, we need, in the worst case, a total of d � n

additional communication, where d is the depth of the

routing tree, as the coefficient of each model has to be

propagated to the sink node, and n is the regression model

coefficient count.

5 Experiment results and performance evaluation

This section evaluates the validity and network energy

consumption of the proposed DLRDG framework. To
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analyze the validity of the linear regression strategy, we

implemented it in small WSN, which was deployed at

gymnasium. The sensor nodes sampled the respective

humidity measurements in the sunshine and a rainy day. To

evaluate the network energy consumption and the fault-

tolerant capability, we conducted a series of experiments

using the network simulator developed under NS2. Relying

on improved EADEEG protocol, the CH node function in

the DLRDG framework was enhanced by integrating the

linear regression model and compared with LEACH, EA-

DEEG protocol for presenting the network energy saving

results.

5.1 The validity analysis of the DLRDG strategy

In this experiment, we ran linear regression strategy on a

dataset of the monitoring samples of light, temperature,

pressure, and humidity collected from the gymnasium of

six sensors. As an example, the humidity measurements

were estimated by the linear regression model to prove the

validity of the DLRDG strategy. The atmospheric water

vapor affects the humidity sensor readings at the same time

points of different day. The humidity monitoring mea-

surements have high spatio-temporally correlation whether

it rains or not. We believe that the spatio-temporally cor-

relation properties of this humidity dataset will also be

present in many other applications.

Choosing two groups humidity records of the same

node in sensor network at the same the sampling time on

a sunny day and a rainy day, we ran the linear regression

algorithm, respectively, to measure the error of the model

constructed. Table 1 presents the corresponding monitor-

ing schedule of the 20 sampling time points. The com-

puting results of the linear regression parameters were

shown in Table 2, where ks is the model parameter on a

sunny day and kr is the model parameter on a rainy day.

Figure 3 illustrates the regression estimate values with

linear model over the data from one sensor node over a

sunny day and a rainy day. Intuitively, these measure-

ments represent the correlation across time and space, and

disperse around the regression curve, which denotes the

approximation of the sensor readings. Figure 4 shows the

absolute value errors between the actual monitoring data

and regression approximation. Whether or not, the abso-

lute value errors do not overstep the limited of error

bound (as a general rule, it can be set 5 %), in this

example, the maximal error is less than 2.5 %. Therefore,

the linear regression model algorithm is the effective

solution to the prediction estimate of the sensor readings

with the spatio-temporally correlation properties. Then,

rather than transmitting original monitoring data to next

CH node or the sink node, the nodes communicate con-

straints on four regression model parameters.

Table 1 The corresponding monitoring schedule

Sampling points A sunny day A rainy day

1 8:00 8:00

2 8:10 8:10

3 8:20 8:20

… … …
20 11:10 11:10

Table 2 The linear regression parameters

Parameter subscript ks kr

1 26.344 49.053

2 0.47159 -0.32495

3 -0.042866 0.045912

4 0.0012293 -0.0013763

Fig. 3 The humidity regression curve of 20 sampling time points

Fig. 4 The absolute value error between estimate values and

measurements values
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The estimate results of regression curves for different

sampling time points with the same monitoring time seg-

ment on a sunny day were shown in Fig. 5. In order to

formalize this effect of regression estimate, we select the

root mean squared error (Eq. 18) to evaluate the precision

of regression approximation. In addition to the sampling

time points m = 20, the sample rate varies according to the

different number of the sampling time points, such as

m ¼ 10; 30; 40; 50.

x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm

j¼1

YðtjÞ � ytj

� �2

 !,
m

vuut ð18Þ

Figure 6 shows the root mean squared errors

corresponding to the varying sampling time points.

Notice that the linear regression model performs much

better during the sampling time when the number of

the sampling points is 30, the root mean squared error

is minimum. In other words, for the estimate precision

of regression model, the more the number of sampling

points during the monitoring period, the error is not

less. In general, lowering the sampling rate may cause

the sensor network system to miss high-frequency

events, switching to a higher sampling rate would

increase the energy consumption and the sensitivity of

the monitoring information. Thus, the number of the

sampling points was chosen according to the different

monitoring system requirement for the trade-off

between the accuracy of the regression model and the

energy cost.

5.2 The evaluation of the network energy consumption

and fault-tolerant capability

In this subsection, we provide a particular analysis of the

proposed DLRDG framework for the energy consumption. We

compare the distributed linear regression-based strategy

against the standard clustered LEACH and EADEEG protocol.

Four main aspects of DLRDG framework were evaluated: the

total energy dissipation of the CH nodes each round, the total

energy dissipation of the CH nodes with different regression

period, the total energy dissipation, and the fault-tolerant

capability, which were analyzed separately. In each experi-

ment, the NS-2 tool was used to implement and simulate the

network system. We assume a simple model for the radio

hardware energy dissipation where the transmitter dissipates

energy to run the radio electronics and the power amplifier and

the receiver dissipates energy to run the radio electronics [21].

Suppose the distance between the transmitter and receiver is d,

according to the theory of wireless communication, if the

distance d is less than a threshold dThres, the free space channel

model (FS) is used (d2 power less); otherwise, the multi-path

model (MP) is used (d4 power less). Thus, to transmit and

receive h-bit message at d distance, the radio energy dissipa-

tion ETXðh; dÞ and ERXðhÞ were calculated, respectively, by

Eqs. (19) and (20).

ETXðh; dÞ ¼ ETX�elecðhÞ þ ETX�amðh; dÞ

¼ h� Eelec þ h� es � d2 d\dThres

h� Eelec þ h� em � d4 d� dThres

� ð19Þ

ERXðhÞ ¼ ERX�elecðhÞ ¼ h� Eelec ð20Þ

Fig. 5 The humidity regression

curve at the varied sampling

time points

Neural Comput & Applic (2013) 23:1999–2013 2009

123



The electronics energy Eelec depends on factors such as

the digital coding, filtering, modulation, and spreading of

the signal, whereas the amplifier energy es � d2 or em � d4

depends on the distance to the receiver and the acceptable

bit-error rate. In addition, to compute a regression estimate

each round, the energy cost of the CH nodes operation is

Ere ¼ Nch � Ecom, where the number of CH nodes in

network is Nch and Ecom is the energy cost of each CH node

for computing the regression model. For the experiments

described in this paper, the main parameters of the WSN

simulation system are set as Table 3.

For these experiments, each node begins with only 2 J

initial energy and 500 bytes messages to send to the sink

node. The CH status was determined at the beginning of

each round, which lasts for 20 s. Node energy is consumed

whenever a sensor in network transmits or receives data or

performs linear regression estimate model. Figure 7 shows

how the total energy dissipation of the CH nodes each

round varies as the simulation time runs on for the three

data gathering network protocols (LEACH, EADEEG, and

DLRDG). Obviously, the CH nodes of DLRDG framework

required less energy in the simulation time than other two

protocols. This is because a much smaller amount of data

was transmitted to the sink by CH using the linear

regression estimate model to provide a structured predic-

tion of the measurements. The energy dissipation increased

slightly in each regression period for computing the model

coefficients. After the simulation time is 380 s, using

LEACH protocol the energy dissipation of CH is rapid

decline. The reason for this is that the CH node has touched

the energy threshold during the current round, which did

not performed transmit–receive operation and calculation.

The graph shows the total energy dissipation of all CH

nodes before the CH exhausted the initial energy.

When the error between the monitoring reading and

prediction value exceeds the predefined error bound, the

CH node must perform the fault-tolerant model for

choosing whether to update regression model or not. How

will the high-frequency model update operation impact on

the energy dissipation of the CH node? For the sake of

comparison with these schemes, the total energy dissipa-

tion of the CH nodes was evaluated while varying the

regression period (that is 10, 30, and 60 s). Figure 8 shows

that the total energy dissipation of the CH node is least

when the regression period is 60 s. It stands to reason that

if the regression period is to last less time the updated

regression coefficients increase the communication cost of

the CH node. Therefore, the DLRDG data gathering

Fig. 6 The root mean squared error corresponding to the varied

sampling time points

Table 3 The main experiments parameters

Parameter Acronym Value

The sensor network region R� R 100 m 9 100 m

The number of sensor node N 100

Initial node energy Eini 2 J

The sink node location Sink (50,80)

The number of CH node Nch 5

TX/RX electronics constant Eelec 50 nJ/bit

FS model amplifier constant es 10 pJ/bit/m2

MP model amplifier constant em 0.0013 pJ/bit/m4

Regression estimate energy cost Ecom 5 nJ/bit

The bandwidth of the channel Bandwidth 1 Mb/s

Data message size Data_size 500 bytes

Transmission delay Tran_delay 25 ls

Simulation time Sim_time 600 s

The scale of regression model m 20

Regression period R_period 60 s

The interval of each round CH Round_time 20 s

CH energy threshold CH_Ethre 10-4 J
Fig. 7 The total energy dissipation of the CH node
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framework is more efficient when the measurements

present a linear variety in most cases and saves much more

communication energy than other non-regression predic-

tion schemes.

Figure 9 plots the total energy dissipation before sensor

nodes exhaust the initial energy for DLRDG scheme,

LEACH, and EADEEG, respectively. Our simulation

results demonstrate that the DLRDG can achieve much

more energy saving (about 100 J) in the lifetime of WSN

when compared with other strategies. The energy dissipa-

tion of distributed regression grows quite slowly with the

simulation time, unlike other two schemes. Note also that

three experiments show an upward tendency, the total

energy dissipation of LEACH protocol is rather slow

increase during the simulation time terminal stage (after

380 s). The reason is the same with the commentary in the

Fig. 7 due to the death of sensor nodes. Furthermore, we

conducted an additional experiment to evaluate the real

energy dissipation in the limitless node energy.

As shown in Fig. 10, the accessional energy dissipation

of the DLRDG network remains little or nothing over the

simulation time. While the accessional energy dissipations

are about 180 and 120 J using LEACH and EADEEG,

respectively. Hence, for most cases, the advantages of

using DLRDG at energy consumption become more effi-

cient when the sensor readings of depending on the

application specific are linear variety.

However, the sensor nodes may have hardware failure or

detect the occurrences of some critical event in the network

domain. The mutation of sensor readings will result in fall

short of the linear characteristic for regression model. An

important challenge in the application of the DLRDG

framework for a variety of environments monitoring is to

identify the occurrence of faulty sensors and preventing the

Fig. 8 The total energy dissipation of the CH with the varying

regression period

Fig. 9 The total energy dissipation with different schemes

Fig. 10 The accessorial energy dissipation with different schemes

Fig. 11 The regression curve comparing between mutation and

normal sampling
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fault readings to propagate further, transmitting the warn-

ing messages of the mutation readings to the sink node

under control. Suppose there was a sudden change in the

humidity reading from 28.7 to 88.5 %. Figure 11 shows

that the regression estimate curve deviates from the actual

measurements spot due to occurrence of the mutation

reading.

The absolute value error between the measurements and

regression estimate values with the normal sampling and

the mutation sampling are shown in Fig. 12. For the normal

sampling the variations in the absolute value error per

round over time are small. On the contrary, for the muta-

tion sampling, the absolute value error of the last sampling

time point almost increases to 26 %, which has over-

stepped the certain prespecified error threshold.

The fault-tolerant model in the DLRDG framework was

implemented to choose the next task of the CH node, which

is to update regression for retransmitting coefficients or

abandon the faulty reading. As stated before, the fault

identification rate of the fault-tolerant model can have some

effect on the result obtained about the prediction precision.

So we also measured the fault identification rate of the

DLRDG framework with varying fault probability of sensor

nodes in network. Figure 13 shows the simulation results

for the different settings where the fault sensor nodes

probability from 5 to 25 %. In all cases, the fault identifi-

cation rate keeps up well (about 95 %) in spite of the

increase in the number of fault sensor nodes. The results of

the further experiments demonstrated the correctness of the

data gathering strategy in fault-tolerant model.

In general, using the DLRDG framework, we can

achieve the satisfactory approximation at lower commu-

nication rate than suggested by the worst-case complexity

of the framework.

6 Conclusions

In this paper, we have proposed and described a novel

DLRDG framework for clustering-based data gathering.

The strategy is relatively simple and general. The distrib-

uted linear regression model is used to implement the

subtle trade-off between communication and calculation

cost. Rather than delivering sensor samples at a continuous

rate, as most application systems proposed, our scheme

allows CH nodes to locally estimate the measurements that

are very near to the prediction value by the linear regres-

sion model. After distributed regression computing, CH

node has the coefficients of the estimate model to predict

the approximation of the monitoring event. By less com-

munication energy consumption, the network system can

provide queries about the distant past or future by storing

regression model coefficients, which determine a compact

summary of sensor readings at a given point in time. For

the sensor readings with linear character in WSN, a sample

polynomial model is sufficient to represent the monitoring

data. Experimental results indicate that the DLRDG

framework obtained more than 60 % savings in the energy

as compared with LEACH and EADEEG. In addition, on

an average, 94 % of the total number of faulty sensors is

detected right at the framework when the mutation reading

occurs, thus preventing the fault sensor readings to be

incorporated in the calculated regression model. To sum-

marize, the DLRDG is a viable and energy-efficient

framework to facilitate sensor monitoring data collection in

clustering-based WSN.

There are several future research works. First, we plan to

design a regression model with an adaptive control in the

Fig. 12 The absolute value error comparing between mutation and

normal sampling

Fig. 13 The fault identification rate with the varying fault sensor

nodes probability
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number of the sampling point according to the varying

environment information for decreasing the model update

operation rate. Second, we are seeking the more efficient

algorithms to reduce the computation overhead of regres-

sion estimate. Third, we plan to integrate the optimization

techniques to improve the quality of clustering and routing.

Finally, we are interested in exploring this regression

strategy (using non-linear regression scheme) in multi-

media information represent of camera-based WSN. If

these research contributions can be obtained, it is very

important for the energy-efficient hierarchical data gath-

ering techniques, which is a fruitful research area for the

WSNs.
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