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Abstract In this work, we applied the differential trans-
form method, by presenting and proving some theorems, to
solve the nonlinear integro-differential equation with pro-
portional delays. This technique provides a sequence of
functions which converges to the exact solution of the
problem. In order to show the power and the robustness of
the method and to illustrate the pertinent features of related
theorems, some examples are presented.
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1 Introduction

Delay integro-differential equations (DIDEs) are often used
to model of some problems with aftereffect in mechanics
and the related scientific fields. Many typical examples
such as stress—strain states of materials, motion of rigid
bodies, aeroauto-elasticity problems and models of poly-
mer crystallization can be found in Kolmanovskii and
Myshkis’s [1] monograph and the references there in.

In this paper, we consider the following nonlinear integro-
differential equations with proportional delay [2-9]:
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rt
. utpot), w11, .o u (o), / Kds | =0, 120,
0

(1)

where K = K(t, s, u(qos), W (q15), ..., u"™(g,,s)), is the ker-
nel function, # € R is an unknown function, f, K, are given
functions with appropriate domains of definition, p;, g;,
re,1),fori=0,1,...,nj=0,1,...,m andm < n.

In recent years, the differential transform method (DTM)
has been developed for solving ordinary and partial differ-
ential equations. It is a semi-numerical/analytic technique
that formalizes the Taylor series in a totally different
manner. It was first introduced by Zhou [10] in a study
about electrical circuits. The DTM obtains an analytical
solution in the form of a polynomial. It is different from the
traditional high-order Taylor series method, which requires
symbolic competition of the necessary derivatives of the
data functions. The Taylor series method is computationally
taken long time for large orders. With this method, it is
possible to obtain highly accurate results or exact solutions
for differential equations. The differential transform is an
iterative procedure for obtaining analytic Taylor series
solutions of differential equations. DTM has been suc-
cessfully applied to solve many nonlinear problems arising
in engineering, physics, mechanics, biology, etc. Abazari
et al. [11] are also employed DTM on some PDEs and their
coupled version in and applied it to solve the second-order
IVP and BVP of Matrix Differential Models [12].

Recently, Abazari et al., [13] employed RDTM to study
the partial differential equation with proportional delay,
and [14] applied RDTM on simulation of generalized
Hirota—Satsuma coupled KdV equation. The purpose of
this research is to employ DTM, mentioned in [13], to
apply for Eq. (1).
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2 Differential transform method

An arbitrary function u(f) can be expanded in Taylor series
about a point t = f; as

00 k k
(t— 1) {d u(t)]
u(t) = - (2)
; k! dek |,
If U(k) is defined as
du(r)
Uk 3
W=g %) 3
where k = 0, 1, ..., co, then Eq. (2) is reduced to
=Y " Uk)(t - 10)". (4)
k=0

The U(k), defined in Eq. (4), is called the differential
transform of function u(¢). The following theorems that can
be deduced from Egs. (3) and (4) are given below.

Theorem 1 Assume that W(k), U(k) and V(k) are the
differential transforms of the functions w(t), u(t) and v(t),
respectively, then

(@) If w(t) = u(t) £ v(z), then W(k) = Uk) + V(k).
b) If w() = z u(t) then W(k) = 4 U(k).
© Ifw(r) =240 then W(k) = &t

) If w(t) = u(dv(s), then W(k) = ZH

(e) If w(x) = 7" then W(k) = (k — m) = {

Uk 4+ m).
u)vik—10).
1 k=m,

0 otherwise

Proof See ([10], and their references). (|

3 Applications of differential transform method
on Eq. (1)

In this section, we extend the one-dimensional transform
method for approximating the Eq. (1). First, using the
concept of differential transform method, we formulate the
following Lemma.

Lemma 1 Assume that W(k) and U(k) are the differen-
tial transforms of the functions w(t) and u(t), respectively,
and g, r, € (0, 1), then

@) If wt) = u(qt) then W(k) = ¢*U(k).

(b) Ifw(r) = dﬂ, u(gr), then W (k) = $Em! gomy (i 4 m).

) If w(t) = [ u(gs)ds, then W(k) =L*g" Uk — 1),
k=1,2,...

Proof

(a) From the Eq. (3), we get

@ Springer

d dk dc
@W(t) = [u(qt)] = q"@u(t),

where t = gt, therefore
Twi] =[St = drow
T P T P

hence by (3)

Wk) = [dkd,,f )L -

where k=0, 1, ..., o©
(b) From part (a), we get

dk dk+m -
W) = ]|
thk =0 drtt =0

= (k+ m)!q“’"U(k + m),

1
= W"k!U(k) =q'U(k),

then
(k 4+ m)!
k!

wio =5[] -

(c) We get de()

dk
0], =t
= (k— D)W 'uk — 1)

U (k 4 m).

rg:k—:llu(rqt), then
D!(rq) "' Uk = 1)

hence, by (3), and for k = 1, 2, ..., N we have

k
Wi(k) = % [%w(t)} = %rqu’lU(k )

and therefore, the proof is completed. O
By Lemma 1, we easily obtain the following Theorems.

Theorem 2 Assume that W(k), U,(k) and U,(k) are the
differential transforms of the functions w(t), ui(t) and u(t),
respectively, and q1, q; € (0, 1), then

(2-a) If w(r) = ul(qlt)uz(qzt) then for k=0,1,2,....N
quq

= [ ui(q15)uz(gzs)ds, then for k= 1,2,

(O)Ua(k —0).

(2-b) If w(r)

N
=
=23 Al U Ok - - 1),
=0
(2-¢) If w(t) = u(pr) fgtvl(qls)vz(qzs)ds, then for k = 1,
2,...N
k=1 k—t=1
Wik =>_ > " Pad T OV
(=0 s=0
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Proof

(2-a) From the Lemma 1, and Leibnitz formula, we get

kyo(t X
: dﬂE ) j 7l (QII)Mz(qzt)]

k—¢

— i d .
_Z( Yot s D s,

where f = ¢;t, and f = ¢, therefore,

k k
{dc:jlgt)]t :Z< ) g U (0)] [ (k= 0)\Ux(k —0)]

=0

k
Z 611612 (O)Uz(k—10),
=0

then, from Eq. (3), we get

k k
W(k) k! [d d[IE ):| t:(): ;qélqg_((]l (K)UZ(k - Z)-

where k =0,1,...,00
(2-b) Similar to previous parts, we get

k k-1
%Wm (ik —1 [ (rqat)us (rqut)]
k=1 k—1 df o
=r;< ¢ >(r6“)[d% 1(B)(rga)"
dkfé,’fl 5
dp——14 ua (%),
then
dk k=1
|:@W(t):|, r;( ¢ )rql élUl(e)
(rga) Nk — € — DU, (k — £ —1).

hence by Eq. (3), and for k = 1,2,..., N, we obtain
dk

W) = [d,,(w@}

Z’k‘hqg Y

(2-¢) Let y(t fo v1(q15)v2(g28)ds, then from previous
parts, we get

(OU(k—£—1).

k k
Cow(e) = L pr)y(o)

k k dé dkfé
— ‘ s a
- <€> dtg ( )dtk_[y(t)

where 7 = pt, and

dk*l dk /-1
g \0) = 1oy i (rqa)va(rqat)]
k—t—1
k—1—-1 d .
=r Yz:(:) ( s )(rql) d~‘Vl(t)
. dk—[—s—l 5
(”Iz)k ‘ lwvz(f)

where 7 = rqf and 7 = rqt, then

] =35 ()()
k—

[r AT (k= £ — 5 — 1))
UOVi(s)Valk — £~ 5~ 1))

but for ¢ = k, we have

g+
—_y(t)] =0,
{dfk ‘ =0

then by Eq. (3), for k =1,2,...,

~

S

—_t

r'q
i(s

N we obtained

plgids T U(0)

and therefore, the proof completed. O

Theorem 3 Assume that W(k), U,(k) and U,(k) are the
differential transforms of the functions w(t), u (t) and u(t),
respectively, and q1,q; € (0,1), then

(3-a) If w(r) = %ul(qlt)(%uz(qzt), then for k=0,1,

2, ...N
k
(0 +n)(k— L€+ m)
W(k) — Zqiﬂzqg l+m
— Lk —0)!
Ui({+n)Us(k — £+ m).
(3-b) Ifw(z fo dl"ul(qls) 5 uz(gas)ds, then for k = 1,
2. .,N

k—
€+l’l k €+m_1) rk+n+m l+n  k—l+m—1
T Nk—e—1)! L

U (l+n)Uy(k—0+m—1).

71
_k

(3-0) If w(t)=% (pt) 0 dt,,vl(qls)glmvz(qzs)ds, then
fork=1,2,...,N

k=1 k—{—

B I (+)(s+n)lk—Cl—s+m—1)!
—ZZ {k ‘ Osl(k—0—s—1)! '

=0
(). k f+n+m s+n  k—l—s+m—1 )
91 1 U(t+2)

p
Vi(s+n)Vy(k—0—s+m— 1)] .
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Proof

(3-a) From the Lemma 1, and Leibnitz formula, we get

d* d* [a" d"
@W(f) =G {dt" (Cllf)d = (%ﬁ}

k k / dé+n o dk*@rm
= +n 7 —l+m N
— EZ (é)ql d’i(.t,_n uy (Z)qz dik_m_m uz([)’
=0

where 7 = g1t, and 7 = ¢t therefore

k

0] =3 (3 s e en)

(=0
(g5~ (k — £+ m)!Us (k — £ +m)]

zk: E + }’l k 14 + m) l+n k—{+m
v f' k e ql 2

U]( +n)U2(k €+m)

then from Eq. (3), we obtained

(3-b) Similar to previous parts, we get

dk dk—l dn dm
@W(f) =T [ uy (r qlf)d - (WDI)}

=1 k=1 ., de .
=3 (e o

Fwo] =5 (5 ) emrermunen

t=0 (=0 l
(rg2) " (k=4 m— 1)Uy (k—£+m—1).

hence by Eq. (3), and for k = 1,2,...,N we have

(L) k—Ltm=1)! i rin fetimet
kz Nk—e—1y DD

U,(l+n)Us (k—L+m—1).

(3-c) Let y(t fo d7v](q19) AT v2(g2s)ds, then from
prev10us parts, we get

d* d* [d*u(pr)
dzkw“):dﬂ«[ ar @}

d1/+/L N dk*/{
=3 (1) s ot

0

@ Springer

where 7 = pt, and

dkff dk -1 R d"
G0 = s g ) el
k—0(—1
k—1-—1 stn
=r Z ( )(rql) *
s=0 §
dern dk l—s+m—1

- k—l—s+m—1
g (0 (ra2) =

where f = rgf and 7 = rqt, then

SO0

(+2 k—l+n+m  s+n k—{(—s+m—1
{P r q :

dk
dr*

M»

14

Il
=}

9

(0]

d£+/l R ds+n
u(t) d;s+nv ()dlk l—s+m—1 V2

d[f+/1

o] -2 (O
[puA k=Lmtm gsn gk=C=s4m=1
(L+)NUl+2)(s+n)'V(s+n)

(k—l—s+m—1)Vy(k—f—s+m—1)].

but for ¢ = k, we have

dk 4
—_y(f)] =0,
|:dtk ! t=0

then by Eq. (3), for k = 1,2,..., N we obtained

k—1 k—

1 (D) s+ ) k= —s+m—1)!
[Z ; [ Oslk—0—s—1)!

0
Z+Ark l+n+mqsl+nqléflfs+m71 U(g-i-;t)

p

Vi(s+n)Va(k—f—s+m— 1)1 .

and therefore, the proof completed. O

4 Numerical examples

In this section, we give the following prototype examples to
clarify the accuracy of the presented method. These exam-
ples are chosen such that there exist exact solutions for them.

Example 1 1In the first example, consider the following
nonlinear first-order integro-differential equation with
proportional delay

i

u' (1) — u(é) - %u(%) /u(s)u(%)ds =0, (5)

0
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subject to initial condition u(0) = 1. Substituted ¢ = 0, in
Eq. (5), we get u'(0) — 1 = 0, then «'(0) = 1.

Using differential transform method, the differential
transform version of Eq. (5), for k = 1,2,...,N will be

(k+ DUk +1) — <l>kU(k)
sEegw

(=0 s=0

UOU(s)U(k——s—1) = 0,

and the differential transform version of initial conditions
u(0) = /(0) = 1 will be
U) =u(l) =1, (7)

where U(k) is the differential transform of u().
Using Eq. (6), by taking N = 5, the following system is
obtained:

20(2) — 1 =0,

3U(3) — % UQ) - g o,

e - Lue) - Lue) - -

SU(S) — 1 Ud) — 12 U(3) ~ 2 U(2) — 512 =0,

6U(6) ~ 25 U(S) ~ e U)o 1)
o U - o U2) =0,

(3)
Solving the above system and using the inverse

transformation rule (3), we get the following series solution

U(t)—1—|—t—|—1t2+1t—|—1t—|—1t—|—1
A 2T Tt Tt 70!

Note that when N > 5 by solving the obtained system, we

get the following series solution

Un(®) — 1 1, 14 1 Loy
(1) +t+5t +§t +a +--+m .

Table 1 Absolute errors of Example 1 at some points and for dif-
ferent value of N

The closed form of above series solution is u(f) = €', which
is the exact solution of Eq. (5). Table 1 shows the
numerical results of this example.

Example 2 In this example, consider the following non-
linear second-order integro-differential equation with pro-
portional delay

t

0o ) ron() -
u (2 /u(s)u (s)ds 245) 3 u(fu 0, 9)
0

subject to initial condition #(0) = 1, and «'(0) = — 1.
From Theorem (2) and Theorem (3), the differential

transformed version of Eq. (9) is

U 0+ 2) (k-0 —5)

(k — 0)0!

k+1 k k—t
5) (k+ DUk +1) —%Z(%) UOU(k—1) =0,

=0

k+2
(%) Ul+2)U(s)U(k — € —s)

MN

=0

“

N

—
—

(10)

where U(k) is the differential transform of u(r), and the
transformed version of initial conditions u(0) = 0 and
u'(0) =1 are

U@)=0, U(1)=-1, (11)

Using Egs. (10), and (11), and by taking N = 4, the
following system for k = 1, 2, 3, 4 is obtained:

3 3 15 3 1 , 1
SU@) =5 =0.2UB) +3UQR) —5URP +5=0,

TU@) +2uG) - 2u@) - uRUE) + % U2 =0
45 5 5 1,7

4 16 8
D)+ V) ~ e U() + U ]
V@) 4 UQUG) - URF —SUGEE =0, (12)

U(2)

Solving the above system and using the inverse
transformation rule (3), we get the following series solution
1y

Us(t) =1 t—|—1t 1t+ ! 1t
SN 2" 6 24 120

Table 2 Absolute errors of Example 2 at some points and for dif-
ferent value of N

t lu(t) — Uyp(0)l lu(t) — Uy (2)l lu(t) — Uys(0)l t lu(t) — Uyp(0)l lu(t) — Uy (2)l lu(t) — Uys(0)l
0.2 0.52175e—15 0.13346e—18 0.31695e—24 0.2 0.50464e—15 0.12970e—18 0.30958e—24
0.4 0.10868e—11 0.11093e—14 0.21021e—19 0.4 0.10167e—11 0.10477e—14 0.20055e—19
0.6 0.95651e—10 0.21910e—12 0.13975e—16 0.6 0.86544e—10 0.20109e—12 0.13022e—16
0.8 0.23047e—08 0.93613e—11 0.14115e—14 0.8 0.20168e—08 0.83496e—11 0.12846e—14
1 0.27312e—07 0.17287¢—09 0.50771e—13 1 0.23114e—07 0.14983e—09 0.45131e—13

@ Springer



396

Neural Comput & Applic (2014) 24:391-397

Note that for N > 4, the closed form of above solution is
u(t) = e~', which is the exact solution of Eq. (9). The

numerical results of this example are shown in Table 2.

Example 3 Consider the following nonlinear third-order
integro-differential equation with proportional delay

i

() Gt [ o, (1
0

subject to initial conditions

u(0) = 0,4'(0) = 2,u4"(0) = 0. (14)

where f(f) = —3e/?+3e /2 +1e' —Le7'. Similar to

previous examples, the differential transformed version of
Eq. (13) for k=0,1,2,...,N will be

1\ (k +3)!
(5) k!

N TR+ 2) (k=2 1))!
+Z<E) A=)

| et kot 1k /s

1 <2> O Uk —t—s)

Uk+3)

U(C+2)U(k—€+1)

2/10 s=0

SO s)

and the differential transform version of initial conditions
is
U(0) =0,

U(l)=2, UQ2)=0. (16)

respectively, where U(k) is the differential transform of
u(t).

Using Eq. (15), by taking N = 4, the following system is
obtained:

%U(3)+%U(2)U(l) %,%U(4)+U2(2)+2U(3)
U(1)—%U3(0)U(1)=%,§ U(5)+3U(2U (3)+%
U(UM) + (%>6U2(O)U(2) - 5(%)6U(0)U2(1) - %
185U(6)+§U(2)U(4)+ZU3(3)+5G)3U(1)

u(s) — (%>8U3(0)U(3) —-21 <%)8U(O)U(1)

ver- (1) o= (1)

Solving the above system by utilizing the (16) and using
the inverse transformation rule (3), we get the following
series solution

@ Springer

Table 3 Absolute errors of Example 3 at some points and for dif-
ferent value of N

t lu(t) — U0 lu(t) — Upa(d) lu(t) — U0
0.2 0.10547e—14 0.55511e—16 0.21169¢—19
0.4 0.21036e—11 0.21094e—14 0.19123e—19
0.6 0.18219e—09 0.42011e—12 0.10058e—17
0.8 0.43216e—08 0.17711e—10 0.12690e—15
1 0.50427e—07 0.32271e—09 0.56394e—14

1 1
Us(t) =2t +=1 +—1
o) =20 +30 46
Note that for N > 4, the closed form of above series
solution is u(f) = ¢’ — e, which is the exact solution of
Eq. (13). Table 3 also shows the numerical results of this
example.

5 Conclusions

In this work, we have shown that the differential transfor-
mation method can be used successfully for solving the
nonlinear integro-differential equations with proportional
delay. Some theorems are introduced with their proofs, and as
application, some prototype examples are carried out. The
present method reduces the computational difficulties of the
other methods, and all the calculations can be made simple
manipulations. The accuracy of the obtained solution can be
improved by taking more terms in the solution. In many
cases, the series solutions obtained with DTM can be written
in exact closed form. So it may be easily applied by
researchers and engineers familiar with the Taylor expansion.
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