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Abstract In this work, we applied the differential trans-

form method, by presenting and proving some theorems, to

solve the nonlinear integro-differential equation with pro-

portional delays. This technique provides a sequence of

functions which converges to the exact solution of the

problem. In order to show the power and the robustness of

the method and to illustrate the pertinent features of related

theorems, some examples are presented.
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1 Introduction

Delay integro-differential equations (DIDEs) are often used

to model of some problems with aftereffect in mechanics

and the related scientific fields. Many typical examples

such as stress–strain states of materials, motion of rigid

bodies, aeroauto-elasticity problems and models of poly-

mer crystallization can be found in Kolmanovskii and

Myshkis’s [1] monograph and the references there in.

In this paper, we consider the following nonlinear integro-

differential equations with proportional delay [2–9]:

f t; uðp0tÞ; u0ðp1tÞ; . . .; uðnÞðpntÞ;
Zrt

0

Kds

0
@

1
A ¼ 0; t� 0;

ð1Þ

where K = K(t, s, u(q0s), u0(q1s), …, u(m)(qms)), is the ker-

nel function, u 2 R is an unknown function, f, K, are given

functions with appropriate domains of definition, pi, qj,

r [ (0, 1), for i = 0, 1, …, n, j = 0, 1, …, m, and m \ n.

In recent years, the differential transform method (DTM)

has been developed for solving ordinary and partial differ-

ential equations. It is a semi-numerical/analytic technique

that formalizes the Taylor series in a totally different

manner. It was first introduced by Zhou [10] in a study

about electrical circuits. The DTM obtains an analytical

solution in the form of a polynomial. It is different from the

traditional high-order Taylor series method, which requires

symbolic competition of the necessary derivatives of the

data functions. The Taylor series method is computationally

taken long time for large orders. With this method, it is

possible to obtain highly accurate results or exact solutions

for differential equations. The differential transform is an

iterative procedure for obtaining analytic Taylor series

solutions of differential equations. DTM has been suc-

cessfully applied to solve many nonlinear problems arising

in engineering, physics, mechanics, biology, etc. Abazari

et al. [11] are also employed DTM on some PDEs and their

coupled version in and applied it to solve the second-order

IVP and BVP of Matrix Differential Models [12].

Recently, Abazari et al., [13] employed RDTM to study

the partial differential equation with proportional delay,

and [14] applied RDTM on simulation of generalized

Hirota–Satsuma coupled KdV equation. The purpose of

this research is to employ DTM, mentioned in [13], to

apply for Eq. (1).
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2 Differential transform method

An arbitrary function u(t) can be expanded in Taylor series

about a point t = t0 as

uðtÞ ¼
X1
k¼0

ðt � t0Þk

k!

dkuðtÞ
dtk

� �
t¼t0

: ð2Þ

If U(k) is defined as

UðkÞ ¼ 1

k!

dkuðtÞ
dtk

� �
t¼t0

; ð3Þ

where k = 0, 1, …, ?, then Eq. (2) is reduced to

uðtÞ ¼
X1
k¼0

UðkÞðt � t0Þk: ð4Þ

The U(k), defined in Eq. (4), is called the differential

transform of function u(t). The following theorems that can

be deduced from Eqs. (3) and (4) are given below.

Theorem 1 Assume that W(k), U(k) and V(k) are the

differential transforms of the functions w(t), u(t) and v(t),

respectively, then

(a) If w(t) = u(t) ± v(t), then W(k) = U(k) ± V(k).

(b) If w(t) = k u(t), then W(k) = k U(k).

(c) If wðtÞ ¼ dmuðtÞ
dtm ; then WðkÞ ¼ ðkþmÞ!

k! Uðk þ mÞ:
(d) If w(t) = u(t)v(t), then WðkÞ ¼

Pk
‘¼0 Uð‘ÞVðk � ‘Þ:

(e) If w(x) = tm then WðkÞ ¼ dðk�mÞ ¼ 1 k ¼ m;
0 otherwise

�

Proof See ([10], and their references). h

3 Applications of differential transform method

on Eq. (1)

In this section, we extend the one-dimensional transform

method for approximating the Eq. (1). First, using the

concept of differential transform method, we formulate the

following Lemma.

Lemma 1 Assume that W(k) and U(k) are the differen-

tial transforms of the functions w(t) and u(t), respectively,

and q, r, [ (0, 1), then

(a) If w(t) = u(qt), then W(k) = qkU(k).

(b) If wðtÞ ¼ dm

dtm uðqtÞ; then WðkÞ ¼ ðkþmÞ!
k! qkþmUðk þ mÞ:

(c) If wðtÞ ¼
R rt

0
uðqsÞds, then WðkÞ ¼ 1

k
rkqk�1Uðk � 1Þ;

k ¼ 1; 2; . . .:

Proof

(a) From the Eq. (3), we get

dk

dtk
wðtÞ ¼ dk

dtk
½uðqtÞ� ¼ qk dk

d~tk
uð~tÞ;

where ~t ¼ qt; therefore

dk

dtk
wðtÞ

� �
t¼0

¼ qk dk

d~tk
uð~tÞ

� �
t¼t0

¼ qkk!UðkÞ;

hence by (3)

WðkÞ ¼ 1

k!

dkwðtÞ
dtk

� �
t¼0

¼ 1

k!
qkk!UðkÞ ¼ qkUðkÞ;

where k = 0, 1, …, ?.

(b) From part (a), we get

dk

dtk
wðtÞ

� �
t¼0

¼ qkþm dkþm

d~tkþm
uð~tÞ

� �
t¼0

¼ ðk þ mÞ!qkþmUðk þ mÞ;

then

WðkÞ ¼ 1

k!

dkwðtÞ
dtk

� �
t¼0

¼ ðk þ mÞ!
k!

qkþmUðk þ mÞ:

(c) We get dk

dtk wðtÞ ¼ r dk�1

dtk�1 uðrqtÞ; then

dk

dtk
wðtÞ

� �
t¼0

¼ rðk � 1Þ!ðrqÞk�1
Uðk � 1Þ

¼ ðk � 1Þ!rkqk�1Uðk � 1Þ

hence, by (3), and for k = 1, 2, …, N we have

WðkÞ ¼ 1

k!

dk

dtk
wðtÞ

� �
t¼0

¼ 1

k
rkqk�1Uðk � 1Þ

and therefore, the proof is completed. h

By Lemma 1, we easily obtain the following Theorems.

Theorem 2 Assume that W(k), U1(k) and U2(k) are the

differential transforms of the functions w(t), u1(t) and u2(t),

respectively, and q1, q1 [ (0, 1), then

(2-a) If w(t) = u1(q1t)u2(q2t), then for k ¼ 0; 1; 2; . . .;N

WðkÞ ¼
Xk

‘¼0

q‘1qk�‘
2 U1ð‘ÞU2ðk � ‘Þ:

(2-b) If wðtÞ ¼
R rt

0
u1ðq1sÞu2ðq2sÞds; then for k ¼ 1; 2;

. . .;N

WðkÞ ¼ 1

k

Xk�1

‘¼0

rkq‘1qk�‘�1
2 U1ð‘ÞU2ðk � ‘� 1Þ:

(2-c) If wðtÞ ¼ uðptÞ
R rt

0
v1ðq1sÞv2ðq2sÞds; then for k ¼ 1;

2; . . .;N

WðkÞ ¼
Xk�1

‘¼0

Xk�‘�1

s¼0

1

k � ‘ rk�‘p‘qs
1qk�‘�s�1

2 Uð‘ÞV1ðsÞ

V2ðk � ‘� s� 1Þ:
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Proof

(2-a) From the Lemma 1, and Leibnitz formula, we get

dkwðtÞ
dtk

¼ dk

dtk
u1ðq1tÞu2ðq2tÞ½ �

¼
Xk

‘¼0

k

‘

� �
q‘1

d‘

d~t‘
u1ð~tÞqk�‘

2

dk�‘

d̂tk�‘ u2ð̂tÞ;

where t̂ ¼ q1t; and ~t ¼ q1t; therefore,

dkwðtÞ
dtk

� �
t¼0

¼
Xk

‘¼0

k

‘

 !
q‘1‘!U1ð‘Þ
� �

qk�‘
2 ðk� ‘Þ!U2ðk� ‘Þ

� �

¼
Xk

‘¼0

k!q‘1qk�‘
2 U1ð‘ÞU2ðk� ‘Þ;

then, from Eq. (3), we get

WðkÞ ¼ 1

k!

dkwðtÞ
dtk

� �
t¼0

¼
Xk

‘¼0

q‘1qk�‘
2 U1ð‘ÞU2ðk � ‘Þ:

where k ¼ 0; 1; . . .;1:
(2-b) Similar to previous parts, we get

dk

dtk
wðtÞ ¼ r

dk�1

dtk�1
½u1ðrq1tÞu1ðrq1tÞ�

¼ r
Xk�1

‘¼0

k � 1

‘

 !
ðrq1Þ‘

d‘

d̂t‘
u1ð̂tÞðrq2Þk�‘�1

dk�‘�1

d�tk�‘�1
u2ð�tÞ;

then

dk

dtk
wðtÞ

� �
t¼0

¼ r
Xk�1

‘¼0

k � 1

‘

� �
ðrq1Þ‘‘!U1ð‘Þ

ðrq2Þk�‘�1ðk � ‘� 1Þ!U2ðk � ‘� 1Þ:

hence by Eq. (3), and for k ¼ 1; 2; . . .;N; we obtain

WðkÞ ¼ 1

k!

dk

dtk
wðtÞ

� �
t¼0

¼ 1

k

Xk�1

‘¼0

rkq‘1qk�‘�1
2 U1ð‘ÞU2ðk � ‘� 1Þ:

(2-c) Let yðtÞ ¼
R rt

0
v1ðq1sÞv2ðq2sÞds; then from previous

parts, we get

dk

dtk
wðtÞ ¼ dk

dtk
uðptÞyðtÞ½ �

¼
Xk

‘¼0

k

‘

 !
p‘

d‘

d̂t‘
uð̂tÞ dk�‘

dtk�‘ yðtÞ

where t̂ ¼ pt; and

dk�‘

dtk�‘ yðtÞ ¼ r
dk�‘�1

dtk�‘�1
v1ðrq1tÞv2ðrq2tÞ½ �

¼ r
Xk�‘�1

s¼0

k � l� 1

s

� �
ðrq1Þs

ds

d~ts
v1ð~tÞ

ðrq2Þk�‘�s�1 dk�‘�s�1

d�tk�‘�s�1
v2ð�tÞ

where ~t ¼ rq1~t and �t ¼ rqt; then

dk

dtk
wðtÞ

� �
t¼0

¼
Xk

‘¼0

Xk�‘�1

s¼0

k

‘

� �
k � l� 1

s

� �

rk�‘p‘qs
1qk�‘�s�1

2 ‘!s!ðk � ‘� s� 1Þ!
�
Uð‘ÞV1ðsÞV2ðk � ‘� s� 1Þ�:

but for ‘ ¼ k, we have

dk�‘

dtk�‘ yðtÞ
� �

t¼0

¼ 0;

then by Eq. (3), for k ¼ 1; 2; . . .;N we obtained

WðkÞ ¼
Xk�1

‘¼0

Xk�‘�1

s¼0

1

k � ‘ rk�‘p‘qs
1qk�‘�s�1

2 Uð‘Þ

V1ðsÞV2ðk � ‘� s� 1Þ:

and therefore, the proof completed. h

Theorem 3 Assume that W(k), U1(k) and U2(k) are the

differential transforms of the functions w(t), u1(t) and u2(t),

respectively, and q1; q1 2 ð0; 1Þ; then

(3-a) If wðtÞ ¼ dn

dtn u1ðq1tÞ dm

dtm u2ðq2tÞ; then for k ¼ 0; 1;

2; . . .;N

WðkÞ ¼
Xk

‘¼0

q‘þn
1 qk�‘þm

2

ð‘þ nÞ!ðk � ‘þ mÞ!
‘!ðk � ‘Þ!

U1ð‘þ nÞU2ðk � ‘þ mÞ:

(3-b) If wðtÞ ¼
R rt

0
dn

dtn u1ðq1sÞ dm

dtm u2ðq2sÞds; then for k ¼ 1;

2; . . .;N

WðkÞ ¼1

k

Xk�1

‘¼0

ð‘þnÞ!ðk�‘þm�1Þ!
‘!ðk�‘�1Þ! rkþnþmq‘þn

1 qk�‘þm�1
2

U1ð‘þnÞU2ðk�‘þm�1Þ:

(3-c) If wðtÞ ¼ dk

dtk
uðptÞ

R rt

0
dn

dtn v1ðq1sÞ dm

dtm v2ðq2sÞds; then

for k ¼ 1; 2; . . .;N

WðkÞ ¼
Xk�1

‘¼0

Xk�‘�1

s¼0

�
1

k� ‘
ð‘þ kÞ!ðsþ nÞ!ðk� ‘� sþm� 1Þ!

‘!s!ðk� ‘� s� 1Þ! :

p‘þkrk�‘þnþmqsþn
1 qk�‘�sþm�1

2 Uð‘þkÞ

V1ðsþnÞV2ðk�‘�sþm�1Þ
�
:
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Proof

(3-a) From the Lemma 1, and Leibnitz formula, we get

dk

dtk
wðtÞ ¼ dk

dtk

dn

dtn
u1ðq1tÞ dm

dtm
u2ðq2tÞ

� �

¼
Xk

‘¼0

k

‘

� �
q‘þn

1

d‘þn

d~t‘þn
u1ð~tÞqk�‘þm

2

dk�‘þm

d̂tk�‘þm
u2ð̂tÞ;

where ~t ¼ q1t; and t̂ ¼ q2t; therefore

dk

dtk
wðtÞ

� �
t¼0

¼
Xk

‘¼0

k

‘

� �
q‘þn

1 ð‘þ nÞ!U1ð‘þ nÞ
� �

qk�‘þm
2 ðk � ‘þ mÞ!U2ðk � ‘þ mÞ

� �

¼
Xk

‘¼0

k!ð‘þ nÞ!ðk � ‘þ mÞ!
‘!ðk � ‘Þ! q‘þn

1 qk�‘þm
2

U1ð‘þ nÞU2ðk � ‘þ mÞ;

then from Eq. (3), we obtained

WðkÞ ¼
Xk

‘¼0

q‘þn
1 qk�‘þm

2

ð‘þ mÞ!ðk � ‘þ mÞ!
‘!ðk � ‘Þ!

U1ð‘þ nÞU2ðk � ‘þ mÞ:

(3-b) Similar to previous parts, we get

dk

dtk
wðtÞ ¼ r

dk�1

dtk�1

dn

dtn
u1ðrq1tÞ dm

dtm
u2ðrq2tÞ

� �

¼ r
Xk�1

‘¼0

k � 1

‘

� �
ðrq1Þ‘þn d‘þn

d̂t‘þn
u1ð̂tÞ

ðrq2Þk�‘þm�1 dk�‘þm�1

d�tk�‘þm�1
u2ð�tÞ;

then

dk

dtk
wðtÞ

� �
t¼0

¼r
Xk�1

‘¼0

k � 1

‘

� �
ðrq1Þ‘þnð‘þnÞ!U1ð‘þnÞ

ðrq2Þk�‘þm�1ðk�‘þm�1Þ!U2ðk�‘þm�1Þ:

hence by Eq. (3), and for k ¼ 1; 2; . . .;N we have

WðkÞ¼1

k

Xk�1

‘¼0

ð‘þnÞ!ðk�‘þm�1Þ!
‘!ðk�‘�1Þ! rkþnþmq‘þn

1 qk�‘þm�1
2

U1ð‘þnÞU2ðk�‘þm�1Þ:

(3-c) Let yðtÞ ¼
R rt

0
dn

dtn v1ðq1sÞ dm

dtm v2ðq2sÞds; then from

previous parts, we get

dk

dtk
wðtÞ ¼ dk

dtk

dkuðptÞ
dtk

yðtÞ
� �

¼
Xk

‘¼0

k

‘

� �
p‘þk d‘þk

d̂t‘þk
uð̂tÞ dk�‘

dtk�‘ yðtÞ

where t̂ ¼ pt; and

dk�‘

dtk�‘ yðtÞ ¼ r
dk�‘�1

dtk�‘�1

dn

dtn
v1ðrq1tÞ dm

dtm
v2ðrq2tÞ

� �

¼ r
Xk�‘�1

s¼0

k � l� 1

s

� �
ðrq1Þsþn

dsþn

d~tsþn
v1ð~tÞðrq2Þk�‘�sþm�1 dk�‘�sþm�1

d�tk�‘�sþm�1
v2ð�tÞ

where ~t ¼ rq1~t and �t ¼ rqt; then

dk

dtk
wðtÞ ¼

Xk

‘¼0

Xk�‘�1

s¼0

k

‘

� �
k � l� 1

s

� �

�
p‘þkrk�‘þnþmqsþn

1 qk�‘�sþm�1
2 :

d‘þk

dt‘þk
uð̂tÞ dsþn

d~tsþn
v1ð~tÞ

dk�‘�sþm�1

d�tk�‘�sþm�1
v2ð�tÞ

�
:

dk

dtk
wðtÞ

� �
t¼0

¼
Xk

‘¼0

Xk�‘�1

s¼0

k

‘

� �
k � l� 1

s

� �

p‘þkrk�‘þnþmqsþn
1 qk�‘�sþm�1

2

�
ð‘þkÞ!Uð‘þkÞðsþnÞ!V1ðsþnÞ
ðk�‘�sþm�1Þ!V2ðk�‘�sþm�1Þ�:

but for ‘ ¼ k, we have

dk�‘

dtk�‘ yðtÞ
� �

t¼0

¼ 0;

then by Eq. (3), for k ¼ 1; 2; . . .;N we obtained

WðkÞ ¼
Xk�1

‘¼0

Xk�‘�1

s¼0

"
1

k� ‘
ð‘þ kÞ!ðsþ nÞ!ðk� ‘� sþm� 1Þ!

‘!s!ðk� ‘� s� 1Þ! :

p‘þkrk�‘þnþmqsþn
1 qk�‘�sþm�1

2 Uð‘þkÞ

V1ðsþnÞV2ðk�‘�sþm�1Þ
#
:

and therefore, the proof completed. h

4 Numerical examples

In this section, we give the following prototype examples to

clarify the accuracy of the presented method. These exam-

ples are chosen such that there exist exact solutions for them.

Example 1 In the first example, consider the following

nonlinear first-order integro-differential equation with

proportional delay

u0ðtÞ � u
t

2

	 

� 1

2
u

t

2

	 
Z t
3

0

uðsÞu s

2

	 

ds ¼ 0; ð5Þ
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subject to initial condition u(0) = 1. Substituted t = 0, in

Eq. (5), we get u0(0) - 1 = 0, then u0(0) = 1.

Using differential transform method, the differential

transform version of Eq. (5), for k ¼ 1; 2; . . .;N will be

ðk þ 1ÞUðk þ 1Þ � 1

2

� �k

UðkÞ

� 1

2

Xk�1

‘¼0

Xk�‘�1

s¼0

1

k � ‘
1

3

� �k�‘
1

2

� �k�s�1

Uð‘ÞUðsÞUðk�‘�s�1Þ ¼ 0;

ð6Þ

and the differential transform version of initial conditions

u(0) = u0(0) = 1 will be

Uð0Þ ¼ Uð1Þ ¼ 1; ð7Þ

where U(k) is the differential transform of u(t).

Using Eq. (6), by taking N = 5, the following system is

obtained:

2Uð2Þ � 1 ¼ 0;

3Uð3Þ � 1

4
Uð2Þ � 3

8
¼ 0;

4Uð4Þ � 1

8
Uð3Þ � 4

27
Uð2Þ � 31

432
¼ 0

5Uð5Þ � 1

16
Uð4Þ � 13

192
Uð3Þ � 5

108
Uð2Þ � 1

216
¼ 0;

6Uð6Þ � 1

32
Uð5Þ � 211

6480
Uð4Þ � 197

10368
Uð3Þ

� 79

12960
Uð2Þ2 � 7

1728
Uð2Þ ¼ 0;

ð8Þ

Solving the above system and using the inverse

transformation rule (3), we get the following series solution

U6ðtÞ ¼ 1þ t þ 1

2
t2 þ 1

6
t3 þ 1

24
t4 þ 1

120
t5 þ 1

720
t6:

Note that when N [ 5 by solving the obtained system, we

get the following series solution

UNðtÞ ¼ 1þ t þ 1

2!
t2 þ 1

3!
t3 þ 1

4!
t4 þ � � � þ 1

N!
tN :

The closed form of above series solution is u(t) = et, which

is the exact solution of Eq. (5). Table 1 shows the

numerical results of this example.

Example 2 In this example, consider the following non-

linear second-order integro-differential equation with pro-

portional delay

u00
t

2

	 
Z t
2

0

uðsÞu0ðsÞds� 1

4
u0

t

2

	 

� 1

8
uðtÞu t

2

	 

¼ 0; ð9Þ

subject to initial condition u(0) = 1, and u0(0) = - 1.

From Theorem (2) and Theorem (3), the differential

transformed version of Eq. (9) is

Xk�1

‘¼0

Xk�‘�1

s¼0

ð‘þ 2Þ!ðk � ‘� sÞ
ðk � ‘Þ‘!

1

2

� �kþ2

Uð‘þ 2ÞUðsÞUðk � ‘�sÞ

� 1

4

1

2

� �kþ1

ðk þ 1ÞUðk þ 1Þ � 1

8

Xk

‘¼0

1

2

� �k�‘
Uð‘ÞUðk � ‘Þ ¼ 0;

ð10Þ

where U(k) is the differential transform of u(t), and the

transformed version of initial conditions u(0) = 0 and

u0(0) = 1 are

Uð0Þ ¼ 0; Uð1Þ ¼ �1; ð11Þ

Using Eqs. (10), and (11), and by taking N = 4, the

following system for k = 1, 2, 3, 4 is obtained:

3

2
Uð2Þ � 3

4
¼ 0;

15

8
Uð3Þ þ 3

8
Uð2Þ � 1

2
Uð2Þ2 þ 1

4
¼ 0;

7

4
Uð4Þ þ 3

16
Uð3Þ � 3

8
Uð2Þ � Uð2ÞUð3Þ þ 1

4
Uð2Þ2 ¼ 0

45

32
Uð5Þ þ 5

32
Uð4Þ � 5

16
Uð3Þ þ 1

8
Uð2Þ2 � 7

8
Uð2Þ

Uð4Þ þ 1

2
Uð2ÞUð3Þ � 1

16
Uð2Þ3 � 3

8
Uð3Þ2 ¼ 0; ð12Þ

Solving the above system and using the inverse

transformation rule (3), we get the following series solution

U5ðtÞ ¼ 1� t þ 1

2
t2 � 1

6
t3 þ 1

24
t4 � 1

120
t5;

Table 1 Absolute errors of Example 1 at some points and for dif-

ferent value of N

t |u(t) - U10(t)| |u(t) - U12(t)| |u(t) - U15(t)|

0.2 0.52175e-15 0.13346e-18 0.31695e-24

0.4 0.10868e-11 0.11093e-14 0.21021e-19

0.6 0.95651e-10 0.21910e-12 0.13975e-16

0.8 0.23047e-08 0.93613e-11 0.14115e-14

1 0.27312e-07 0.17287e-09 0.50771e-13

Table 2 Absolute errors of Example 2 at some points and for dif-

ferent value of N

t |u(t) - U10(t)| |u(t) - U12(t)| |u(t) - U15(t)|

0.2 0.50464e-15 0.12970e-18 0.30958e-24

0.4 0.10167e-11 0.10477e-14 0.20055e-19

0.6 0.86544e-10 0.20109e-12 0.13022e-16

0.8 0.20168e-08 0.83496e-11 0.12846e-14

1 0.23114e-07 0.14983e-09 0.45131e-13
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Note that for N [ 4, the closed form of above solution is

u(t) = e-t, which is the exact solution of Eq. (9). The

numerical results of this example are shown in Table 2.

Example 3 Consider the following nonlinear third-order

integro-differential equation with proportional delay

u000
t

2

	 

þu00

t

2

	 

u0ðtÞ�1

2
uðtÞ

Z t
2

0

u
s

2

	 

u0

s

2

	 

ds¼ f ðtÞ; ð13Þ

subject to initial conditions

uð0Þ ¼ 0; u0ð0Þ ¼ 2; u00ð0Þ ¼ 0: ð14Þ

where f ðtÞ ¼ � 3
8

et=2 þ 5
8

e�t=2 þ 1
2

et � 1
2

e�t: Similar to

previous examples, the differential transformed version of

Eq. (13) for k ¼ 0; 1; 2; . . .;N will be

1

2

� �kþ3ðkþ 3Þ!
k!

Uðkþ 3Þ

þ
Xk

‘¼0

1

2

� �‘þ2ð‘þ 2Þ!ðk� ‘þ 1Þ!
‘!ðk� ‘Þ! Uð‘þ 2ÞUðk� ‘þ 1Þ

� 1

2

Xk�1

‘¼0

Xk�‘�1

s¼0

k� ‘� s

k� ‘
1

2

� �2k�2‘þ1

Uð‘ÞUðsÞUðk� ‘� sÞ

¼ 1

2k!
�3

4

1

2

� �k

þ5

4
ð�1

2
Þk � ð�1Þk þ 1

 !
; ð15Þ

and the differential transform version of initial conditions

is

Uð0Þ ¼ 0; Uð1Þ ¼ 2; Uð2Þ ¼ 0: ð16Þ

respectively, where U(k) is the differential transform of

u(t).

Using Eq. (15), by taking N = 4, the following system is

obtained:

3

4
Uð3Þ þ 1

2
Uð2ÞUð1Þ ¼ 1

4
;
3

4
Uð4Þ þ U2ð2Þ þ 3

4
Uð3Þ

Uð1Þ � 1

16
U3ð0ÞUð1Þ ¼ 1

2
;
15

8
Uð5Þ þ 3Uð2ÞUð3Þ þ 3

4

Uð1ÞUð4Þ þ 1

2

� �6

U2ð0ÞUð2Þ � 5
1

2

� �6

Uð0ÞU2ð1Þ ¼ 1

32

15

8
Uð6Þ þ 5

2
Uð2ÞUð4Þ þ 9

4
U3ð3Þ þ 5

1

2

� �3

Uð1Þ

Uð5Þ � 1

2

� �8

U3ð0ÞUð3Þ � 21
1

2

� �8

Uð0ÞUð1Þ

Uð2Þ � 1

2

� �7

U3ð1Þ ¼ 7

48
; ð17Þ

Solving the above system by utilizing the (16) and using

the inverse transformation rule (3), we get the following

series solution

U6ðtÞ ¼ 2t þ 1

3
t3 þ 1

60
t5:

Note that for N [ 4, the closed form of above series

solution is u(t) = et - e-t, which is the exact solution of

Eq. (13). Table 3 also shows the numerical results of this

example.

5 Conclusions

In this work, we have shown that the differential transfor-

mation method can be used successfully for solving the

nonlinear integro-differential equations with proportional

delay. Some theorems are introduced with their proofs, and as

application, some prototype examples are carried out. The

present method reduces the computational difficulties of the

other methods, and all the calculations can be made simple

manipulations. The accuracy of the obtained solution can be

improved by taking more terms in the solution. In many

cases, the series solutions obtained with DTM can be written

in exact closed form. So it may be easily applied by

researchers and engineers familiar with the Taylor expansion.
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