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Abstract We explore the effect of using bagged decision

tree (BDT) as an ensemble learning method with proposed

time-domain feature extraction methods on electrocardio-

gram (ECG) arrhythmia beat classification comparing with

single decision tree (DT) classifier. RR interval is the main

property which defines irregular heart rhythm, and its ratio

to the previous value and difference from mean value are

used as morphological feature extraction methods. Form

factor, its ratio to the previous value and difference from

mean value are used to express ECG waveform complex-

ity. In addition, skewness and second-order linear predic-

tive coding coefficients are added to the feature vector of

56,569 ECG heart beats obtained from MIT–BIH arrhyth-

mia database as time-domain feature extraction methods.

The quarter of ECG heart beat samples are used as test data

for DT and BDT. The performance measures of these

classifiers are evaluated using the metrics such as accuracy,

sensitivity, specificity and Kappa coefficient for both

classifiers, and the performance of BDT classifier is

examined for number of base learners up to 75. The BDT

results in more predictive performance than DT according

to the performance measures. BDT with 69 base learners

has 99.51 % of accuracy, 97.50 % of sensitivity, 99.80 %

of specificity and 0.989 of Kappa coefficient while DT

gives 98.78, 96.05, 99.57 and 0.975 %, respectively. These

metrics show that the suggested BDT increases the num-

bers of successfully identified arrhythmia beats. Moreover,

BDT with at least three base learners has higher distin-

guishing capability than DT.

Keywords Arrhythmia classification � Ensemble learning �
Bagged decision tree � Kappa coefficient

1 Introduction

Heart is a special muscle which its cells (myocytes) control

two main functions namely as nervous (electrical) activity

and mechanical tension with force feedback. Contraction of

the heart is controlled by sino-artrial node (SA node) which

is the part of the heart’s conduction. Periodicity of elec-

trical signal from SA node and its intrinsic electrical con-

duction form the heart beat variability and the heart’s

contraction sequence. Myocytes electrical activity causes

potential difference on the skin surface which is non-

invasively measured and recorded by electrocardiography

[1]. The recording is called electrocardiogram (ECG)

which is used to analyze the heart rate and regularity. Since

detected electrical activity in ECG represents the regional

muscular activities, the electro-mechanical function of

myocytes region can be diagnosed [2]. A normal ECG

signal consists of three basic waves including P, QRS and

T which are induced by electrical activity on the cardiac

surface. These waves are formed by the atrial depolariza-

tion, the ventricular depolarization and the ventricular

repolarization sequentially [3]. A disease caused by

described heart conduction system is named arrhythmia

which defines an irregular heartbeat or an irregular group
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of heartbeats [4], and it can be diagnosed effectively based

on long-term ECG recordings [5].

Since it is a difficult process to detect arrhythmia heart

beats in long-term ECG recording, machine learning

algorithms become supportive tools in clinical environ-

ments to help physicians improve diagnostic accuracy [6].

In Brause’s study, diagnosis with the help of machine

learning algorithms increases accuracy to 91.1 % while the

accuracy of diagnosis by experienced physicians is

79.97 % [7].

Accurate analysis of ECG signals for arrhythmia diag-

nosis is the subject of pattern recognition and depends on

feature extraction and classifier methods [8]. Both these

stages have a definite effect on diagnostic accuracy. That’s

why, several methods are applied. The first stage, feature

extraction for EGC signal can be categorized into three

main types namely time, frequency and time-frequency

domain analysis. The time-domain features are called

morphological and complexity features [9]. The well-

known morphological feature extraction method is to find

RR interval which is also used to determine heart rate [10].

The other morphological features can be summarized as

PR, QRS and ST lengths, amplitude, slopes depend on

characteristics of required cardiac disease classification

[11, 12]. Morphological and complexity measures [13] are

so noise sensitive that preprocessing and filtering should be

well designed. However, advanced time-domain feature

extraction methods for ECG are principal component

analysis (PCA), independent component analysis (ICA),

higher-order statistics (HOS), correlation coefficients and

linear predictive coding (LPC) which require more com-

plex algorithms and computations, but they can be less

sensitive to noise [3, 14–19]. Moreover, form factor (FF) is

another time-domain feature extraction method which has

been successfully applied to electroencephalography

(EEG) classification which is suggested method for diag-

nosis of normal beat and ectopic beat in ECG [8]. Discrete

wavelet transform (DWT) has taken attention in ECG

classification [20] and became as one of the most popular

and applied methods for time-frequency feature extraction

of ECG signal [21]. It decomposes a signal into sub-bands.

After determining which sub-bands represent ECG wave-

form without noise, its coefficients are used as feature

vector. In addition to DWT coefficients, HOS methods can

be applied to each sub-band of the ECG signal for more

effective features [9, 22].

The second stage which has decisive effect on the per-

formance is the machine learning algorithm to assign

extracted unknown patterns to true classes. In general,

learning approaches are categorized as supervised and

unsupervised in pattern recognition. In case of a set of

training samples with known class output is used by

learning algorithm to predict unknown samples’ classes, it

is called supervised learning. In unsupervised learning also

known as clustering, similarities in samples are used to

assign into classes by another algorithm. Many classifiers

include a single classifier such as nearest neighbor, deci-

sion tree (DT), artificial neural networks (ANN) and sup-

port vector machines (SVM) for prediction. These

classifiers have been successfully applied to biomedical

signal classification [23–26]. However, selecting the best

classifier is an open issue because of varying input samples

[27]. Therefore, classifier ensemble method has been pro-

posed to decrease prediction error for learning algorithms

[28]. There are the four ensemble learning types: bootstrap

aggregating (bagging), boosting, random subspace and

stacking. Bagging learning is based on assigning unknown

data using several classifiers trained by bootstrap sample of

training data. The output of each learner is applied to

voting stage to assign data to most voted class [29].

Boosting method uses varying weighted input pattern for

each learner and optimizes the weights of the lowest pre-

diction error [30, 31]. In contrast, there are different types

of machine learning algorithms in stacking ensemble

method. The training data are applied to classifiers, and the

outputs of them are used as metadata to be classified by a

final classifier [2, 32]. Moreover, in random subspace

method, the features of input pattern are divided into

subsets and applied to individual learners especially in

large data sets [33, 34].

We investigate ECG arrhythmia classification using

bagged decision tree (BDT) as an ensemble learning

method with extracted time-domain features. RR- and FF-

based morphological feature extraction method is com-

bined with skewness and LPC coefficients. Totally, nine

features are extracted using time-domain methods: RR

interval, FF, ratio of RR and FF to the previous values

(RRR and FFR), RR and FF differences from mean RR

and FF (RRM and FFM) with skewness and second-order

LPC coefficients. Therefore, noise sensitivity problem of

time-domain methods is removed using ratios and dif-

ferences from mean value as well as skewness and LPC

for robust feature combination. The extracted feature set

computed using ECG signals in MIT–BIH arrhythmia

database [35] is classified using single DT and BDT in

order to investigate the effect of bagging learning method

on ECG classification. The performance measures of both

classifiers presented in the forms of confusion matrix,

accuracy and sensitivity, specificity and Kappa statistic

show that the first usage of the proposed BDT with the

described time-domain feature extraction methods

increases the numbers of successfully diagnosed ECG

heart beats. This paper continues with the details of the

proposed methods presented in Sect. 2 and the results

given in Sect. 3. Discussion and conclusion are given in

Sects. 4 and 5, respectively.
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2 Materials and method

2.1 MIT–BIH arrhythmia database

MIT–BIH arrhythmia database contains approximately

30 min ECG recordings of 47 patients and generally used

as a standard test database for the evaluation of arrhythmia

classifiers. The sampling frequency of two channels

including a modified limb lead II and one of the modified

leads among V1, V2, V4 and V5 is 360 Hz.

In this study, we used six heartbeat types which are

normal rhythm (N), left bundle branch block (LBBB), right

bundle branch block (RBBB), atrial premature beat (APB),

premature ventricular contraction (PVC) and paced beat

(PB). Totally 56,569 heart beats are obtained from 22 ECG

signals, and the distribution of heart beats is given in

Table 1.

The selected 22 ECG recordings including the six types

of heart beat with different rates are used in this study. The

classification of arrhythmia beat using BDT is investigated

using this data set described in the next sections.

2.2 Proposed feature extraction for ECG signals

The normal ECG rhythm defines regular heart rhythm and

waveform that can be easily observed. However, the ECG

signals of the patients with arrhythmia do not have regular

rhythm and waveforms which the points in QRS cannot be

observed manually. Therefore, the morphological proper-

ties of the heart beat such as RR interval and QRS width

are the main rules of arrhythmia detection used by physi-

cians. It is expected that RR intervals in an ECG signal of a

healthy patient are almost the same while RR intervals of

arrhythmia beats of an unhealthy patient are varying.

However, RR interval can be a weak feature for the clas-

sification of arrhythmia types, because it does not contain

information about the waveform complexity and other

segments of the ECG signal. For this reason, another fea-

ture extraction method, form factor (FF) is used to

represent the waveform complexity of the EGC signal.

LBBB and normal heart beats of ECG signals’ waveforms

are given in Fig. 1 to show the effect of waveform com-

plexity on arrhythmia detection.

The first parameter of FF called activity is the variance

(rx
2) of the segmented signal (xn). The second parameter

namely mobility (Mx) is found calculating the square root

of the ratio of the activity of the first derivative of the

segmented signal (r2
x0 ) to the activity of the segmented

original signal (rx
2) Finally, FF is the ratio of the mobility

of the first derivative of the signal to mobility of the ori-

ginal signal, and these are formulated as follows [8];

Mx ¼
r2

x0

r2
x

� �1
2

ð1Þ

FF ¼ Mx0

Mx

¼ r€x=r _x

r _x=rx

ð2Þ

Higher-order statistics (HOS) is another applied feature

extraction method in this study. HOS is described an

effective tool to represent waveform complexity of the

ECG signal, especially third-order cumulant has most

powerful distinguishing capability compared to second-

and fourth-order cumulants [36]. For zero mean discrete

time signals, third-order cumulant can be determined by,

C3xðk; lÞ ¼ E xðnÞxðnþ kÞxðnþ lÞf g ð3Þ

where E states the expectation operator, k and l state time

lags. Special form of third-order cumulant with zero lag

called as skewness (s) can be described by

s ¼ E
x� l

r

� �3
� �

ð4Þ

where r is the standard deviation to normalize output, and

l is the mean value of samples, in case of non-zero mean

signals.

Linear prediction coding (LPC) predicts next samples of

a signal from a linear combination of previous samples of

the original signal. In other words, LPC is an all-pole IIR

filter that can be computed by,

Table 1 Composition of the heart beat data set

Beat types Number of beats Rate (%)

N 39,198 69.29

LBBB 5,489 9.70

RBBB 5,890 10.41

APB 782 1.38

PVC 2,895 5.11

PB 2,315 4.09

Total 56,569 100

ECG recordings 101 103 105 106 107 108 109 111 112 113 114

115 116 118 119 124 201 200 207 209 212 213

Fig. 1 LBBB and normal beat ECG waveforms [35]
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~xðnÞ ¼
Xp

i¼1

aixðn� iÞ ð5Þ

where ~xðnÞ is the predicted sample, ai is denominator

polynomial called LPC coefficient, and p is the order of

LPC. It is given that second-order LPC coefficients provide

better distinguishing capability for EGC classification [26].

In this study, nine dimensional features of the ECG

signals are computed using RR- and FF-based feature

extraction, skewness and second-order LPC coefficients

which can represent many ECG classes [16] after pre-

processing stage. Two Butterworth IIR filters with different

orders are used as a low pass (LP) and high pass (HP) filter

to remove noise and DC bias. The tenth order LP filter has

53-Hz cut-off frequency, and the third-order HP filter has

0.75-Hz cut-off frequency. ECG recordings and their RR

intervals can be found on the web page of PhysioBank

ATM [37]. The toolbox on that page also provides R points

in the required ECG recording as sample numbers and RR

intervals as duration in text file format. The RR intervals in

the text file are used directly as features, and R points as

sample numbers are used for reference points of other

feature extraction methods.

Each beat in ECG signals is segmented between 30

samples before referenced R point and 79 samples after R

point for FF computing. Finally, RR, FF, RR and FF ratio

to the previous values (RRR, FFR), the differences of RR

and FF from mean values (RRM, FFM) are extracted as

RR- and FF-based features that can be formulated by,

RRðiÞ ¼ RðiÞ � Rði� 1Þ ð6Þ

FFðiÞ ¼ r€x=r _x

r _x=rx

ð7Þ

RRRðiÞ ¼ RRðiÞ=RRði� 1Þ ð8Þ
FFRðiÞ ¼ FFðiÞ=FFði� 1Þ ð9Þ

RRMðiÞ ¼ RRðiÞ � RR ð10Þ

FFMðiÞ ¼ FFðiÞ � FF ð11Þ

The other feature extraction methods are skewness and

second-order LPC. The windowing is selected between 27

samples before R points and 60 samples after R point to

increase classification accuracy after try and trial method.

In brief, nine dimensional feature vectors computing RR-

and FF-based morphological features, skewness and

second-order LPC coefficients are considered. The block

diagram of the proposed feature extraction method is given

in Fig. 2.

A total of 56,569 heart beats obtained from 22 ECG

recordings of MIT–BIH arrhythmia database are applied the

feature extraction stages, and 9-dimensional feature vector

of each beat is computed and saved for classification.

2.3 Ensemble learning

Ensemble learning is the method of using multiple learning

models to increase predictive performance. The prediction

of each learning algorithm is combined in several methods

such as majority voting and averaging [38, 39]. The well-

known ensemble methods are listed in the literature as

bagging, boosting, stacking and random subspacing [40].

Boosting method is a powerful procedure for combining

the performance of each weak learner [30]. Each pattern in

training data is weighted observing its effect on prediction

error. After each iteration, the weights are determined and

applied to the classifier. Random subspace method pro-

posed by Ho [34] is another method of ensemble learning.

In this method, features divided into random dimension-

ality subspaces are used to construct classifiers, and output

is combined by majority voting. This method has advan-

tages on classification of high dimensional data. However,

it is still a problem how to select the optimum feature

subspaces. In addition, stacking ensemble method is to add

a new classifier to correct the errors of previous classifiers.

The outputs of the previous classifiers are used as metadata

for the last classifier. Thus, ensemble of various classifiers

can be considered to increase predictive performance in the

field of pattern recognition.

Bagging or bootstrap aggregating proposed by Breiman

in 1996 [28] is a procedure for combining base learners or

classifiers using the same training data set. The unknown

test pattern is assigned to the class based on majority voting

rule. The algorithm of bagging can be described by the

following steps:

1. Training data (xi, zi) i = 1,…,n,

2. For b = 1,…,B

a. Generate bootstrap samples of training data, some

instances will replicated, some will omitted

b. Use bootstrapped data as training data for each

classifier, nb.

3. Classify test data using trained each classifier, nb and

assign to the most represented.

Fig. 2 The block diagram of the proposed feature extraction
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A pattern in bootstrap resampled training set has a

probability of 1� ð1� 1=nÞn of being selected, and this is

approximately 1 - 1/e = 0.63 for large n values, which

means that each bootstrapped sample includes about 63 %

unique pattern in the training data, namely data in bag.

Thus, this different distribution in each sample causes

different numbers of classifiers, and the remained patterns

about 37 % of the training set can be used to evaluate

ensembles of bagged decision trees before testing proce-

dure, which is called out-of-bag (OOB) classification error.

In contrast to this advantage, the bagging ensemble reduces

the variance and increases the classification accuracy of

only unstable base classifiers such as DTs and ANNs [40,

41]. In other words, k-nearest neighbor and Naı̈ve Bayes

classifiers are stable and not effective for bagging proce-

dure [42].

In this study, bagging ensemble method is considered

for the classification of arrhythmia heart beats. DT is

selected as the base learner of the bagging method, and

arrhythmia beat classification using the single DT with

BDT is compared. The diagram of the BDT method

applied in this study is given in Fig. 3.

Seventy-five percent of extracted 56,569 heart beats

using MIT–BIH arrhythmia data set are used as testing

instances for the BDT. The number of bootstrap resampling

is varied between 2 and 75 to construct the same numbers

of base learners namely DTs. Thus, DTs trained by subsets

with non-uniform ECG sample distribution are grown up to

75. The effect of the numbers of base learners on bagging

ensemble classifiers can be analyzed by observing the OOB

error without applying any testing method such as parti-

tioning and k-fold cross-validation because of the bootstrap

resampling. In other words, 37 % of ECG observations

(5,233 ECG heart beat samples) which are omitted from

the training data in bootstrapping can be a practical way to

examine bagging method. However, the test data are

applied to construct DTs by bootstrap resampled training

subsets to make final decision about the arrhythmia heart

beat classification evaluating performance measures.

Finally, 25 % of the samples are applied to the constructed

DTs, and the final class assignment is decided based on

majority voting rule.

2.4 Performance measures

The performance of a proposed classifier is evaluated

comparing the actual value with predicted value. For this

reason, the first step is to store the actual and assigned class

attributes in the form of the confusion matrix given in

Table 2.

Accuracy is the common method which indicates the

overall performance of the proposed classification. Sensi-

tivity and specificity are the other measures which indicate

correctly identified actual positive samples and correctly

identified negative samples, respectively. These measures

can be found by

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
ð12Þ

Sensitivity ¼ TP

TPþ FN
ð13Þ

Fig. 3 The diagram of the

bagged decision tree applied in

this study

Table 2 A confusion matrix

Actual Assigned value

Value Positive Negative

Positive TP FN

Negative FP TN

TP, TN, FP and FN refer true positive, true negative, false positive

and false negative, respectively

Neural Comput & Applic (2014) 24:317–326 321
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Specificity ¼ TN

TNþ FP
ð14Þ

Kappa statistic [43, 44] is also a measure of the

agreement between two raters, which is thought to be more

robust because it eliminates agreements which can be

attributed to chance [45]. Kappa value (k) is formulated as

k ¼ p0 � pc

1� pc

ð15Þ

where p0 denotes the observed proportions of agreements,

and pc denotes the expected proportion of agreement.

These are defined as

p0 ¼
Pk

i¼1 nii

N
ð16Þ

pc ¼
Xk

i¼1;j¼1;i¼j

pipj ð17Þ

where k is the number of classification categories, nii is the

number of cases that comparison pair agrees as to classi-

fication in category i, N is the total number of cases, pi. and

p.j are the marginal probabilities. The computed Kappa

value defines the agreement level given in Table 3.

According to Kappa value, maximum value is one and

defines total agreement. The agreement level of two raters

decreases when its value decreases. It is desired to get

maximum Kappa value when a classifiers output is com-

pared with actual classes.

3 Experimental results

Arrhythmia hear beat classification is examined using the

proposed time-domain feature extraction methods and

BDT as described in the previous sections. The feature

extraction process consists of time-domain methods based

on RR interval and FF, higher-order statistics including

skewness, and second-order LPC coefficients of ECG sig-

nal. Totally, 56,569 ECG heart beats obtained from MIT–

BIH arrhythmia database are extracted for classification of

six heart beat types namely normal, LBBB, RBBB, APB,

PVC and PB. One of the ensembles learning method, BDT,

is used as the classifier and compared to ECG classification

using single DT. The two classifications and feature

extraction algorithms of which details of each stage are

given in the previous sections are written using MAT-

LAB�, and the block diagram is given in Fig. 4.

25 % of 56,569 heart beat samples are remained as test

data for BDT and DT, and the rest of the samples are used

as training data for DT and BDT with varying numbers of

base learners. Before testing, the OOB error is observed to

evaluate the effect of grown DTs on the prediction error.

This is a useful indicator to estimate BDT performance

before complex testing computations. For this reason, the

OOB error of the proposed BDT is given in Fig. 5.

The proposed BDT with up to 75 base learners has

minimum OOB error (0.006058) when 69, 73, 74 and 75

base learners are used. This useful OOB error information

resulted by classifying patterns in bag with out-of-bag

patterns shows that the numbers of grown trees increase the

predictive performance. To extend performance measures

of the arrhythmia classification, test data are applied to the

trained the BDT, and the effect of bagging method on

arrhythmia detection is evaluated using metrics including

Table 3 Interpretation values of Kappa statistic

Kappa value Interpretation

1.00 Total agreement

0.75–1.00 Excellent agreement

0.40–0.75 Fairly good agreement

0.00–0.40 Poor level of agreement

0.00 Agreement entirely due to chance

\0.00 Lower than that expected by chance

Fig. 4 Proposed arrhythmia heart beat classification

Fig. 5 OOB error of the proposed BDT classifier
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accuracy, sensitivity, specificity and Kappa value. Thus,

the accuracy graph of bagging DT varying numbers of base

learners is given in Fig. 6, while single DT results 98.78 %

of accuracy.

The proposed arrhythmia classification using BDT

trained by 25 % of extracted 56,569 ECG heart beat results

99.51 % of the maximum accuracy with only 69 base

learners, although the OOB error rate is minimum when 69,

73, 74 and 75 base learners are used. That’s why, different

test data ratios affect the accuracy slightly, but the OOB

error is an effective indicator to estimate the BDT’s per-

formance before testing procedure. Moreover, BDT results

higher accuracy after the numbers of base learners are three

(99.07 %) or more when compared to single DT, and the

confusion matrices of the arrhythmia classification using

BDT with 69 base learners and single DT are given in

Table 4 to show the differences between successfully rec-

ognized heart beats using BDT and DT.

Referring Table 4, the counts of correctly predicted

samples in the confusion matrix of the BDT classifier are

higher, while misclassified samples are lower when com-

pared to DT classifier. To extend the investigation of the

effect of the proposed arrhythmia classification using BDT

on the distinguishing capability for each class, TP, TN, FP,

FN, sensitivity and specificity values of each class are

computed and given in Table 5 using the counts in the

confusion matrices of arrhythmia classification using BDT

and DT.

Generally, TP and TN counts which state successfully

recognized positive and negative samples for the BDT

classifier are higher than DT, while FP and FN counts are

lower. This results higher sensitivity and specificity values

of each beat type classification. In addition, the suggested

Fig. 6 The accuracy graph of arrhythmia classification using BDT

Table 4 Confusion matrices of

the classifiers
Actual heart beat classes

N LBBB RBBB APB PVC PB

Classifier’s output N DT 9,747 16 29 19 16 0

BDT 9,787 6 10 15 11 0

LBBB DT 13 1,349 4 1 7 0

BDT 3 1,365 1 1 2 0

RBBB DT 17 5 1,437 0 4 0

BDT 2 1 1,460 0 1 0

APB DT 14 0 0 168 3 0

BDT 4 0 0 174 0 0

PVC DT 9 2 2 8 692 3

BDT 4 0 1 6 709 2

PB DT 0 0 0 0 1 576

BDT 0 0 0 0 0 577

Table 5 Results of arrhythmia classifications using suggested BDT and DT

Beat type Sample # TP TN FP FN Sensitivity (%) Specificity (%)

DT BDT DT BDT DT BDT DT BDT DT BDT Increase DT BDT Increase

N 9,800 9,747 9,787 4,262 4,300 80 42 53 13 99.46 99.87 0.41 98.16 99.03 0.87

LBBB 1,372 1,349 1,365 12,745 12,763 25 7 23 7 98.32 99.49 1.17 99.80 99.95 0.15

RBBB 1,472 1,437 1,460 12,644 12,666 26 4 35 12 97.62 99.18 1.56 99.79 99.97 0.18

APC 196 168 174 13,929 13,942 17 4 28 22 85.71 88.78 3.07 99.88 99.97 0.09

PVC 723 692 709 13,395 13,406 24 13 31 14 95.71 98.06 2.35 99.82 99.90 0.08

PB 579 576 577 13,562 13,563 1 0 3 2 99.48 99.65 0.17 99.99 100 0.01

Total 14,142 Average 96.05 97.50 1.45 99.57 99.80 0.23
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BDT has more increasing effect on resulted lower sensi-

tivities of DT classifier. For example, APC classification

using DT has the lowest sensitivity (88.78 %), and this

ratio is increased by 3.07 % and resulted 88.78 %. Speci-

ficity has similar behavior to the sensitivity, and it has more

increase (0.87 %) for normal beat classification using BDT.

Briefly, arrhythmia heart beat classification using the sug-

gested BDT and the feature extraction methods decreases

unsuccessfully recognized beat samples, especially APB.

Final assessment on arrhythmia classification is given in

Table 6 considering overall classification results of both

BDT and DT.

Resulted Kappa values of BDT and DT are nearly one,

and both classifications are named ‘‘excellent agreement’’,

because predicted arrhythmia classes are nearly same to

actual classes. However, Kappa value of the BDT classifier

with 69 base learners is higher than DT’s, which indicates

the suggested feature extraction method with BDT has

higher predictive performance.

4 Discussion

The main morphological feature extraction method for ECG

signal classification is the RR interval. Its powerful distin-

guishing capability on irregular heart rhythms increases its

use as a feature in medical diagnostic decision support

systems. However, the detection of RR interval is noise

sensitive, and it can cause misclassified hear beat samples.

For this reason, filtering methods before feature extraction of

RR interval should be well designed or RR interval should

be combined to other feature extraction methods. Thus, FF,

skewness and second-order LPC coefficients to extract the

information of the ECG waveform complexity as well as the

reported as successful methods [5], the ratios of RR and FF

to the previous values and differences from mean values are

used with RR as time-domain methods.

The machine learning methods are as decisive as feature

extraction methods for ECG classification as well as for any

pattern recognition problem. Various machine learning

algorithms such as k-NN, ANN, SVM have been studied and

successfully applied to ECG heart beat classification.

However, ensemble learning methods to combine each

learner’s predictive performance are rarely applied to this

field. Bagging decision tree is used as an ensemble method

to increase the numbers of successfully recognized

arrhythmia ECG beat samples. Considering accuracy metric

indicates overall distinguishing performance of a classifier,

single DT results 98.78 % of accuracy, while BDT with 69

base learners results 99.51 % of accuracy. In this study, we

observe that BDT with three and more base learner provides

higher predictive performance examining given accuracy

(99.51 %), sensitivity (97.50 %), specificity (99.80 %),

Kappa coefficient (0.989), while single DT results 98.78,

96.05, 99.57 and 0.975 %, respectively. That is the reason

why BDT has more predictive performance on misclassified

ECG samples of DT especially for APC beat type.

The comparison of this study with previous studies, in

terms of the methodology, data set and accuracy is reported

in Table 7. Since various methodology and heart beat

number and types are used in the previous studies, it is not

possible to make definite comparison. However, this sug-

gested feature extraction method using RR interval and FF-

based features, third-order cumulant and second-order LPC

coefficients with decision tree and bagged decision tree

classifiers have higher accuracy rate than the previous

studies.

Table 6 Overall performance measures of the BDT and DT

Measures BDT DT

Sensitivity (%) 97.50 96.05

Specificity (%) 99.80 99.57

Accuracy (%) 99.51 98.78

Kappa coefficient 0.990 0.975

Table 7 Comparison of this study with previous studies

Authors Methodology Accuracy (%)

Tsipuaras et al. [10] RR- and knowledge-based classifier (KBC) 98.20

Karpagachelv et al. [46] Morphological and temporal features with extreme learning machine 89.78

Osowski and Linh [36] Cumulants with fuzzy hybrid neural network 96.06

Langerholm et al. [47] Hermite functions and RR with self-organized map 98.49

Dokur and Olmez [48] DWT with intersecting spheres network 95.70

Kim [5] PCA with extreme learning machine 98.72

YU and Chen [22] DWT and HOS with neural network 97.28

Engin [16] HOS, DWT and AR modeling with neuro-fuzzy networks 98.00

Proposed study RR- and FF-based features HOS and second-order LPC coefficients with DT and BDT 98.78 (for DT)

99.51 (for BDT)
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Finally, although BDT with 69 base learners has higher

performance measures, BDT with at least three base

learners can be used to increase the number of successfully

recognized ECG beat samples in comparison with a single

DT and the previous studies, which make BDT a successful

classifier for ECG signals. Moreover, the time consuming

of BDT algorithm with three learners takes approximately

nine seconds, when DT consumes eight seconds on 64-bit

Windows� 7 running Laptop PC with Intel� i3 2.27 GHz

processor with 3 GB DDR3 RAM. However, time con-

sumed increases approximately seventy seconds, in case 75

base learners are used.

5 Conclusion

In this study, we used bagged decision tree (BDT) which is

the type of ensemble learning method as the arrhythmia

heart beat classifier and compared with single decision

tree (DT). Twenty-two ECG recordings obtained from

MIT–BIH arrhythmia database are used to evaluate these

classifiers. Totally, 56,569 heart beats are extracted using

RR interval (RR) and form factor (FF)-based features,

skewness and second-order linear predictive coding (LPC)

coefficients for six types of arrhythmia heart beats. RR

which is the main property to detect irregular heart rhythms

is compared to previous RR and mean RR value. Thus, RR

ratio to previous RR (RRR) and RR difference from mean

RR value (RRM) is used to increase powerful morpho-

logical properties of RR. FF- and FF-based features; FF

ratio to previous one (FFR) and FF difference from mean

FF value (FFM) is computed like in RR-based features to

represent ECG waveform complexity into a few coeffi-

cients. In addition to these, skewness and second-order

LPC coefficients are added to features of the ECG signals.

Finally, 9-dimensional feature vector for 56,569 heart beats

is extracted. The quarter of the extracted ECG samples are

used as test data for DT and BDT, and DT results 98.78 %

of accuracy while BDT results 99.51 % of accuracy with

69 base learners and the defined feature extraction method.

The other performance measures including sensitivity

(97.50 %), specificity (99.80 %) and Kappa value (0.990)

are higher for BDT classifier when compared to DT results

96.05 %, 99.57 % and 0.975, respectively. Finally, BDT

has a higher predictive performance of arrhythmia hear

beat classification considering the given performance

measures when compared to DT. That is why, the BDT

classifier can recognize false-negative samples of each

class resulted by DT especially for atrial premature beat. In

other words, BDT increases resulted sensitivity rates of DT

classifier for each classes. In conclusion, the suggested

combination of time-domain feature extraction methods

and BDT with at least three base learners can be

successfully used for arrhythmia decision support system to

increase medical diagnostic accuracy.

Acknowledgments This work was partially supported by The

Research Fund of The University of Istanbul. Project numbers: IRP-

11824 and UDP-25231.

References

1. Sache FB (2004) Computational cardiology: modeling of anat-

omy, electrophysiology, and mechanics. Springer, Germany

2. Homaeinezhad MR, Atyabi SA, Tavakkoli E, Toosi HN, Ghaffari

A, Ebrahimpour R (2012) ECG arrhythmia recognition via a

neuro-SVM-KNN hybrid classifier with virtual QRS image-based

geometrical features. Expert Syst Appl 39:2047–2058

3. Zhang H, Zhang LQ (2005) ECG analysis based on PCA and

support vector machines. ICNN&B 2:743–747

4. Sandoe E, Sigurd B (1991) Arrhythmia–a guide to clinical elec-

trocardiology. Publishing Partners, Bingen

5. Kim J, Shin HS, Shin K, Lee M (2009) Robust algorithm for

arrhythmia classification in ECG using extreme learning

machine. Biomed Eng Online 8:31. doi:10.1186/1475-925X-8-31
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