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Abstract This study presents gene expression program-

ming (GEP), which is an extension to genetic programming

(GP), as an alternative approach to modeling the functional

relationships for the River Kurau, River Langat, and River

Muda of the Malaysia. A functional relation has been

developed using GEP with non-dimensional variables. The

development of a GEP non-dimensional model is descri-

bed. This paper compares current prediction equation with

the existing GEP model for the same rivers (Zakaria et al.

in Sci Total Environ 408:5078–5085, (2010). The pre-

sented model in this study is a less input GEP model and

that predicts good performance. The proposed GEP

approach gives satisfactory results compared to existing

predictors.

Keywords Malaysian Rivers � Gene expression

programming � Sediment transport � Regression analysis

1 Introduction

Information regarding sediment mobility is significant in

the aggradation and degradation of rivers. The estimation

of river sediment load constitutes an important issue in

river engineering. The sediment can increase the elevation

of channel beds with excess sand and gravel for tens to

hundreds of kilometers downstream. Such aggradation

promotes the lateral migration of channels and may cause

serious flooding during rainstorms due to the loss of

channel capacity necessary to convey floodwaters [15].

Currently, there are various sediment transport equations

that have been developed based on different approaches to

predict the total load transport rates. Conventional

approaches used in most modeling efforts begin with an

assumed form of an empirical or analytical equation and

follow with a regression analysis or curve fitting using

experimental data to determine the unknown model coef-

ficients Sasal and Isik [18].

Although a number of successful attempts have been

recorded by [4–6, 11–14], a wider application of theoretical

models is restrained by their heavy demand in terms of

computing capacity and time. Alternatively, soft comput-

ing techniques, such as artificial neural networks (ANNs),

evolutionary computation (EC), fuzzy logic (FL), and

genetic programming, have been successfully applied in

water engineering problems since last the two decades

(Nagy et al. [17], Yang et al. [19]). Bhattacharya et al. [6]

used machine learning to model sediment transport.

In recent years, rapid development in Malaysia has led

to an increased demand for river sand as a source of con-

struction material, which has resulted in a mushrooming of

river sand mining activities that have given rise to various

problems that require urgent action by the authorities.

These include riverbank erosion, riverbed degradation,

river buffer zone encroachment, and deterioration of river

water quality. Very often, over-mining occurs, which

jeopardizes the health of the river and the environment in

general. The present study summarizes the results based on

field data collected at three river catchments in Malaysia,

that is, the River Muda, the River Langat, and the River

Kurau. Fieldwork on selected sites for the three rivers was

performed to assess the capacity of the river to convey both
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water and sediment. Data collection on the bed material

was used to characterize the physical characteristics of the

sediment responsible for sediment transport, which deter-

mines the river response in terms of erosion and deposition.

The three rivers clearly have bed material sizes in the sand-

gravel range based on the collected data in the present

study [7]. This study shows that the sediment mobility can

be estimated accurately for Malaysian rivers using the gene

expression programming (GEP) technique.

1.1 Overview of GEP

GEP, which is an extension to genetic programming (GP)

[16], is a search technique that evolves computer pro-

grams (mathematical expressions, decision trees, poly-

nomial constructs, logical expressions, and so on). The

computer programs of GEP are all encoded in linear

chromosomes, which are then expressed or translated into

expression trees (ETs). ETs are sophisticated computer

programs that are usually evolved to solve a particular

problem and are selected according to their fitness at

solving that problem. Thanks to genetic modification,

population of ETs will discover traits and therefore will

adapt to the particular problem that they are employed to

solve. This means that, within enough time and setting the

stage correctly, a good solution to the problem will be

discovered [8, 9].

GEP is a full-fledged genotype/phenotype system, with

the genotype totally separated from the phenotype, while in

GP, genotype and phenotype are one entangled mess or

more formally, a simple replicator system. As a conse-

quence of this, the full-fledged genotype/phenotype system

of GEP surpasses the old GP system by a factor of

100–60,000 [8, 9].

Initially, the chromosomes of each individual of the

population are randomly generated. Then, the chromo-

somes are expressed, and each individual is evaluated

based on a fitness function and selected to reproduce with

modification, leaving progeny with new traits. The indi-

viduals of new generation are, in their turn, subjected to

some developmental processes as, expression of the gen-

omes, confrontation of the selection environment, and

reproduction with modification. These processes are repe-

ated for predefined number of generations or until a solu-

tion is achieved [8, 9] and more details can be found [10].

2 Study area and data used

The present study covers six sites at each of three rivers,

that is, River Muda, River Langat, and River Kurau that

have different level of sand mining activities. Sungai Muda

has a long history of sand mining activity along the upper

reach. Sungai Langat recently has been a major source of

sand for construction with the development of Putrajaya.

Fewer activities of sand mining are on-going in Sungai

Kurau at the upstream of Bukit Merah reservoir.

The surveyed cross sections for the River Muda and the

River Langat are single-thread channels with the top width

ranging between 22.5 and 134.0 m, representing medium-

sized rivers, and the top width for River Kurau ranges

between 25.8 and 41.0 m, representing a small-medium

river. The slopes are between 0.00008 and 0.0021, indi-

cating that the cross sections are still natural. The details of

the morphological and hydrological descriptors and range

of field data are given in Table 1. The data collection

includes flow velocity (V), flow depth (yo), flow discharge

(Q), suspended load (Tt), bed load (Tb), water surface slope

(So), and width (B). The corresponding values of flow area

(A) and hydraulic radius (R) are also given in Table 1. In

addition, the bed elevation, water surface, and thalweg

measurement (the minimum bed elevation for a cross

section) were also determined at the selected cross sections.

The total bed material load (Tj) is composed of the sus-

pended load and bed load. The total bed material load must

be specified for sediment transport, scour, and deposition

analysis. Details of the measurement methodology are

given in [3] and also different factors affecting sediment

transport such as

Frm ¼
V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gd50ðSs � 1Þ
p

for mobility, Cv for transport and Dgr, d50/D, Ss for sedi-

ment, and R/d50, yo/d50 for conveyance shape (Fig. 1).

2.1 Multiple linear regression

Ab. Ghani [1] shows that good prediction of sediment

transport in pipes could be obtained from simple regression

equations. It is therefore decided to keep the form of the

equation as simple and as easy to use as possible.

Based on dimensional analysis from previous studies

[2, 17], the proposed function is given as follows:

Cv ¼ f
V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gd50 Ss � 1ð Þ
p ;

R

d50

;
B

yo

 !

ð1Þ

where R = Hydraulic radius and B = water surface width.

Utilizing all data from the three rivers in the present study,

the best equation is given as follows:

Cv ¼ 2:42� 10�5

� V
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2g d50ð Þ Ss � 1ð Þ
p

 !0:022
R

d50

� ��0:2016
B

yo

� �0:104

ð2Þ

272 Neural Comput & Applic (2014) 24:271–276

123



Cv ¼
Qb

Q

� �

ð3Þ

and

Tj ¼ Qb � qs ð4Þ

Figures 2, 3, 4 show the sediment rating curves for three

rivers using Eq. 2 (Ab. Ghani et al. [2]).

3 Development of sediment model using GEP

In this section, the sediment load is modeled using GEP

approach. Initially, the ‘‘training set’’ is selected from the

whole data and the rest is used as the ‘‘testing set’’. Once

the training set is selected, one could say that the learning

environment of the system is defined. The further part of

modeling consists of five major steps in preparing to use

gene expression programming. The first is to choose the

fitness function. For this problem, the fitness, fi, of an

individual program, i, is measured by

fi ¼
X

Ct

j¼1

M � Cði;jÞ � Tj

�

�

�

�

� �

ð5Þ

where M is the range of selection, C(i,j) is the value returned

by the individual chromosome i for fitness case j (out of Ct

fitness cases), and Tj is the target value for fitness case j. If

|C(i,j) - Tj| (the precision) is less than or equal to 0.01, then

the precision is equal to zero, and fi = fmax = CtM. In this

case, M = 100 was used; therefore, fmax = 1,000. The

advantage of this kind of fitness functions is that the system

can find the optimal solution by itself.

Secondly, the set of terminals T and the set of functions

F are chosen to create the chromosomes. In this problem,

the terminal set consists obviously of three independent

variables, that is, T ¼ V
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gd50 Ss�1ð Þ
p ; R

d50
; B

yo

� �

. The choice of

the appropriate function set is not so obvious; however, a

good guess can always be helpful in order to include all the

necessary functions. In this study, four basic arithmetic

operators (?, -, *, /) and some basic mathematical func-

tions (H, e, power) were utilized.

The third major step is to choose the chromosomal

architecture, that is, the length of the head and the number

of genes. We initially used single gene and 2 length of

heads, increased the number of genes and heads, one after

another during each run, and monitored the training and

testing performance of each model. We observed that

number of genes more than 2 and length of heads more

than 8 did not significantly increase the training and testing

performance of GEP models. Thus, length of the head,

lh = 8, and two genes per chromosome were employed for

each GEP model in this study. The fourth major step is to

choose the linking function. In this study, we tried addition

and multiplication as linking functions and observed that

linking the sub-ETs by addition gave better fitness (Eq. 5)

values. Finally, the fifth major step is to choose the set of

genetic operators that cause variation and their rates. A

combination of all genetic operators (mutation, transposition,

and crossover) was used for this purpose (see Table 2).

The calibration of the GEP model is performed based

on 214 input-target pairs of collected data. Among the 214

data sets, 54 (25 %) is reserved for validation, 160 sets for

the calibration purpose, and the remaining were used for

testing, or validating, the GP model.

The best of generation individual, chromosomes 30, has

fitness 687.5 for sediment load Tj. The explicit formula-

tions of GEP for Sediment load Tj, as a function of

V
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gd50 Ss�1ð Þ
p ; R

d50
; B

yo

� �

, were obtained for 3 rivers as

Table 1 Range of field data for

three rivers [2]
Parameters Study area

River Langat River Muda River Kurau

Flow discharge, Q (m3/s) 2.75–120.76 2.59–343.71 0.63–28.94

Mean flow velocity, V (m/s) 0.23–1.01 0.14–1.45 0.27–1.12

Water surface width, B (m) 16.4–37.6 9.0–90.0 6.30–26.00

Mean flow depth, yo (m) 0.64–5.77 0.73–6.90 0.36–1.91

Flow area, A (m2) 8.17–153.57 5.12–278.34 1.43–33.45

Hydraulic radius, R (m) 0.45–3.68 0.55–3.90 0.177–1.349

Water surface slope, So 0.00065–0.00185 0.00008–0.000235 0.00050–0.00210

Bed load, Tb (kg/s) 0.027–0.363 0–0.191 0.080–0.488

Suspended load, Tt (kg/s) 0.2860–99.351 0.024–15.614 0.001–2.660

Total bed material load, Tj (kg/s) 0.525–99.398 0.099–15.644 0.089–2.970

Mean sediment size, d50 (mm) 0.31–3.00 0.29–2.10 0.41–1.90

Manning n 0.034–0.195 0.021–0.108 0.014–0.066
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Tj ¼ e
log ð3:98þ R

d50
Þ
ffiffiffiffiffiffiffiffiffi

2:47
B
y0
� R

d50

q

� 	

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffi

e
R

d50

q

� �

s

� R

d50


 �2
1

�7:05

� �

þ 3:05

V=ðg½Ss � 1�d50Þ1=2
ð6Þ

Figure 5 show the expression trees of the above

formulation.

4 Results and discussion of GEP

The performance of the GEP model was compared with the

traditional sediment transport equations. Overall, particu-

larly for field measurements, the GEP models give better

predictions than the existing models. The GEP model

produced the least errors (r2 = 0.97, MAE = 0.02122

and MSE = 0.0008) for training data and (r2 = 0.95,

Fig. 1 Study area [2]
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MAE = 0.06122 and MSE = 0.0034) (Fig. 6). The pre-

sented model in this study is a less input GEP model and

that predicts good performance compared to Zakaria

et al.’s [20] GEP model which took longer duration to

train GEP model due more inputs. The present GEP model

was completed calibration (training) less than 30 min on

a standard personal computer (Intel Core i7 with CPU

speed of 2.19 GHz and 1.878 GB of RAM running

Windows XP).
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Fig. 2 Comparison of River Langat sediment rating curve for present

study and Eq. 4 [2]
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Fig. 3 Comparison of River Muda sediment rating curve for present

study and Eq. 4 [2]
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Fig. 4 Comparison of River Kurau sediment rating curve for present

study and Eq. 4 [2]

Table 2 Parameters of the optimized GEP model

Parameter Description of parameter Setting of parameter

P1 Function set ?, -, *, /, H, power

P2 Mutation rate % 30

P3 Inversion rate % 30

P4 One point and two point

recombination rate

respectively %

30, 30

P5 Gene recombination rate 95

P6 Gene transportation rate 0.1

Fig. 5 Expression tree (ET) for the GEP formulation
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The most significant advantage of the proposed GEP

model compared to classical regression analysis based models

(traditional equations) is that it is capable of mapping the data

into a high dimensional feature space, where a variety of

methods (described in the previous section) are used to find

relations in the data. Since the mapping is quite general, the

relations found in this way are accordingly very general.

5 Conclusions

Sediment transport in rivers is a complex phenomenon. The

nature and motivation of traditional total load models differ

significantly. These approaches are normally able to make

predictions within about one order of magnitude of the

actual measurements. The data used covers a wide range of

the pertinent parameters from the collected actual river

data. To overcome the complexity and uncertainty associ-

ated with total load estimation, this research demonstrates

that GEP model can be applied for accurate prediction.

A GEP model with the all the inputs mentioned produced

satisfactory perform adequately with less inputs compared

to Zakaria et al. [20]. A GEP model that completed with

trained values of requiring input of grouped parameters

pertaining to mobility, transport, sediment, and conveyance

shape is recommended in order to predict sediment load.

The GEP model was able to successfully predict total load

transport in a great variety of fluvial environments,

including both sand and gravel rivers. The high value of the

coefficient of determination (r2 = 0.95) implies that the

GEP model provides an excellent fit for the measured data.

These results suggest that the proposed GEP model is a

robust total sediment load predictor.
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