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Abstract Determination of petrophysical parameters by

using available data has a specific importance in explora-

tion and production studies for oil and gas industries.

Modeling of corrected permeability as a petrophysical

parameter can help in decision making processes. The

objective of this study is to construct a comprehensive and

quantitative characterization of a carbonate gas reservoir

in marine gas field. Artificial neural network is applied

for prediction of permeability in accordance with other

petrophysical parameters at well location. Correlation

coefficient for this method is 84 %. In the study, the geo-

logical reservoir model is developed in two steps: First, the

structure skeleton of the field is constructed, and then,

reservoir property is distributed within it by applying new

stochastic methods. Permeability is modeled by three

techniques: kriging, sequential Gaussian simulation (SGS)

and collocated co-simulation using modeled effective

porosity as 3D secondary variable. This paper enhances the

characterization of the reservoir by improving the model-

ing of permeability through a new algorithm called collo-

cated co-simulation. Kriging is very simple in modeling the

reservoir permeability, and also, original distribution of the

data changes considerably in this model. In addition,

the SGS model is noisy and heterogeneous, but it retains

the original distribution of the data. However, the addition

of a 3D secondary variable in third method resulted in a

much more reliable model of permeability.
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prediction � Neural networks � Geostatistical approaches

1 Introduction

Reservoir characterization is a process of describing vari-

ous reservoir characteristics using all the available data to

obtain reliable reservoir models for accurate reservoir

performance prediction. Reservoir characterization is

applied in reservoir modeling, simulation, and any primary

or enhanced recovery design processes at the petroleum and

natural gas industry. Characterization of these parameters

is one of the main challenges in petroleum engineering

[19, 20].

Characterizing rock permeability and its spatial distri-

bution in a heterogeneous reservoir is a problem with no

direct solution. Today, there are two generally reliable

means of acquiring knowledge on rock permeability. These

are laboratory measurement and well test interpretation.

Historically, permeability has been estimated using

porosity–permeability transforms generated through linear

regression of porosity and permeability data [17]. How-

ever, this technique is considered adequate for sandstone

reservoirs, but it has no good results for predicting per-

meability in complex carbonates where digenetic processes

introduce a higher degree of heterogeneity [4, 17, 20].

The integration of well data and seismic data has

acquired importance in reservoir characterization studies in

recent years [2, 29]. In this paper, 3D seismic data, the

available core permeability data and conventional petro-

physical well logs from four wells drilled in a gas field
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located in Persian Gulf are used to predict and model

permeability.

Neural network is used as a nonlinear regression method to

develop transformation between the selected well logs and

core permeability measurements. Since 1987, neural networks

have been applied to study and evaluate reservoirs, due to their

ability to solve highly nonlinear problems in an adaptive

manner. So, neural networks have been increasingly applied

to predict reservoir properties using well log data. Recent

studies [3, 31] suggest that neural networks show great

potential for generating more accurate predictions.

Finally, best results will be used in three different

geostatistical approaches to construct 3D reservoir perme-

ability models for a better perception of the reservoir.

A major contribution of geostatistics to reservoir modeling

has been addressing the general problem of data integra-

tion, proposing algorithms for merging data of different

types, reliability, taken at different scales, into a more

accurate reservoir numerical model [30].

2 Artificial neural network (ANN)

Neural networks, in mathematical terms, can be thought of

as multivariable, nonlinear regression analysis systems.

Actually a neural network attempts to imitate the parallel

architecture of the mammalian brain. It is composed of a

large number of highly interconnected processing elements

that are analogous to neurons that are linked together with

weighted connections analogous to synapses [5, 25].

The network’s architecture or its pattern of connectivity

characterizes how much knowledge is stored in it. It also

determines the algorithm to be used in updating the weights

of each connection. In recent years, several architectures and

learning patterns have been developed for neural network

algorithm, such as back-propagation error models, general-

ized regression neural network (GRNN), probabilistic neural

network (PNN) and unsupervised neural network [24, 25].

3 Geostatistics

Geostatistics is a branch of applied statistical science and a

powerful tool in reservoir characterization that studies spatial

and/or temporal phenomena and capitalizes on spatial rela-

tionship to model possible values of variables at un-sampled

locations [6, 26]. Earth science–derived data are characterized

by a fundamental feature of spatial variability. Spatial vari-

ability includes scales of continuity, or heterogeneity and

directionality within the data [9, 16]. Accordingly, these data

types are not entirely random, but they are a product of natural

geological processes, and they have a component of spatial

continuity, correlated over some distance, called regionalized

variables. Unlike other random variables, regionalized vari-

ables are distributed in space (and/or time) with location

information attached to each measurement. Each measure-

ment is related to nearby observations as a consequence of the

physical process or multiple processes that generated them.

None of the known classical statistical methods, such as

regression methods, are able to address the spatial feature

associated with regionalized variables adequately [14, 16, 23].

Geostatistics is often used to estimate the spatial variability

in geological properties and other earth science–related

properties. Among its different applications, geostatistics is

being increasingly used to develop accurate models in petro-

leum reservoir studies [11, 14].

As mentioned before, the principal objective of reservoir

characterization is to develop a spatial understanding of

inter-well heterogeneity associated with each reservoir

property. This paper studies utilization of geostatistics as a

tool in providing accurate reservoir permeability models.

3.1 Kriging

The most popular deterministic algorithm for reservoir

static modeling is kriging. Kriging is a linear interpolation

technique that estimates each sample by using a linear

weighted combination of surrounding sample values. The

variogram parameters are used to calculate weights. It can

be shown by the following Eq. 1 [7, 13]:

Zðx0Þ ¼
Xn

i¼1

kiZðxiÞ ð1Þ

where Z(x0) is the unknown value at the position of x0, Z(xi)

is sample value at xi positions, and ki are sample weights

[9, 10].

Kriging gives the value with the highest probability at

each point but this is a smooth result and it is quite wrong

to presume that this is the most likely distribution. This is

only an average solution and if users carry out many

simulations and average them, the result will be similar to

those of kriged model [9, 28].

3.2 Co-kriging

This geostatistical technique is a modification of kriging

and is based on a weighted linear integration of two

Table 1 Number of data points in each data set for permeability

prediction

Data set Number of data points

Training 760

Validation 253

Testing 253
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variables, primary and secondary, unlike kriging, which

produces models based on a single variable [21]. Well data

are usually considered as primary data because they is

exact and sparse. Since seismic data are less exact but

dense, they are usually the secondary data. Secondary data

also can be a modeled variable such as porosity for mod-

eling of permeability [9, 12, 28]. There are two main types

of co-kriging: simple co-kriging and collocated co-kriging.

First version of co-kriging requires working on data

residuals or, in other words, on variables whose means

have all been standardized to zero. Second version is a

reduced form of co-kriging that consists of retaining only

the collocated secondary variable. The co-kriging estimator

is written as follows: [12].

Zcokðx0Þ ¼
Xn

i¼1

kiZðxiÞ þ lðx0ÞYðx0Þ ð2Þ

where Zcok(x0) is the unknown value obtained by collocated

co-kriging method at the position of x0, Y(x0) is the known

value of secondary parameter at the position of x0 and l(x0)

is the sample weight at the position of x0.

Table 2 Correlation coefficient between core permeability and

conventional well logs

Well log Permeability

Acoustic impedance 0.60

Density 0.71

Neutron porosity 0.80

P wave 0.65

Effective porosity 0.86

Saturation water 0.61

Fig. 1 Cross-plot between core

permeability and permeability

obtained from ANN for well C,

which is not used in

constructing ANN model

(permeability is in md and

logarithmic scale); correlation

coefficient: 84 %
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3.3 Sequential Gaussian simulation (SGS)

The most common technique used in reservoir geostatistics

is sequential Gaussian simulation [21]. It is called

sequential because the same process is repeated to calculate

each point, Gaussian because the data set should have

Gaussian distribution and simulation because at each

un-sampled location a simulated value is drawn from the

probability distribution function computed from actual and

previously simulated values in the neighborhood of this

location. The algorithm starts with a randomly selected

location and goes forward sequentially across the grid to be

simulated. The order of this progression is not specified by

theory, and a random sequence is followed [18, 21].

4 Methodology

Nowadays, the reservoir model building workflow is mainly

divided into four steps: (1) definition of the reservoir

boundaries (and especially the top and bottom horizons),

(2) building a geologically true structural model (layering,

faults, etc.), (3) population of properties (porosity, perme-

ability) by kriging or co-kriging for instance and then

(4) upscaling the model in order to obtain a reservoir model

[8, 22]. In this study, all steps of the workflow were conducted

precisely. In order to improve the constructed model, two new

stochastic approaches have been applied in modeling.

In this paper, an intelligent technique using artificial neural

networks (ANN) to determine reservoir permeability from

well logs at well locations has been used. Finally, the best

results of the first step will be utilized as an input to the dif-

ferent geostatistical approaches through the structural model

to construct 3D geological reservoir permeability models.

4.1 Permeability prediction using ANN

First step is the preparation of well logs data and applying

ANN on the data. The data sets used in this part of the

paper were derived from four wells of the studied gas field

Fig. 2 Permeability logs predicted by ANN at wells (permeability is in md)

1766 Neural Comput & Applic (2013) 23:1763–1770

123



in which two wells have core permeability data. One of the

cored wells is utilized for constructing the ANN model, and

the second well is used for evaluating the reliability of the

ANN model. Then, the model is applied to predict per-

meability at the other un-cored wells and intervals.

Table 1 summarizes the number of data points that are

used for prediction of permeability. Obviously, it can be

seen that the number of training data points (60 % of all

data points) is more than the number of other data point

sets which is because of the fact that the ANN is built based

on the training data set; therefore, it should be represen-

tative of all data, and as much as the number of training

data points increases this possibility will be increased.

Selection of suitable inputs plays a crucial role in ANN

model, because the inputs that have stronger relationships

with output can present more accurate prediction than

weaker ones. Table 2 illustrates the correlation coefficients

between core permeability and conventional well logs used

in the prediction.

Learning method is a supervised algorithm in which the

error limit and maximum number of iteration were set to

10 % and 150, respectively. After constructing the ANN

model using well A of available two wells with core data,

the reliability of the model is evaluated by the second well

(well C). Figure 1 shows cross-plot between core perme-

ability and permeability obtained from ANN for well C.

The final step is to generalize the results of work by

applying the ANN model on the other remained wells of

the studied area to estimate permeability at un-cored wells.

Figure 2 shows predicted permeability logs obtained from

ANN at wells. These values are in milli Darcy.

4.2 Structural modeling

Structural modeling is the process of building the reservoir

skeleton structure or the reservoir 3D grid. The properties

will be distributed in it. The reservoir grid can be con-

structed in time or depth scale [1, 15].

Fig. 3 Cross section of the

horizons along with well A in

this study
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Fig. 4 A view of modeled

permeability using kriging

algorithm (permeability is in

md)

Fig. 5 A view of simulated

realization of modeled

permeability using SGS

algorithm (permeability is in

md)

Fig. 6 A view of simulated

realization of modeled

permeability using collocated

co-simulation algorithm

(permeability is in md)
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Dashtak, Nar, K1, K4, Upper Dalan and lower Dalan

horizons are used in this paper. Figure 3 shows a cross

section of available horizons. Studied horizons encompass

15 zones. In the making zone process, the vertical division

can be added to the model based on the geological infor-

mation such as isochors or well markers. For making zones

in the studied gas field, a finer stratigraphic vertical reso-

lution is defined based on the well information.

Finally after making zones, layering is done in order to

model permeability by using geostatistical approaches.

This process is performed from finest grids to optimum

sizes. Although fine grids cause no data lose after upscal-

ing, they produces a great number of cells, which increases

the error of estimation. On the other hand, the coarse cells

generate low number of grids, but they cause loss of small-

scale variations after the upscaling [15, 27].

4.3 Applying geostatistical approaches

In this paper, permeability is modeled utilizing three

techniques: kriging, sequential Gaussian simulation (SGS)

and collocated co-simulation using modeled effective

porosity as the secondary variable. Kriging is the first

method applied to estimate the permeability model. But

this method is very simple in modeling the reservoir per-

meability. So, the sequential Gaussian simulation (SGS),

which is the most commonly used method of simulation, is

also applied in petrophysical modeling.

Collocated co-simulation is the third alternative to

perform petrophysical modeling. Co-kriging method is

introduced to solve the problem of insufficient well data by

incorporating a secondary variable that is densely sampled

and shows a good correlation with the primary well data.

Collocated co-kriging is more exact and faster than the

simple co-kriging. This new method is used to conduct the

simulation using the spatial distribution of a secondary

variable with a correlation coefficient.

5 Result and discussion

Figure 4 shows a 3D view of modeled permeability using

kriging algorithm. As can be seen, the kriged permeability

model could not accurately show permeability variation,

and instead, spatially smooth simplistic permeability model

is obtained. This kind of inefficiency could be predicted

due to insufficient data points utilized in this study.

Another reason that could be mentioned is that kriging does

not retain the histograms and considerably changes the

distribution of original data (Fig. 7a).

Figure 5 shows a 3D view of simulated realization of

modeled permeability using SGS algorithm. SGS models

are more complex, and therefore, they took longer running

time. Since simulated permeability model could better

retain heterogeneity, it has better ability to show the actual

reservoir geology (Fig. 7b).

Figure 6 shows a 3D view of simulated realization of

modeled permeability using collocated co-simulation

algorithm. It can be seen that the randomness of SGS

algorithm is much less, and instead, the result has been

Fig. 7 Histograms of permeability distribution before and after

modeling by kriging (a), SGS (b) and collocated co-simulation

(c) techniques (permeability is in md and logarithmic scale)
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affected by the modeled effective porosity trend. Figure 7

shows histogram of data distribution before and after

applying different modeling methods. It demonstrates that

kriging changes distribution of data and cannot be a suit-

able method for modeling permeability. Although SGS

method does not change original distribution of data, it

results in a noisy model. It can be seen from Fig. 7c that

original distribution of data does not change in the third

method. Also, problems of the second method have been

solved by this new method.

6 Conclusion

Applying neural network methods in this paper shows that

these methods are suitable for reservoir characterization

and similar studies in petroleum engineering. Also,

applying geostatistics approaches leads to significant

results. The kriged model is smooth, and the original dis-

tribution of the data changes considerably in this model.

The SGS model is noisy and heterogeneous, but it retains

the original distribution of the data. The addition of a 3D

secondary variable that is densely sampled and have a

reasonable correlation coefficient with primary data resul-

ted in a much more reliable model of permeability. Col-

located co-simulation algorithm is a new geostatistical

method that provides a reliable model of reservoir

permeability.
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