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Abstract The provision of long-distance travel time

information has been a major factor facilitating the intel-

ligent transportation system to become more successful.

Previous studies have pointed out that non-recurrent con-

gestion is the major cause of freeway delay. The long travel

distance complicates the characteristics of traffic flow.

Hence, how to improve the prediction capability of long-

distance travel time in the case of non-recurrent congestion

is an important issue that must be overcome in the field of

travel time prediction. This study constructs the travel time

prediction model for a segment of 36.1 kms (including

eight interchanges) in the National Freeway No. 1, Taiwan,

by using the multilayer perceptron. To improve the pre-

diction capability of the model in the case of non-recurrent

congestion, this study collects data of average spot speed

and heavy vehicle volume gathered by dual-loop vehicle

detectors, in addition to rainfall and temporal feature.

Furthermore, the historical travel time inferred from the

original data of electronic toll collection (ETC) system is

also used as the input variable, and the actual travel time

inferred from ETC is used as the training target to establish

a robust prediction model. As suggested by the results of

168 experimental combinations, the most appropriate pre-

diction model established in this study is a highly accurate

forecasting model with MAPE of 6.47 %.

Keywords Travel time prediction � Freeway � Electronic

toll collection � Non-recurrent congestion � Neural

networks

1 Introduction

The provision of travel time information has been one of

the major factors facilitating the advanced traffic man-

agement system (ATMS) and advanced traveler informa-

tion system (ATIS) to become more successful [1].

Furthermore, the establishment of ATMS and ATIS can

improve the performance of existing transportation sys-

tems, make more efficient use of limited resources, and

reduce pollution emissions to slow down the global

warming ultimately. Hence, travel time prediction has been

a research topic of concern and attention. The long-dis-

tance travel time prediction can effectively provide alter-

native freeway route information to facilitate ATMS and

ATIS to be more successful. However, the longer section

of freeway contains more interchanges, leading to more

complex changes in the characteristics of traffic flow and

thus higher difficulty of travel time prediction. Hence, the

prediction of long-distance travel time becomes a major

issue that must be overcome in the area of travel time

prediction. Nevertheless, the development of continuous

travel time prediction model will encounter the traffic

condition of non-recurrent congestion as a result of

incidents.

The study of Oak Ridge National Laboratory [2] pointed

out that 55 % of the delays drivers encounter in American

freeways are caused by non-recurrent events, 72 % of

which are freeway accidents [3]. Therefore, improving the

accident prediction capability [4, 5], finding the key acci-

dent-related variables [6], and estimating the impact [7–9]

are all issues that should be addressed seriously by research

institutions and management units. However, due to the

gap between accident reporting time and the occurrence

time, the important parameters to measure traffic perfor-

mance such as the accident disposal time and number of
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closed lanes cannot be accurately measured at the first

time. As a result, how to collect important variables and

develop a robust prediction model when it is unable to

acquire important accident-related variables in real time to

improve the real-time continuous prediction capability in

the case of non-recurrent congestion becomes an interest-

ing issue that needs to be further addressed.

As far as prediction technology is concerned, since

1970, researchers have used the autoregressive integrated

moving average (ARIMA), Kalman filtering [10, 11],

locally weighted regression (LWR) [12], and exponential

smoothing (ES) models [13–18] to perform travel time

prediction or traffic flow prediction. Furthermore, many

successful studies of travel time prediction or traffic flow

prediction on freeway in the past also utilized the support

vector regression [19], ARIMA-like time series [20],

Markov Chains [21], neural networks [22–24], and so on.

Regarding the travel time prediction of freeway, studies on

topics such as short distance [23, 25], general vehicle flow

status (excluding non-recurrent congestion) [19, 21, 24,

26], and peak hour [22] have achieved good results. Van

Lint et al. [23] pointed out that the travel time would have a

larger variance when congestion occurs. Furthermore, since

the freeway delay is mainly caused by non-recurrent con-

gestion events [2], improving the capability of the predic-

tion model in the case of non-recurrent congestion is an

important issue that needs to be addressed. Fei et al. [27]

presented a Bayesian inference-based dynamic linear

model to predict online short-term travel time on a freeway

section under both recurrent and non-recurrent traffic

conditions. In recent decades, the artificial neural network

(ANN) has been widely applied in the areas of traffic flow

prediction, speed prediction [28–31], and travel time pre-

diction [32]. Additionally, ANN has been successfully

applied in other areas such as water quality prediction [33]

and automotive price forecasting [34]. From the results of

Najah et al. [33], the radial basis function neural network

outperforms the linear regression model and the multilayer

perceptron (MLP). In [34], Reza Peyghami and Khanduzi

proposed a hybrid learning approach based on the genetic

algorithm and least square method to obtain the weights of

neural networks. Previous research findings (e.g., [28–32])

showed that the MLP have relatively high degree of

robustness and prediction capability in the case of complex,

nonlinear, and hardly predictable issues. Therefore, this

study attempts to employ the MLP network as the travel

time prediction tool in the case of freeway with non-

recurrent congestion.

This study collects the characteristics of traffic on free-

way with non-recurrent congestion and develops a travel

time prediction model of long distance on freeway by using

MLP. The remainder of this paper is organized as follows.

Section 2 elaborates on the variable selection process.

Section 3 presents the travel time prediction model in the

case of freeway with non-recurrent congestion. The data

distribution is illustrated in Sect. 4. Thereafter, the experi-

mental process and results are presented in Sect. 5. Finally,

conclusions of this study are drawn in Sect. 6.

2 Variable selection

The study of travel time can be done by simulation or

estimation. In terms of travel time prediction by estimation,

selecting the significant variables to reflect the character-

istics of traffic flow is the key in improving the prediction

and estimation capability of models. Chang [4] pointed out

that factors affecting the characteristics of traffic flow can

be divided into three categories including geometric vari-

ables, traffic characteristics, and environmental factors.

The geometric variables include variables such as the

degree of horizontal curve and vertical grade. The traffic

characteristics include variables such as average daily

traffic (ADT) per lane, trucks percentage, bus percentage,

and peak hour factor (PHF). The environmental factors

mainly include the number of days with precipitation. The

research findings in Chang [4] indicated that rainfall and

bus percentage are important variables to explain acci-

dents. Wei et al. [8] utilized the traffic, time, space, and

geometric attributes to analyze the accident lasting time

and achieve good results. In Wei et al. [8], the traffic data

including the speed and traffic flow were collected by dual-

loop vehicle detectors (VDs). As this study predicts the

travel time at every 5 min and the important variables in

analyzing traffic flow characteristics such as geometric and

space attributes do not vary significantly in the short-term

continuous prediction model, this study collects data

regarding traffic characteristics, time, and environmental

factors.

Data collection methods can be divided into the spot and

spatial collection methods. The main techniques of spot

data collection method include the inductance loop detec-

tors, microwave, infrared, and radar. Traffic variables such

as the space-mean-speed, vehicle type, and traffic flow can

be collected by the above methods. The data collection

method of using inductance loop detectors is most widely

employed in Taiwan. Yeon et al. [21] pointed out that using

the traffic flow and average spot speed collected by dual-

loop VDs to predict the travel time of general traffic status

(congestion not due to weather, accidents, incidents, or

work zones) can achieve good estimation results. Yuan

et al. [35] indicated that variables of speed, occupancy, and

volume are also the important factors to capture traffic

characteristics. Additionally, Chang et al. [36] pointed out

that bus percentage is an important variable for accident

analysis, indicating that the flow of heavy vehicle is an
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important variable affecting the characteristics of traffic

flow. As the freeway segment in this study is the main

connection road of major economically developed areas

including Hsinchu Science-Based Park, Jungli Industrial

Park, Taoyuan International Airport, Songshan Interna-

tional Airport, Taipei Port, and Keelung Port, the charac-

teristics of traffic flow are affected by complex economic

activities. In addition to reflecting the economic activities,

the larger volume of heavy vehicle has a greater impact on

the moving efficiency of overall traffic flow due to different

speed limits for heavy vehicles and small vehicles on the

National Freeway No. 1, Taiwan, as well as the relatively

poor climbing and lane-changing capability of heavy

vehicles. In view of this, this study collects the heavy

vehicles flow via the dual-loop VDs as the input variables

of prediction model.

Furthermore, in terms of the spatial data collection

methods, the travel time prediction of freeway with non-

recurrent congestion can mainly be conducted by automatic

vehicle identification (AVI) [37, 38] and probe vehicle

technology [39]. The actual travel time of the freeway

segment under study can be collected by AVI and probe

systems such that the reliability of prediction model can be

guaranteed. It is also because the AVI system does not need

to overcome the problems such as the error resulted from

positioning by using global positioning system (GPS) and

time delay of data feedback in the data acquisition process,

and the AVI system has advantages such as higher accu-

racy and timeliness as compared with the probe vehicle

technology. Due to the higher establishment cost of AVI

system, previous studies were limited in road segment

under study and number of samples. In Taiwan, the ETC

system was established in 2006; the ETC system covers the

entire National Freeway No. 1. Up to the end of October

2009, the utilization rate has reached 36.48 %, and there

are a total of 16,247,908 charge records in October 2009

with charge success rate being at 99.9984 %. Therefore,

through the ETC system, the data of travel time can be

collected on a long-road segment and the number of sam-

ples can also considerably increase to ensure the repre-

sentativeness of the samples. In this study, the original data

are collected and the actual travel time is calculated as the

training target through the ETC system. In addition, gen-

erally speaking, traffic characteristics vary in weekdays and

weekends. Hence, the different encoding schemes for the

day of the week are also the important variable in mas-

tering the characteristics of traffic flow.

To summarize, in addition to integrating important

variables affecting the characteristics of traffic flow such as

rainfall, the day of the week, morning and afternoon, spot

speed, and heavy vehicle volume, this study further inte-

grates the historical travel time inferred from the original

ETC data and utilizes the actual travel time as the training

target to establish a robust travel time prediction model for

the freeway with non-recurrent congestion.

3 Travel time prediction architecture

The procedure of travel time prediction in this study is

illustrated in Fig. 1. In this study, the data including rain-

fall, speed and heavy vehicle volume collected by VDs,

historical travel time and actual travel time transformed

from ETC were used to build the model of travel time

prediction. With the results of data collection, the relatively

stable traffic parameters detected by the dual-loop VDs are

selected as the input variables of VD to avoid the deviation

of prediction results from the actual traffic flow due to the

over-imputation of missing data. Missing data could be a

problem in the process of collecting original data of various

attributes. The suitable imputation approach could reflect

the actual characteristics of traffic flow and improve the

application of the continuous prediction model. In addition,

this study calculates the historical travel time and actual

travel time based on the original ETC data. The AVI

algorithms proposed by the Southwest Research Institute

[40] and Transmit [41] are used to identify the consecutive

trips and compute the travel time. After the steps of data

collection, summarization, and computation, various

experimental combinations are designed to understand the

Fig. 1 Travel time prediction procedure
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impact of different variable combinations on travel time

prediction. In order to build a robust prediction model, this

study integrates data of various attributes by using MLP

network to improve the capability of travel time prediction

model in the case of the freeway with non-recurrent

congestion.

3.1 Data collection

National Freeway No. 1 is the main inter-city transporta-

tion corridor for the west coast of Taiwan. In a total length

of 373 km, National Freeway No. 1 totally has 20 toll

stations. In this study, data of VD, ETC, accident, and

rainfall were collected from September 16 to October 16,

2009, between the Yangmei Toll Station and Taishan Toll

Station of the freeway in northward direction. Figure 2

illustrates that the freeway segment in this study includes a

total of six interchanges and two system interchanges with

a total length of 36.1 km. Moreover, according to the sta-

tistics of September and October 2009 of the Taiwan Area

National Freeway Bureau, MOTC, the ADT volumes of

Yangmei Toll Station and Taishan Toll Station were,

respectively, 111,938 and 224,957 vehicles, which

approximately account for 23.5 % of the ADT volume of

National Freeway No. 1. It thus can be seen that the free-

way segment in this study covered the busiest freeway

section of the National Freeway No. 1. In this study, speed

and heavy vehicle volume were collected at a 5-minute

interval by the dual-loop VDs (a total of 22 VDs) through

the database of Traffic Control Center of Taiwan Area

National Freeway Bureau, MOTC. The original toll

charging time of ETC users was also collected. The

rainfall data were collected from the database of Central

Weather Bureau (data from three rainfall detectors).

Moreover, accident data were collected from the accident

database of National Freeway Police Bureau. The above

databases are established by Taiwan’s governmental

agencies to permanently collect the most complete and

real-time data for information dissemination, manage-

ment, and research use.

3.2 Data availability checking

Regarding the complex traffic environment, the more

complete data for representing the traffic characteristics

can better improve the prediction capability of nonlinear

models. In light of this, this study collected data of all dual-

loop VDs in a total number of 22 on the freeway segment

in this study. However, data credibility is the most

important and basic requirement for model building.

Selection of VDs of high stability can further ensure data

credibility and improve model applicability. Regarding the

data collected by VDs in this study, the VDs with missing

data for more than 2 h were regarded as unstable and were

eliminated from the model building. In the end, 11 VDs of

relatively high stability were selected for model building.

The number of VDs for data collection and number of VDs

applied in this study on various freeway sections in this

study are illustrated in Fig. 3.

3.3 Missing data processing

Although automatic data collection has advantages such as

long time collection, wide range investigation, smaller

error and consistency, routine maintenance, construction,

cable theft, weather conditions and other force majeure

events may result in system failure or poor stability,

leading to the unavoidable problem of missing data. The

missing data may be deleted or imputed. The data impu-

tation can be processed in the following three ways. First,

the imputation is performed by using the historical data of

the same time on different dates in the original spot of data

collection, and the data of closer dates or data with same

characteristics have a higher priority for imputation.

Second, in the same spot of data collection, the data of

Time t is imputed based on the data of Time t – n by using

the arithmetic mean method, simple weighting method, ES

method, etc. Third, the imputation is performed by using

the data collected in upstream and downstream spots, and

the closer spot and the spot belonging to the same group

have a higher priority.

Fig. 2 The freeway segment in

this study
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The missing data of Taiwan’s ETC system may occur at

a particular Time t due to the following reasons: (1)

equipment maintenance; (2) judgment of non-continuous

trips when the travel time at Time t deviates from that at

Time t – 1 over 40 %; or (3) no trip recorded as a result of

no ETC vehicle passing through the toll station, resulting in

the lack of travel time samples. In this study, the ETC-

based actual travel time is used as the target for model

training, validation, and test, and the historical travel time

is used as an input variable. To avoid inconsistency

between the result of model training and the real-world

situation as a result of data imputation error, the sample at

Time t with missing data of actual travel time and historical

travel time is deleted. Furthermore, the missing data in the

VD data collection process can be categorized into three

cases and are imputed accordingly. These three cases are

described as follows. Case 1: vehicle detector j ðVDjÞ has a

single missing data at Time t, but there are data at Time

t – 1. Case 2: vehicle detector j ðVDjÞ causes multiple

missing data, and there are no missing data in the upstream

and downstream VDs of ðVDjÞ, that is, there are missing

data at Times t and t – 1, and there are no missing data in

the upstream and downstream VDs. Case 3: vehicle

detector j ðVDjÞ causes multiple missing data, and there are

missing data in the upstream and downstream VDs of

ðVDjÞ, that is, there are missing data at Times t and t – 1,

and there are missing data in the upstream and downstream

VDs. Notice that, for the imputation of missing data of

heavy vehicles, the heavy vehicle volume at the time with

the speed closest to that of Time t within the previous half

hour is used to impute the missing heavy vehicle volume of

Time t in ðVDjÞ. For example, if the speed at Time t – 1 is

closest to that at Time t, the missing heavy vehicle volume

at Time t is imputed by that at Time t – 1. This way, the

impact of factors such as different VD detection quality at

various observation spots and different traffic characteris-

tics were taken into consideration. Hence, filling the

missing data with on-time data of the same observation

spot is an effective method to reflect the traffic character-

istics of the observation spot. For Case 1, simple weighting

method, that is, SpeedjðtÞ ¼ Speedjðt � 1Þ and HVVjðtÞ ¼
HVVjðt � 1Þ, is used to impute the missing data. For Cases

2 and 3, the third data imputation method presented in Sect.

3.3 is used. In summary, for the above-mentioned three

cases, the procedure of data imputation is described as

follows.

Step 1: If the missing data in the data collection process

of VD conform to Case 1, go to Step 2. Otherwise, go to

Step 4.

Step 2: Find the speed and heavy vehicle volume of ðVDjÞ
at Time t – 1 from database, and they are recorded as

Speedjðt � 1Þ and HVVjðt � 1Þ, respectively.

Step 3: Set SpeedjðtÞ ¼ Speedjðt � 1Þ and HVVjðtÞ ¼
HVVjðt � 1Þ, and go to Step 17.

Step 4: If the missing data in the data collection process

of VD conform to Case 2, go to Step 5. Otherwise, go to

Step 12.

Step 5: Record the data of VDjðtÞ[ 0
� �

.

Step 6: According to the VDj grouping mark, find out the

data VDk
j [ 0

n o
.

Step 7: The VDj that is closer to VDm (i.e., min distance

ðVDj;VDmÞ) has the higher priority of data imputation.

Step 8: Impute the speed of VDj at time t by using the

LRM model and set speedjðtÞ ¼ aþ b� speedmðtÞ.
Step 9: Find the speed of VDj within a half hour of Time

t that is closest to speedjðtÞ ðmin speedjðtÞ
���

�speedjðt � iÞjg; i ¼ 1; 2; . . .; 6Þ. Impute the heavy

vehicle volume of Time t by setting HVVjðtÞ ¼
HVVjðt � iÞ.
Step 10: If the missing data in the data collection process

of VD conform to Case 2, go to Step 11. Otherwise, go

to Step 15.

Step 11: If the consecutive time of data imputation is

more than 2 h, stop imputing the data and delete the

following consecutive missing data. Otherwise, repeat

Steps 5–9 until finishing the imputation of missing data

and go to Step 17.

Step 12: Case 3. Record the data of VDjðtÞ[ 0
� �

.

0

1

2

3

4

5

V
D

 n
um
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r

Fig. 3 The number of VDs for

data collection and the number

of VDs applied at various

freeway sections
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Step 13: Check whether VDj of the same group K have data

at Time t, VDk
j . If so, select the VD with data of the same

group K as the object of data imputation, VDk
j [ 0

n o
.

Otherwise, select VDj with data of a different group g as the

object of data imputation, VD
g
j [ 0

n o
; g 6¼ K.

Step 14: Repeat Steps 7–9.

Step 15: Check whether the missing data in all VDs at

Time t have been imputed. If so, go to Step 16.

Otherwise, impute the missing data of next VD and

repeat Steps 13 and 14.

Step 16: If the consecutive time of data imputation is

more than 2 hours, stop imputing the data and delete the

following consecutive missing data. Otherwise, repeat

Steps 12–13 until all missing data are imputed and go to

Step 17.

Step 17: Check whether all missing data have been

imputed. If so, stop the data imputation process.

Otherwise, go to Step 1.

If the missing data of VD do not fit into any above-

mentioned case, this sample is deleted. In addition, the

sample is deleted if data at Time t are regarded as abnor-

mal. The driving speed more than 120 km/h is regarded as

abnormal since the speed limit on the freeway segment in

this study is 120 km/h. Moreover, from the statistics of

traffic volume in September 2009 reported by the Taiwan

Area National Freeway Bureau, the percentage of heavy

vehicle volume was between 10.0 and 17.1 %. Accord-

ingly, it would be regarded as abnormal if the heavy

vehicle volume is more than 150 at Time t. After the above

data preprocessing, a total of 7,908 samples were acquired

for model building.

3.4 Computation of historical travel time and actual

travel time

The ETC system collects the times of a vehicle passing

through the upstream point A and the downstream point B

by identifying ID, and the AVI system collects the times by

identifying the vehicle license plate. Although the tech-

nologies of vehicle identification and time collection

adopted by ETC and AVI are different, the logic of travel

time computation are applicable in both systems. There-

fore, in this study, the ETC charging times of freeway users

were collected to calculate the historical travel time and

actual travel time by using the algorithms developed by

Southwest Research Institute [40] and Transmit [41].

Regarding the computation of travel time by AVI system,

Southwest Research Institute [40] developed the Trans-

Guide and TranStar algorithms. Both algorithms employ

the concept of rolling average algorithm to automatically

calculate the travel time. Equation (1) expresses the set,

CttABt, for computing the travel time by using the SwRI

algorithm.

CttABt ¼ tBi � tAi t � tr � tBi� tj and BttABtð1� lthÞf
� tBi � tAi�BttABtð1þ lthÞg ð1Þ

Equation 1 is utilized to estimate the travel time of a

vehicle passing through two AVI readers, which are the

upstream point A, tAi, and the downstream point B, tBi. To

avoid the data of abnormal travels (detour and parking)

from affecting the estimation of travel time, if the travel

time ðtBi � tAiÞ of vehicle i passing through points A and B

of AVI readers is more than the link threshold parameter,

lth, the data of this travel will be eliminated. The threshold,

lth, in both TransGuide and TranStar is set to 0.2. That is, if

the travel time of vehicle i is lower or more than 20 % of

the previous average travel time,BttABt, this travel will be

regarded as abnormal and will not be included in the travel

time computation. Furthermore, regarding the observation

window, tr, of travel time data set, CttABt, the observation

window is set to 2 min in the TransGuide algorithm, that is,

the average travel time of all trips within 2 min is

computed by using Eq. (2). It takes form as follows:

OttABt ¼
PCttABt

i¼1 ðtBi � tAiÞ
CttABt

ð2Þ

However, the TranStar algorithm differs from the Trans-

Guide algorithm in fix window concept as it simulta-

neously renews the travel time data set and computes the

average travel time if AVI readers obtain new travel time

samples [37].

The computation logic of Transmit algorithm is very

similar to those of TransGuide and TranStar. The main

difference is that the Transmit algorithm does not use the

concept of rolling average algorithm to calculate the travel

time in line with the threshold, but it calculates the travel

time within 15 min. In the Transmit algorithm, at each fix

time interval, s, it collects the travel time samples of two

AVI readers, ns, with an upper limit of 200 samples, and

calculates the travel time, OttABS, by using Eq. (3) in the

time interval [41]. Equation (3) takes form as follows [41]:

OttABS ¼
P nsj j

i¼1 ðtBi � tAiÞ
nsj j ð3Þ

In addition, with the travel time database, in which the

travel time is computed every 15 min, the actual travel

time, Att00ABS, can be computed by using Eq. (4). It takes

form as follows:

Att00ABS ¼ a� HttABS þ ð1� aÞAtt00ABS�1 ð4Þ

In Eq. (4), with the historical travel time in period S,

HttABS, and the actual travel time in period S� 1, Att00ABS�1,

after being adjusted by the smoothing parameter a, the

1616 Neural Comput & Applic (2013) 23:1611–1629
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actual travel time in period S, Att00ABS, can be estimated.

According to [37], in the case of no incident detected,

smoothing parameter (a) is set to 0.1, whereas in the case

of incident detected, smoothing parameter is set to 0. To

prevent the characteristic of non-recurrent congestion due

to accidents from affecting the normal traffic flow

represented by the historical database, this database of

travel time does not include the travel time data after

accidents. Therefore, Transmit algorithm is limited to the

case of stable traffic flow without accidents and to the area

with a linear change in actual travel time and historical

data. Although the historical travel time can reflect some

conditions of traffic flow, the accidents occur randomly,

and it is difficult to accurately present the characteristics of

complex traffic conditions by using linear equations.

Hence, in this study, the historical travel time and actual

travel time in the ETC database are computed by using the

AVI travel time algorithm. Moreover, the MLP network is

used to develop a robust model to predict the freeway

travel time in the case with complex and nonlinear traffic

characteristics.

3.5 The MLP-based travel time prediction model

The neural network can build nonlinear models and further-

more exclude the disadvantage of setting up several

assumptions when building models by the multiple linear

regression method and Auto-regressive Integrated Moving

Average Model (ARIMA) [42]. According to the survey from

1992 to 1998 by Vellido et al. [43], about 78 % of studies

using neural networks to business-related area employed

Back-Propagation Neural Network (BPN). The architecture

of BPN is a multilayer feed-forward network with supervised

learning, and thus it is also termed as MLP [44]. It inputs the

training samples into the network while transmitting the

outputs to allow the network to learn the mapping between

the input and output variables. BPN is mainly composed of

input layer, hidden layer, and output layer. In this study, the

input layer is mainly used to receive the input variables,

specifically, such as rainfall, speed and heavy vehicle volume

collected by VDs, the day of the week, historical travel time

collected by ETC, and time (AM or PM). Figure 4 illustrates

the structure of BPN applied in this study.

1 l o pm n i

k
ix

k
ihw

k
hjw

( )x k

Fig. 4 The BPN architecture
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This study employs the SAS Enterprise Miner, version

5.3, to build the prediction model of freeway travel time.

The number of hidden nodes is an important parameter

affecting the prediction performance of MLP. Hence, in the

case of common parameter settings (see Table 1) for var-

ious experimental combinations, this study evaluates the

prediction performance of different numbers of hidden

nodes. The root mean square error (RMSE) is used to

measure the prediction performance, and the lower RMSE

value represents the better prediction performance. Finally,

the number of hidden nodes with the lowest RMSE is used

to develop the prediction model for each experimental

combination, and the prediction results of all experimental

combinations are compared in this study.

4 Data analysis

4.1 ETC

At present, Taiwan’s ETC system mainly charges at a fixed

rate instead of a mileage-based rate. At the beginning, as

the system only records the charging time and amount of

vehicles at toll stations, it is unable to compute the travel

time. The travel time is the important and valuable infor-

mation to both road users and managers. Therefore, the

ETC system at present time provides the vehicle an identity

(ID) number at first charge at the toll station, and the travel

time sampling logic is the same as the SwRI algorithm. If

the travel time of the vehicle deviates from the average

travel time of the last time interval on the freeway segment

more than the threshold, it is judged as a non-continuous

trip, and the vehicle will be given a new ID number.

According to the judgment rule of non-continuous trips in

Taiwan’s ETC system, the threshold is set to 40 %. This

threshold is based on the result of long-term experiment by

the Taiwan Area National Freeway Bureau, MOTC. That is

to say, if the average travel time of the last time interval on

the freeway segment is 20 min, a trip with the travel time

of more than 28 min or less than 12 min will be regarded

as non-continuous, and the vehicle will be given a new ID.

If a vehicle of same ID passes through the upstream point A

and the downstream point B, it is a continuous trip and can

be a sample for computing the travel time.

In this study, through the ETC system, the charging

times and ID numbers of northbound vehicles passing

through the Yangmei Toll Station and Linkou Toll Station

were collected. A total of 1,679,868 data points are col-

lected, and the Transmit algorithm is employed to compute

the historical travel time and actual travel time at 5-min

intervals without the restriction of 200 samples. The

computation of historical travel time ðHTTABtÞ is expressed

in Eq. (5).

HTTABt ¼ tBi � tAi t � tr � tBi� tj and BttABtð1� 0:4Þf
� tBi � tAi�BttABtð1þ 0:4Þg ð5Þ

With the time of vehicle i passing through point B, tBi,

as the judgment basis, data of vehicles passing through

point B in an interval of 5 min are collected, and the

completed trips between upstream point A and downstream

point B are utilized as the samples to compute the average

travel time as the historical travel time ðHTTABtÞ. Although

the historical travel time does not represent the actual

travel time of vehicle i from upstream point A to freeway

section AB ðATTABtÞ, it may imply the historical traffic

characteristics of the freeway section. The historical travel

time may impact the travel time prediction; therefore, it is

taken as an input variable for model building.

The actual travel time ðATTABtÞ is computed by using

Eq. (6), and it can be expressed as

ATTABt ¼ tBi � tAi t � tr � tAi� tj and BttABtð1� 0:4Þ
� tBi � tAi�BttABtð1þ 0:4Þ ð6Þ

With the time of vehicle i passing through point A, tAi, as

the judgment basis, data of vehicles passing through point A

in an interval of 5 min are collected, and the average travel

time of vehicles completing the freeway section AB is

computed. This travel time represents the actual travel time

of vehicle i after passing through point A to enter the freeway

section AB. Through the ETC system, a large amount of

original data is collected, and the actual travel time ðATTABtÞ
is computed as the target for model training to build a travel

time prediction model of high credibility.

Table 1 The setting of MLP parameters

Property Value

Train options

Maximum iterations 1,000

Maximum time 4 h

Training technique Default

Preliminary training options

Preliminary training Yes

Maximum iterations 10

Maximum time 1 h

Number of runs 5

Convergence criteria

Uses defaults Yes

Score

Hidden units No

Residuals Yes

Standardization No
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4.2 Rainfall

Konstantopoulos et al. [45] pointed out that rainfall can

affect the drivers’ line of sight, increase the driving risk,

and is an important variable of accident occurrence. The

amount of rainfall affects driving behaviors and is an

important factor affecting traffic characteristics. Hence,

regarding the research of travel time, rainfall has been an

important variable that must be considered in areas of a

large number of rainy days and high rainfall. With an

island-type climate, the number of rainy days and rainfall

amount are high in Taiwan. The area in this study is located

in northern Taiwan. According to the rainfall data of 55

major cities across the world from the Central Weather

Bureau, there are on average 168 days of rainfall more than

0.1 mm each year in Taipei, only fewer than the 187 days

in Jakarta, 174 days in Oslo, and 173 days in Stockholm.

However, the annual rainfall of 2,325 mm ranks first in the

55 major cities across the world. In light of this, in this

study, the data of rainfall detector of Yangmei, Taoyuan,

and Linkou are collected as the variables for building the

prediction model of travel time. As the basic time unit of

current rainfall data is 10 min, to predict the 5-min travel

time, this study converts the basic time unit of rainfall data

into 5 min by using the arithmetic mean method for

building the prediction model.

4.3 Accidents

Since accidents happen randomly, data of relevant impor-

tant variables (e.g., the accident occurrence time, number

of closed lanes, accident removal time, etc.) for estimating

the accident impact on traffic flow cannot be obtained

accurately and in real time due to report limitations. Hence,

how to use relevant real-time information to develop a

robust prediction model and ensure the prediction capa-

bility in line with the needs of managers and users is the

key issue to overcome in this study. There were a total of

76 accidents in the time span of this research, and 176

vehicles were damaged with six people injured (see

Table 2). The statistics show that 96.1 % accidents

involved only vehicle damaged without personnel injured.

In addition, it is noteworthy that although fewer accidents

occurred in the freeway section between Taoyuan inter-

change and Linkou interchange than those in the freeway

section between Jungli interchange and Neili interchange,

more vehicles were damaged in accidents occurring in the

freeway section between Taoyuan interchange and Linkou

interchange than those in the freeway section between

Jungli interchange and Neili interchange. It thus can be

known that the impact of accidents on traffic flow is greater

in the freeway section between Taoyuan interchange and

Linkou interchange.

4.4 Current travel time analysis

Figure 5 illustrates the 5-min travel time distribution of the

freeway segment in this study. Figure 5a–h shows that

there are about 1–3 peak hours each day. The lasting time,

start time, and end time of each peak hour as well as the

travel time within each peak hour vary. Observing Fig. 5a,

the morning peak hour is 7:00–10:00, noon peak

13:00–15:00, and afternoon peak 17:00–21:00. In addition,

generally speaking, Saturday and Sunday are regarded as

weekends, and Tuesday, Wednesday, and Thursday are

regarded as weekdays. Meanwhile, the traffic flows of days

of weekends or the traffic flows of days of weekdays have

the similar characteristics. However, the morning hours

shown in Fig. 5c–e indicate that there was no obvious peak

hour on September 16 (Wednesday), while the morning

peak hour of September 22 (Tuesday) was 7:20–11:00.

Moreover, Fig. 5g–h illustrates that as far as the morning

peak hour of weekends was concerned, there was no

obvious peak hour in the morning of September 20 (Sunday),

while the morning peak hour of September 26 (Saturday) fell

on the time period of 11:00–13:30. Thus, regardless of

weekends or weekdays, peak hours varied, and the number,

length, start time, and end time of peak hours on different

dates varied considerably. The above characteristics of peak

hour are clearly shown from the wavy and distorted surfaces

of travel time in Fig. 5.

Areas of long freeway section, high traffic flow, many

interchanges, and frequent rainfall will have relatively

more complex traffic characteristics because more factors

interfere with the smooth moving of traffic flow. Moreover,

areas with more complex traffic characteristics are prone to

accidents, and accident and rainfall are factors that are

difficult to predict. Therefore, in such areas, the traffic

characteristics vary considerably. Figure 6 illustrates the

travel time, accident, and rainfall on Tuesdays. In the case

where there was no rainfall and accident, from the

Table 2 Number of accidents, injuries, and damaged vehicles in

freeway sections of this study

Segment Number of

accidents

Number of

injuries

Number of

crashed cars
Origin Destination

Yangmei toll

collection

Yangmei 0 0 0

Yangmei Youth 5 0 10

Youth Pingjen 9 0 21

Pingjen Jungli 11 0 23

Jungli Neili 12 3 24

Neili Airport 6 0 16

Airport Taoyuan 8 3 18

Taoyuan Linkou 10 0 28
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Fig. 5 Distributions of 5-min travel time. a Travel time of all days. b Travel time on Mondays. c Travel time on Tuesdays. d Travel time on

Wednesdays. e Travel time on Thursdays. f Travel time on Fridays. g Travel time on Saturdays. h Travel time on Sundays
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distribution of travel time on October 13 shown in Fig. 6a,

the morning peak hour of the freeway segment in this study

was about 7:00–8:20. In the case of rainfall, the peak time

always lengthened. Taking September 29 as an example,

due to the intermittent shower during 5:25–6:40 (see

Fig. 6b), the morning peak hour of this day became

7:20–8:50. Furthermore, the intermittent rainfall in

7:15–8:0 in the morning of October 6 resulted in the

morning peak hour to be 7:00–9:30. The fifth generation

car following model of General Motors (GM) reflects that

when drivers change the behaviors of acceleration and

deceleration due to the impact from the external driving

environment, an impact on the following overall traffic is

generated, and such impact will tend to be stable after a

period of time. To understand the explanatory power of

various cumulative rainfall variables (e.g., 5 min, 1 h, 2 h,

etc.) on traffic characteristics, this study investigates it by

experimentation.

In addition, as far as the traffic characteristics of this

freeway segment in Tuesday afternoons are concerned, the

afternoon peak would not be obvious if there was no

accident. However, when there were accidents, the travel

time on this freeway segment would increase significantly.

Taking September 29 as an example, accidents consecu-

tively occurred during 15:10–18:45 (see Fig. 6c), and there

was a peak hour during 16:30–18:45 on this freeway seg-

ment accordingly (see Fig. 6a). Furthermore, there was an

accident involving three vehicles during 10:40–11:27 in the

morning on September 22, resulting in the morning peak

hour lasting from 7:15 to 11:25. Hence, accident is an

important variable affecting the travel time. As it is not

easy to acquire accident-related data in real time, and it is

not easy to master the accident occurring time and accident

vanishing time, this study utilizes the time-mean-speed

collected by VDs to represent real-time traffic

characteristics.

5 Experiments

5.1 Experimental design

In this study, rainfall (seven types), speed, and heavy

vehicle volume collected by VDs (three types), encoding

scheme of the day of the week (two types), historical travel

time collected by ETC (two types), and time (AM or PM)

(two types) are used as input variables, and various types of

variables are designed accordingly (see Table 3) to

understand the impact of different variable combinations

on the prediction performance. Totally, 168 experimental

combinations are investigated in this study.

Furthermore, to build a robust prediction model, in the

case of each experimental combination, the 7,990 samples

are randomly split into training, validation, and test data

sets by the percentages of 40, 30, and 30 %, respectively.

Regarding each experimental combination, various num-

bers of hidden nodes are investigated to find the best

structure (i.e., the optimal number of hidden nodes) of the

combination, and root mean square error (RMSE) and

mean absolute percentage error (MAPE) are employed as

the performance measures to determine the best structure

of each combination. The characteristics of various

experimental combinations are analyzed according to the

RMSE and MAPE values of test data set of the best

structure in each experimental combination.

RMSE is a nonlinear criterion able to effectively cal-

culate the average error of predicted value ðxðkÞÞ and

actual value ðxðkÞÞ at fixed time span t with M samples.

Fig. 6 Travel time, accident, and rainfall on Tuesdays. a Line graph of travel time. b Line graph of rainfall. c Distributions of number of

accident vehicles and lasting time
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RMSE has the concept of relative value, and it can be

expressed as Eq. (7) [46]:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

XM

k¼1

ðxðkÞ � xðkÞÞ2
vuut ð7Þ

MAPE was proposed by Lewis in 1982 [47]. MAPE is

not subject to the influence of the unit of actual value and

predicted value. Hence, it can objectively obtain the

relative difference between the actual value and predicted

value. If MAPE \ 10 %, it is a highly accurate forecasting;

if 10 % \ MAPE \ 20 %, it is a good forecasting; if

20 % \ MAPE \ 50 %, it is a reasonable forecasting; if

MAPE [ 50 %, it is an inaccurate forecasting. MAPE can

be expressed as Eq. (8) [47]:

MAPE ¼ 1

M

XM

k¼1

xðkÞ � xðkÞ
xðkÞ

����

����� 100 % ð8Þ

From Eqs. (7) and (8), lower values of MAPE and

RMSE indicate the better prediction performance

5.2 Analysis of results

5.2.1 Analysis of rainfall variable

Neural networks can deal with the multicollinearity issue

better than the statistical methods [48]. In addition, rainfall

has been an important factor affecting drivers’ behaviors.

As a result, in Experiment 1, various variable combinations

are designed based on the cumulative rainfall data collected

by rainfall detectors (see Table 3), and the results are

compared to investigate the impact of rainfall on travel

time prediction. Experiment 1.1 includes one cumulative

rainfall variable of 5-min cumulative rainfall. Experiment

1.2 additionally includes the 1-h cumulative rainfall as the

input variable. Similarly, Experiment 1.7 includes seven

cumulative rainfall variables of 5 min, 1 h, 2 h, 3 h, 4 h, 5

h, and 6 h (see Table 3). For investigating the prediction

capabilities of seven types of rainfall variables (see

Experiments 1.1–1.7), the performance of each type of

rainfall variables is based on the average performance

measures of 24 experimental combinations, which include

three types of speed and heavy vehicle volume collected by

VDs, two types of encoding scheme of the day of the week,

two types of historical travel time collected by ETC, and

two types of time variable. The prediction capabilities of

other types of variables (Experiments 2–5) are investigated

in the similar manner. From Table 4, the prediction model

built in Experiment 1.1 is not the best experimental com-

bination in terms of performance measures. Generally

speaking, increasing the number of input variables in an

MLP can improve the prediction capability. However, the

test results of this study indicate that the model in Exper-

iment 1.7 is not the one with the best prediction perfor-

mance. To further understand whether the variance and

mean of performance measures of various experimental

combinations have significant differences, this study first

employs the F test to analyze the significant differences in

variance of various combinations. Then, the t test is used to

analyze the significant differences in mean of various

combinations. The results are summarized in Tables 5, 6,

7, 8. Although the two measures MAPE and MAPE [
20 % of seven experimental combinations regarding rain-

fall are not significantly different, RMSE and MAPE [
50 % are significantly different (see Tables 5, 6, 7, 8).

Table 3 Input variables

Factors Experiment

number

Input

variables

Descriptions

Rainfall 1.1 5-min 5-min cumulative rainfall as

input variable

1.2 5-min, 1-h 5-min, 1-h cumulative

rainfall as input variables

1.3 5-min, 1-h,

2-h

5-min, 1-h, 2-h cumulative

rainfall as input variables

1.4 5-min, 1-h,

2-h, 3-h

5-min, 1-h, 2-h, 3-h

cumulative rainfall as

input variables

1.5 5-min, 1-h,

2-h, 3-h, 4-h

5-min, 1-h, 2-h, 3-h, 4-h

cumulative rainfall as

input variables

1.6 5-min, 1-h,

2-h, 3-h,

4-h, 5-h

5-min, 1-h, 2-h, 3-h, 4-h,

5-h cumulative rainfall as

input variables

1.7 5-min, 1-h,

2-h, 3-h,

4-h, 5-h, 6-h

5-min, 1-h, 2-h, 3-h, 4-h,

5-h, 6-h cumulative

rainfall as input variables

VD

data

2.1 Speed and

heavy

vehicle

volume

Data of 10 VDs

2.2 Speed Data of 10 VDs

2.3 Speed Data of 11 VDs

Day of

week

3.1 Divided into

three

categories

1: Saturday, Sunday

2: Monday, Friday

3: Tuesday, Wednesday,

Thursday

3.2 Divided into

seven

categories

1: Monday, 2: Tuesday,

3: Wednesday, 4: Thursday

5: Friday, 6: Saturday, 7:

Sunday

ETC

data

4.1 Used Historical travel time as

input variable

4.2 Unused Historical travel time not

used as input variable

Time 5.1 Unused Variable not used

5.2 Used 1: AM, 2: PM
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These results illustrate that not only increasing the number

of cumulative rainfall variables is unable to help improve

the performance of travel prediction, but also the percent-

age of MAPE [ 50 % increases. The increase in inaccurate

forecasting may lower the road users’ acceptance of

reporting the predicted travel time and considerably

increase the resistance to implement the policy. Moreover,

variable reduction can decrease the cost of prediction

model building. From the above discussions, by consider-

ing the traffic characteristics of freeway segment in this

study, taking only the 5-min cumulative rainfall as the

input variable (Experiment 1.1) is the best combination in

selecting the rainfall variables.

5.2.2 Analysis of speed and heavy vehicle volume collected

by VDs

In Experiment 2, various variable combinations are

designed based on the data of speed and heavy vehicle

volume collected by VDs (see Table 3), and the prediction

capabilities of various combinations are compared. In

Experiment 2.1, the data of speed and heavy vehicle

Table 4 Average performance

of rainfall variable on 24

experimental combinations

(.) is the standard deviation

Experiment RMSE MAPE (%) Percentage of

samples of

MAPE

[ 20 % (%)

Percentage of

samples of

MAPE

[ 50 % (%)

Experiment 1.1 3.03 (0.11) 6.78 (0.22) 4.05 (0.43) 0.05 (0.03)

Experiment 1.2 3.04 (0.11) 6.80 (0.20) 4.06 (0.43) 0.05 (0.03)

Experiment 1.3 3.05 (0.11) 6.78 (0.22) 4.05 (0.51) 0.05 (0.02)

Experiment 1.4 3.03 (0.12) 6.78 (0.19) 4.05 (0.42) 0.06 (0.03)

Experiment 1.5 3.00 (0.11) 6.78 (0.21) 3.94 (0.46) 0.05 (0.02)

Experiment 1.6 2.98 (0.10) 6.73 (0.19) 3.98 (0.45) 0.07 (0.03)

Experiment 1.7 2.98 (0.09) 6.73 (0.17) 3.94 (0.41) 0.06 (0.03)

Table 5 The results of t test of RMSE on rainfall variable

Experiment Experiment 1.1 Experiment 1.2 Experiment 1.3 Experiment 1.4 Experiment 1.5 Experiment 1.6 Experiment 1.7

Experiment 1.1 – -0.27 (2.02)* -0.40 (2.02) 0.26 (2.02)* 1.06 (2.02) 1.74 (2.02) 1.80 (2.02)

Experiment 1.2 – – -0.12 (2.02) 0.53 (2.02)* 1.34 (2.02) 2.02 (2.02) 2.08 (2.02)

Experiment 1.3 – – – 0.65 (2.02)* 1.49 (2.02) 2.18 (2.02) 2.26 (2.02)

Experiment 1.4 – – – – 0.76 (2.02) 1.42 (2.02) 1.46 (2.02)

Experiment 1.5 – – – – – 0.68 (2.02) 0.70 (2.02)

Experiment 1.6 – – – – – – 0.00 (2.02)

Experiment 1.7 – – – – – – –

(.) is the critical t value of the two-tailed test

()* indicates a significant difference between the variances of two experimental combinations based on the F test

_ indicates a significant difference between the means of two experimental combinations based on the t test

Table 6 The results of t test of MAPE on rainfall variable

Experiment Experiment 1.1 Experiment 1.2 Experiment 1.3 Experiment 1.4 Experiment 1.5 Experiment 1.6 Experiment 1.7

Experiment 1.1 – -0.41 (2.02) -0.04 (2.02) 0.06 (2.02) -0.05 (2.02) 0.64 (2.02) 0.69 (2.02)

Experiment 1.2 – – 0.38 (2.02)* 0.52 (2.02) 0.37 (2.02)* 1.12 (2.02) 1.20 (2.02)

Experiment 1.3 – – – 0.11 (2.02) -0.01 (2.02) 0.69 (2.02) 0.75 (2.02)

Experiment 1.4 – – – – -0.12 (2.02)* 0.63 (2.02)* 0.69 (2.02)

Experiment 1.5 – – – – – 0.71 (2.02) 0.77 (2.02)

Experiment 1.6 – – – – – – 0.04 (2.02)

Experiment 1.7 – – – – – – –

(.) is the critical t value of the two-tailed test

()* indicates a significant difference between the variances of two experimental combinations based on the F test
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volume collected by 10 VDs are utilized as the input

variables, while in Experiment 2.2, the data of speed col-

lected by 10 VDs are employed as the input variables. In

Experiment 2.3, the data of speed collected by 11 VDs are

used as the input variables. For investigating the prediction

capabilities of three types of speed and heavy vehicle

volume collected by VDs (see Experiments 2.1–2.3), the

performance of each type of speed and heavy vehicle

volume collected by VDs is based on the average perfor-

mance measures of 56 experimental combinations, which

include seven types of rainfall variables, two types of

encoding scheme of the day of the week, two types of

historical travel time collected by ETC, and two types

of time variable. From Table 9, in the case of taking the

data of speed and heavy vehicle volume collected by 10

VDs as input variables (Experiment 2.1), the model per-

forms worst in terms of all performance measures, and the

standard deviations of performance measures are relatively

high. However, interestingly, in the case of taking only the

data of speed collected by 11 VDs as input variables, the

prediction performance is improved. Furthermore, from

the results of statistical tests shown in Table 10, all the

performance measures of various experimental combinations

based on the variables of speed and heavy vehicle volume

collected by VDs are significantly different. From the

experimental results, in the case of taking the data collected

by 10 VDs as input variables, the model with only the

speed variables outperforms the one with the variables of

speed and heavy vehicle volume in terms of MAPE and

RMSE. Moreover, the model with the data of speed vari-

ables collected by 11 VDs as input variables (Experiment

2.3) outperforms the one with the data of speed variables

collected by 10 VDs as input variables (Experiment 2.2) in

terms of MAPE and RMSE. Hence, the speed collected by

VDs is an important variable to improve the prediction

performance. In addition, taking data of heavy vehicle

volume as input variables cannot improve the prediction

performance. More importantly, to improve and ensure

users’ trust in travel time information, the percentage of

samples of reasonable forecasting or inaccurate forecasting

should be reduced as many as possible. For this purpose,

the percentage of samples of MAPE [ 20 % is 3.67 % on

average in Experiment 2.3, and it is lower than those of

other two combinations. Therefore, the variables of speed

collected by VDs are important variables for predicting the

travel time.

Table 7 The results of t test of MAPE [ 20 % on rainfall variable

Experiment Experiment 1.1 Experiment 1.2 Experiment 1.3 Experiment 1.4 Experiment 1.5 Experiment 1.6 Experiment 1.7

Experiment 1.1 – -0.03 (2.02)* -0.08 (2.02)* 0.09 (2.02) 0.96 (2.02)* 0.57 (2.02)* 1.05 (2.02)

Experiment 1.2 – – -0.05 (2.02)* 0.12 (2.02) 0.98 (2.02)* 0.59 (2.02)* 1.07 (2.02)

Experiment 1.3 – – – 0.16 (2.02) 0.96 (2.02) 0.60 (2.02) 1.03 (2.02)

Experiment 1.4 – – – – 0.89 (2.02)* 0.49 (2.02)* 0.98 (2.02)

Experiment 1.5 – – – – – -0.39 (2.02) 0.01 (2.02)

Experiment 1.6 – – – – – – 0.43 (2.02)

Experiment 1.7 – – – – – – –

(.) is the critical t value of the two-tailed test

()* indicates a significant difference between the variances of two experimental combinations based on the F test

Table 8 The results of t test of MAPE [ 50 % on rainfall variable

Experiment Experiment 1.1 Experiment 1.2 Experiment 1.3 Experiment 1.4 Experiment 1.5 Experiment 1.6 Experiment 1.7

Experiment 1.1 – -0.86 (2.02)* -0.84 (2.02)* -1.61 (2.02)* -1.01 (2.02) -2.81 (2.02)* -1.93 (2.02)

Experiment 1.2 – – 0.25 (2.02)* -0.64 (2.02) 0.00 (2.02) -1.82 (2.02) -0.89 (2.02)

Experiment 1.3 – – – -1.11 (2.02) -0.32 (2.02)* -2.54 (2.02) -1.49 (2.02)

Experiment 1.4 – – – – 0.75 (2.02) -1.29 (2.02)* -0.24 (2.02)

Experiment 1.5 – – – – – -2.11 (2.02)* -1.07 (2.02)*

Experiment 1.6 – – – – – – 1.12 (2.02)

Experiment 1.7 – – – – – – –

(.) is the critical t value of the two-tailed test

()* indicates a significant difference between the variances of two experimental combinations based on the F test

_ indicates a significant difference between the means of two experimental combinations based on the t test
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5.2.3 Analysis of encoding scheme of the day of the week

variable

To investigate whether the traffics of the freeway segment

in this study on Tuesday, Wednesday, and Thursday and on

weekends (Saturday and Sunday) are homogenous,

Experiment 3 is designed to compare the prediction per-

formance of different encoding schemes of the day of the

week variable. In Experiment 3.1, Saturday and Sunday are

encoded as 1; Monday and Friday are encoded as 2, and the

rest days of the week are encoded as 3. In Experiment 3.2,

the traffics of all the days in a week are regarded as het-

erogeneous, and thus the days of the week are encoded as

1–7 in order from Monday to Sunday. For investigating the

prediction capabilities of two types of encoding scheme of

the day of the week (see Experiments 3.1–3.2), the per-

formance of each type of encoding scheme of the day of the

week is based on the average performance measures of 84

experimental combinations, which include seven types of

rainfall variables, three types of speed and heavy vehicle

volume collected by VDs, two types of historical travel

time collected by ETC, and two types of time variable.

From the experimental results shown in Table 11, the

model of Experiment 3.1 is worse than that of Experiment

3.2 in terms of all performance measures. In addition, the

variance of MAPE of Experiment 3.1 is higher than that of

Experiment 3.2. This indicates the model of Experiment

3.1 performs more unstable. However, from the results of

statistical tests shown in Table 12, there exists no signifi-

cant difference in the performance measures of two

encoding schemes of the day of the week variable.

Generally, as the freeway segment of long distance, high

traffic flow, and dense interchange connects a number of

economically developed regions and plays the role in major

inter-city transportation, such a freeway segment has the

more complex trip characteristic. Therefore, it is more

difficult to distinguish the traffic characteristics by week-

day or weekend. Although the prediction capabilities of

two encoding schemes of the day of the week variable do

not significantly different, the model of Experiment 3.2

performs better in terms of average values of performance

measures. Hence, in this study, categorizing into weekday

Table 9 Average performance

of variables collected by VDs

on 56 experimental

combinations

(.) is the standard deviation

Experiment RMSE MAPE (%) Percentage of

samples of

MAPE

[ 20 % (%)

Percentage of

samples of

MAPE

[ 50 % (%)

Experiment 2.1 3.09 (0.10) 6.90 (0.19) 4.32 (0.41) 0.06 (0.03)

Experiment 2.2 3.02 (0.10) 6.77 (0.18) 4.05 (0.39) 0.05 (0.03)

Experiment 2.3 2.93 (0.07) 6.63 (0.11) 3.67 (0.23) 0.05 (0.02)

Table 10 The results of t test of performance measures on variables collected by VDs

Experiment RMSE MAPE (%) Percentage of

samples of

MAPE

[ 20 % (%)

Percentage of

samples of

MAPE

[ 50 % (%)

Experiment 2.1 vs. Experiment 2.2 3.79 (1.98) 3.77 (1.98) 3.67 (1.98) 0.52 (1.98)

Experiment 2.1 vs. Experiment 2.3 9.25 (1.98)* 9.10 (1.98)* 10.30 (1.98)* 1.16 (1.98)*

Experiment 2.2 vs. Experiment 2.3 5.18 (1.98)* 4.82 (1.98)* 6.12 (1.98)* 0.65 (1.98)*

(.) is the critical t value of the two-tailed test

()* indicates a significant difference between the variances of two experimental combinations based on the F test

_ indicates a significant difference between the means of two experimental combinations based on the t test

Table 11 Average performance of encoding scheme of the day of the week variable on 84 experimental combinations

Experiment RMSE MAPE (%) Percentage of

samples of

MAPE

[ 20 % (%)

Percentage of

samples of

MAPE

[ 50 % (%)

Experiment 3.1 3.02 (0.11) 6.78 (0.20) 4.03 (0.44) 0.06 (0.03)

Experiment 3.2 3.01 (0.11) 6.75 (0.19) 3.99 (0.44) 0.05 (0.02)

(.) is the standard deviation
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and weekend in the encoding scheme of the day of the

week variable (i.e., Experiment 3.1) can improve less

accuracy in travel time prediction.

5.2.4 Analysis of historical travel time collected by ETC

Experiment 4 compares the performance of using historical

travel time collected by ETC as input variable (Experiment

4.1) with the performance of not using historical travel

time collected by ETC as input variable (Experiment 4.2).

For investigating the prediction capabilities of usage of

historical travel time collected by ETC (see Experiments

4.1–4.2), the performance of usage of historical travel time

collected by ETC is based on the average performance

measures of 84 experimental combinations, which include

seven types of rainfall variables, three types of speed and

heavy vehicle volume collected by VDs, two types of

encoding scheme of the day of the week, and two types of

time variable. The experimental results shown in Table 13

indicate that the model with the historical travel time col-

lected by ETC (Experiment 4.1) outperforms that without

the historical travel time collected by ETC (Experiment

4.2) in terms of all performance measures. Moreover, the

variances of performance measures of the model with the

historical travel time collected by ETC are lower. Addi-

tionally, the results of t test of performance measures (see

Table 14) show that, except MAPE [ 50 %, RMSE, and

MAPE, MAPE [ 20 % are significantly different. Thus,

employing the historical travel time collected by ETC as

input variable can improve the capability of travel time

prediction model and build a more robust model due to the

lower variances of performance measures. More impor-

tantly, it can effectively reduce the percentage of samples

of MAPE [ 20 % and increase the road users’ acceptance

of travel time prediction because the percentage of samples

of MAPE [ 20 % is an important measure for evaluating

travel time prediction.

5.2.5 Analysis of time variable

Experiment 5 compares the performance of not using time

(AM or PM) variable as the input variable (Experiment 5.1)

Table 12 The results of t test of performance measures on encoding scheme of the day of the week variable

Experiment RMSE MAPE (%) Percentage of

samples of

MAPE

[ 20 % (%)

Percentage of

samples of

MAPE

[ 50 % (%)

Experiment 3.1 vs. Experiment 3.2 0.81 (1.97)* 0.90 (1.97) 0.57 (1.97) 1.42 (1.97)*

(.) is the critical t value of the two-tailed test

()* indicates a significant difference between the variances of two experimental combinations based on the F test

Table 13 Average performance of usage of historical travel time collected by ETC on 84 experimental combinations

Experiment RMSE MAPE (%) Percentage of

samples of

MAPE

[ 20 % (%)

Percentage of

samples of

MAPE

[ 50 % (%)

Experiment 4.1 2.94 (0.06) 6.64 (0.12) 3.79 (0.29) 0.06 (0.03)

Experiment 4.2 3.09 (0.10) 6.90 (0.18) 4.23 (0.46) 0.05 (0.03)

(.) is the standard deviation

Table 14 The results of t test of performance measures on usage of historical travel time collected by ETC

Experiment RMSE MAPE (%) Percentage of

samples of

MAPE

[ 20 % (%)

Percentage of

samples of

MAPE

[ 50 % (%)

Experiment 4.1 vs. Experiment 4.2 -11.71 (1.97) -11.10 (1.97) -7.36 (1.97) 1.42 (1.97)

(.) is the critical t value of the two-tailed test

_ indicates a significant difference between the means of two experimental combinations based on the t test
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with the performance of using time variable as the input

variable (Experiment 5.2). For investigating the prediction

capabilities of usage of time variable (see Experiments

5.1–5.2), the performance of usage of time variable is

based on the average performance measures of 84 experi-

mental combinations, which include seven types of rainfall

variables, three types of speed and heavy vehicle volume

collected by VDs, two types of encoding scheme of the day

of the week, and two types of historical travel time col-

lected by ETC. The average values of performance mea-

sures of Experiments 5.1 and 5.2 are summarized in

Table 15. From this table, it can be seen the model of

Experiment 5.1 performs worse than that of Experiment 5.2

in terms of all average values of performance measures and

the model of Experiment 5.1 generates higher variances of

performance measures. In addition, from the results of t test

shown in Table 16, except RMSE, the performance mea-

sures of using the time variable and not using the time

variable as the input variable are significantly different.

Therefore, using the time variable as the input variable can

improve the capability of travel time prediction by apply-

ing MLP.

5.3 Discussion

The experimental results indicate that the model including

the historical travel time collected by ETC as the input

variable has a better capability of travel time prediction.

The traffic characteristic represented by the historical travel

time collected by ETC is more comprehensive, which is

different to the traffic characteristic of an individual point

collected by VDs. Therefore, the historical travel time

collected by ETC can help reflect the overall traffic on the

freeway segment, and build a more stable prediction model

of travel time.

Moreover, although the heavy vehicle volume is an

important factor affecting the traffic characteristics, mis-

judgment of vehicle type is unavoidable by using induc-

tance loop detectors. As vehicle flow is often in platoon,

misjudgment of vehicle type has less impact on the com-

putation of average vehicle speed. Due to the above rea-

sons, the error of statistics of vehicle type is larger than that

of speed. It results in the inability to improve the explan-

atory power of traffic characteristic when using the heavy

vehicle volume as the input variable, and thus the capa-

bility of prediction model is reduced.

In general, the analysis of traffic characteristic is cate-

gorized into weekday and weekend since the traffic char-

acteristics of weekday and weekend are regarded as

homogeneous, respectively. Such categorization is not

applicable in the freeway segment in this study. This

freeway segment has the more complex distribution of trip

purpose affected by the complicated economic factors. It is

also the reason why the traffic characteristics of weekday

and weekend are heterogeneous, respectively.

DeTienne et al. [48] and Karlaftis et al. [49] pointed out

that neural networks can deal with the multicollinearity

issue better than statistical methods. Furthermore, neural

networks tend to select one of the variables with multi-

collinearity, and assign a larger weight to it in the learning

process. Therefore, adding variables with multicollinearity

as input variables of neural networks cannot improve the

accuracy of travel time prediction. In addition, if increase

in variables exceeds the learning capability of neural

Table 15 Average performance of usage of time variable on 84 experimental combinations

Experiment RMSE MAPE (%) Percentage of

samples of

MAPE

[ 20 % (%)

Percentage of

samples of

MAPE

[ 50 % (%)

Experiment 5.1 3.02 (0.11) 6.80 (0.20) 4.11 (0.46) 0.06 (0.03)

Experiment 5.2 3.00 (0.10) 6.73 (0.19) 3.92 (0.40) 0.05 (0.03)

(.) is the standard deviation

Table 16 The results of t test of performance measures on usage of time variable

Experiment RMSE MAPE (%) Percentage of

samples of

MAPE

[ 20 % (%)

Percentage of

samples of

MAPE

[ 50 % (%)

Experiment 5.1 vs. Experiment 5.2 -1.54 (1.97)* -2.42 (1.97)* -2.88 (1.97)* -2.88 (1.97)*

(.) is the critical t value of the two-tailed test

()* indicates a significant difference between the variances of two experimental combinations based on the F test

_ indicates a significant difference between the means of two experimental combinations based on the t test
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networks, the capability of prediction model will be

reduced. The learning characteristic of neural networks is

reflected by the results of seven experimental combinations

based on the cumulative rainfall variables.

6 Conclusions

This study investigates the impact of variables including

rainfall, speed and heavy vehicle volume collected by VDs,

encoding scheme of the day of the week, historical travel

time collected by ETC, and time (AM or PM) on the

prediction model of travel time for the freeway with non-

recurrent congestion. From the experimental results,

selecting only the 5-min cumulative rainfall from rainfall

variable as the input variable can reduce the number of

input variables and percentage of samples of ‘‘inaccurate

forecasting’’ (the percentage of MAPE [ 50 %), while

keeping lower MAPE and RMSE, and thus build a robust

prediction model. As far as the input variables collected by

VDs are concerned, using the heavy vehicle volume as the

input variable cannot improve the capability of prediction

model. Using only speed as the input variable can reduce

RMSE and MAPE, and adding the speed of one more VD

as the input variable, the percentages of samples of ‘‘rea-

sonable forecasting’’ and ‘‘inaccurate forecasting,’’ and

MAPE can be reduced. For the encoding scheme of the day

of the week, if the traffic characteristics of all days of the

week are regarded as heterogeneous, and they are encoded

as 1–7, RMSE and MAPE are lower. Categorizing into

weekday and weekend in the encoding scheme of the day

of the week is not applicable in the freeway segment in this

study. The prediction model with the historical travel time

collected by ETC is stable and highly accurate. Finally,

taking the time (AM or PM) as the input variable can

improve the capability of prediction model. According to

the above discussions, the prediction model of travel time

for the freeway with non-recurrent congestion including

input variables of historical travel time collected by ETC,

speed variables collected by 11 VDs, the days of the week

encoded as 1–7, 5-min. cumulative rainfall, and time

encoded as AM or PM is a robust one. Its MAPE is 6.47 %,

being a highly accurate forecasting model. The parameter

setting of this result (i.e., MAPE = 6.47 %) is summarized

in Table 1, and the number of hidden nodes is 2.

As mentioned in Sect. 3.3, the missing data of Taiwan’s

ETC system may occur at a particular Time t due to three

reasons. For the second reason, the non-continuous trips are

identified when the travel time at Time t is higher than that

at Time t – 1 over 40 %. In such a situation, there are no

data sample at Time t. This situation describes the appli-

cation scope of the proposed model. However, the proba-

bility of such a situation is very low.

As we know, the data imputation method is an important

factor affecting the capability of prediction model.

Although the data imputation method used in this study can

generate accurate prediction results, the imputation meth-

ods of data of speed and heavy vehicle volume can be

further developed in the future. Next, the distance of shock

wave is an important measure to analyze the impact of

events or road bottlenecks on traffic. Whether the explan-

atory power of queuing length calculated by shock wave

theory for non-recurrent congestion can improve the per-

formance of travel time prediction is an issue worth to be

addressed in the future. Furthermore, as the accuracy of

travel time prediction directly affects the feelings of road

users, MAPE should be as low as possible. However, more

importantly, to lower road users’ untrustworthiness on

information of travel time prediction, future work can try to

reduce percentages of samples of ‘‘inaccurate forecasting’’

and ‘‘reasonable forecasting’’ to enhance road users’

acceptance and trust on the travel time prediction.
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