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Abstract In this paper, we propose a general framework

for transfer learning, referred to as transfer sparse subspace

learning (TSSL). This framework is suitable for different

assumptions on the divergence measures of the data dis-

tributions, such as maximum mean discrepancy, Bregman

divergence, and K–L divergence. We introduce an effec-

tive sparse regularization to the proposed transfer subspace

learning framework, which can reduce time and space cost

obviously, and more importantly, which can avoid or at

least reduce over-fitting problem. We give different solu-

tions to the problems based on different distribution dis-

tance estimation criteria, and convergence analysis is also

given. Comprehensive experiments on the text data sets

and the face image data sets demonstrate that TSSL-based

methods outperform existing transfer learning methods.

Keywords Transfer learning � Subspace learning � Sparse

regularization � MMD � Bregman divergence

1 Introduction

The high dimensionality of data poses challenges to

learning tasks such as the curse of dimensionality. A

common way to solve this problem is dimensionality

reduction, which has attracted much attention in machine

learning and data mining community in the past decades. In

the literature, there are mainly two distinct ways for

dimensionality reduction, that is, feature selection and

feature extraction. In the former, subsets of features are

selected directly. In the latter, new features are gained from

their original features through algebraic transformation.

Despite different motivations of these methods, they can all

be interpreted in a unified Graph Embedding framework

[1]. Subspace learning algorithms belong to the feature

extraction issue. The most popular subspace learning

methods include unsupervised principle component analy-

sis (PCA) [2], supervised linear discriminant analysis

(LDA) [2], maximum margin criterion (MMC) [3], and

locality preserving projection (LPP) [4]. These algorithms

project the data by linear transformation according to some

optimization criteria. One of the key shortcomings of

subspace learning is that new features are linear combi-

nations of all original features. This means while subspace

learning facilitates model interpretation and visualization

by concentrating the information in a few features, the

features themselves are still constructed using all features,

hence are often hard to interpret [5]. Then, sparse subspace

learning methods attempted to solve this problem effec-

tively [6–9].

Conventional subspace learning algorithms for data

mining and machine learning perform well under the

assumption that training and testing samples are indepen-

dent and identically distributed (i.i.d). Unfortunately, for

many practical applications, this assumption is always

violated, and this will deeply decrease the effect of con-

ventional algorithms. Transfer learning aims to solve the

problem when the training data from a source domain and

the testing data from a target domain follow different
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distributions or are represented in different feature spaces

[10]. The key idea of transfer learning is that, although

distributions between source and target domain are differ-

ent, there must contend some common knowledge struc-

tures across domains. These common structures can be

utilized as a bridge for knowledge transfer.

One fundamental motivation of transfer learning in the

real applications is the so-called data sparsity problem in

target domain, where data sparsity can be defined by a lack

of useful labels or sufficient high-quality data in the

training set. This sparsity problem in target domain will

lead to an over-fitting model when training with conven-

tional methods. The regularization framework is popular in

machine learning to address various problems, for exam-

ple, Tikhonov regularization [11], manifold regularization

[12], graph Laplacian-based regularization [13], etc. To

overcome the data sparsity problem, we enforce sparse

regularization on the transfer learning framework.

The motivation of our work is as follows:

1. Though there are many subspace learning methods via

sparse regularization methods, none of them is suitable

for transfer learning paradigm, because most of them

rely on the i.i.d assumption, which may be impractical

in real applications. How to extend the traditional

subspace learning methods to solve the transfer

learning applications is significative.

2. Due to the fact that data sparsity problems happen in

both transfer learning and subspace learning paradigm,

how to overcome the over-fitting problem and which

kind of sparse regularization to select is worthy of study.

3. There are lots of widely used transfer learning

methods, suitable for different assumptions on the

divergence measures of the data distributions, such as

maximum mean discrepancy (MMD), Bregman diver-

gence, and Kullback–Leibler (K–L) divergence, and

most of recent algorithms depend on specific circum-

stances and applications. So how to unify them into a

general framework is a challenging problem.

In this paper, we proposed a general framework for

transfer learning, referred to as transfer sparse subspace

learning (TSSL). The main contributions of this paper

include the following:

1. We successfully extend the traditional subspace

learning algorithms such as PCA, LDA, MMC, and

LPP to solve transfer learning problems.

2. To deal with the considerable change between distri-

butions of the source and target domains, TSSL

minimized the distribution distance via two important

criteria, that is, MMD and Bregman divergence.

Indeed, TSSL provided a unified framework for

handling any distribution distance estimation criterion.

3. We employ sparse regularization term on the transfer

subspace learning framework to avoid or at least

reduce the over-fitting problems and also reduce time

and space cost obviously. We verify that the L2,1-norm

regularization is an effective constraint on the transfer

subspace learning procedure.

The rest of the paper is organized as follows. In Sect. 2,

the previous related works are discussed, and the prelimi-

naries including sparse subspace learning, L2,1-norm,

transfer learning, MMD, Bregman divergence, and MMC

are introduced. We presented our framework for transfer

sparse subspace learning and corresponding solutions in

Sect. 3. The experimental results on both text data sets and

face data sets are discussed in Sect. 4. Finally, we draw a

conclusion and discuss the future work.

2 Previous works and preliminaries

2.1 Sparse subspace learning

When the number of samples is smaller than the number of

features, the subspace learning methods may fail, and it is

necessary to control the model complexity according to the

regularization theory. The most important regularization

techniques include L1-norm, L2-norm, and the elastic net

penalty. Recently, sparse subspace learning draws

increasing interests, and many dimensionality reduction

methods are extended to their sparse version. Zou et al. [6]

proposed an elegant sparse PCA algorithm (SPCA) using

‘‘Elastic Net’’ framework for L1-penalized regression on

regular principle components, solved very effectively using

least angle regression (LARS). Moghaddam et al. [7]

proposed a spectral bound framework for sparse subspace

learning. Particularly, they proposed both exact and greedy

algorithms for sparse PCA and sparse LDA [8]. Cai et al.

[9] propose a unified sparse subspace learning framework,

which builds the connection between regression and many

popular graph-based subspace learning algorithms, for

example, LDA, LPP, and NPE. Their sparse solutions can

be effectively computed with a L1-norm regularization in

the proposed framework.

Recently, sparse regularization has been widely inves-

tigated and also applied into subspace learning studies. L1-

SVM was proposed to perform feature selection using the

L1-norm regularization that tends to give sparse solution

[14]. A hybrid huberized SVM (HHSVM) was proposed

combining both L1-norm and L2-norm to form a more

structured regularization [15]. Obozinsky et al. [16] and

Argyriou et al. [17] have developed a similar model for

L2,1-norm regularization to couple feature selection across

tasks. Such regularization has close connections to group
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lasso. On the basis of the motivation that the selected

features by sparse subspace learning methods are inde-

pendent and generally different for each dimension of the

subspace, Gu et al. [18] proposed a joint framework based

on using L2,1-norm on the projection matrix, which can do

feature selection and subspace learning simultaneously.

None of these sparse subspace learning methods is

suitable for transfer learning problems, since they ignore

the fact that the distributions of source domain data and

target domain data are different.

2.2 L2,1-norm

For a matrix W [ Rm9d, the Lr,p-norm is defined as follows:

Wk kr;p¼
Xm

i¼1

Xd

j¼1

wij

�� ��r
 !p=r

0
@

1
A

1=p

¼
Xm

i¼1

wi
�� ��p

r

 !1=p

ð1Þ

where wi is the ith row of W.

Then, L2,1-norm is defined in the following equation.

Wk k2;1¼
Xm

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xd

j¼1

w2
ij

vuut ¼
Xm

i¼1

wi
�� ��

2
ð2Þ

We can easily verify that L2,1-norm is rotational

invariant for rows for any rotational matrix R, that is,

WRk k2;1¼ Wk k2;1:

We also give an intuitional explanation of L2,1-norm.

First, we can compute the L2-norm of the rows wi (corre-

sponding to dimension i) and then compute L1-norm of the

vector bðWÞ ¼ w1
�� ��

2
; w2
�� ��

2
; . . .; wmk k2

� �
: The magni-

tudes of the components of the vector b(W) indicate how

important each dimension is. The L2,1-norm favors a small

numbers of nonzero rows in the matrix W, thereby ensuring

that dimensionality reduction will be achieved.

The L2,1-norm of a matrix was introduced [19] as rota-

tional invariant L1-norm and used for multitask learning

[16, 17]. Argyriou et al. [17] developed a non-convex

multitask generalization of the L2,1-norm regularization

that can be used to learn a few features common across

multiple tasks. Obozinski et al. [16] proposed a type of

joint regularization of the model parameters in order to

couple feature selection across tasks. Liu et al. [20] con-

sider the L2,1-norm regularized regression model for joint

feature selection from multiple tasks, which can be derived

in the probabilistic framework by assuming a suitable prior

from the exponential family. One appealing feature of the

L2,1-norm regularization is that it encourages multiple

predictors to share similar sparsity patterns.

Motivated by previous research [16, 18, 20, 21], an L2,1-

norm regularization is performed to select features across

all data points with joint sparsity, that is, each feature either

has small scores for all data points or has large scores over

all data points. In this paper, we also employ L2,1-norm

regularization on the projection matrix W to enable sub-

space learning effectively.

2.3 Transfer learning

In the past decades, there are many transfer learning

algorithms, which can be summarized into four cases, that

is, instance-based transfer learning, parameter-based

transfer learning and relational-knowledge transfer learn-

ing, and feature-based transfer learning. We refer to [22]

for more information.

The instance-based transfer learning approaches re-

weighted some labeled data in the source domain for use in

the target domain, the representative algorithms including

KLIEP [23], TrAdaBoost [24], TranferBoost [25], TrAda-

Boost.R2 [26], and MultiSourceTrAdaBoost [27].

The parameter-based transfer learning approaches

assumed that the source tasks and the target tasks share

some parameters or prior distributions of the hyperparam-

eters of the models. To discover the shared parameters or

priors, the knowledge can be transferred across tasks. The

representative algorithms include MI-IVM [28], GPDRTL

[29], TLVM [30], etc.

The relational-knowledge transfer learning approaches

assumed that some relationship among the data of the

source and target domains is similar. Statistical relational

learning techniques such as MLNs dominate this context

[31, 32].

The feature-based transfer learning approaches include

feature reweighting [33], feature replication [34], feature

projection [35, 36], feature correlation [37], feature sub-

setting [38], feature extraction [39, 40], etc. The feature-

based transfer learning aims to discover a shared feature

space in which the data distributions across domains are

close to each other. The shared feature space can be con-

structed in the original feature space [35, 36], or in the

projected subspace [41, 42].

Our framework belongs to the feature-based transfer

learning. So we focus on some previous representative

feature-based algorithms as follows. Structured corre-

spondence learning (SCL) [35] introduces the concept of

pivot features, which possess high frequency and similar

meaning in both auxiliary and target domains. Non-pivot

features can be mapped to each other via the pivot fea-

tures from the unlabeled data of both source and target

domains. Blitzer et al. [36] proposed to use mutual

information (MI) to choose the pivot features instead of

using more heuristic criteria. MI-SCL tries to find some

pivot features that have high dependence on the labels in

the source domain. Pan et al. [41] exploited the maximum
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mean discrepancy embedding (MMDE) method, originally

designed for dimensionality reduction, to learn a low-

dimensional space to reduce the difference of distributions

between different domains for transductive transfer

learning. However, MMDE may suffer from its compu-

tational burden. Thus, Pan et al. [42] further proposed an

effective feature extraction algorithm, known as transfer

component analysis (TCA), to overcome the drawback of

MMDE.

Since the distribution divergence between the original

source and target domains is large in transfer learning

settings, the classification or regression function f may not

generalize well in the target domain. So in this paper, we

want to alleviate this difficulty by reducing the distribution

distance across domains in a projected latent space. That is

to say, our framework aims to employ subspace learning

algorithm to discover the common shared projected sub-

space. The advantage of our method is that we do so in a

regularization framework, which takes the distribution

distance regularization and the sparse regularization into

consideration. Also, our framework can avoid over-fitting

problems.

2.4 Maximum mean discrepancy (MMD)

There are some criteria to estimate the distance between

different distributions [41]. Many criteria are parametric

because they need intermediate density estimation. MMD

is a relevant criterion for comparing distributions based on

reproducing kernel Hilbert space (RKHS) [43]. Given two

domains X and Y, let X ¼ fx1; x2; . . .; xn1
g and Y ¼

fy1; y2; . . .; yn2
g be random variable sets with different

distributions P and Q. The empirical estimation by MMD

will be as follows:

DistðX; YÞ ¼ sup
fk kH � 1

1

n1

Xn1

i¼1

f xið Þ �
1

n2

Xn2

i¼1

f yið Þ
 !

ð3Þ

where f : X ! H and H is a universal RKHS [44]. In a

RKHS, function evaluation can be written as

f ðxÞ ¼ /ðxÞ; fh i, where /ðxÞ : X ! H is a kernel-

induced feature map, and the empirical estimation of

MMD can be rewritten as:

DistðX; YÞ ¼ 1

n1

Xn1

i¼1

/ xið Þ �
1

n2

Xn2

i¼1

/ yið Þ
�����

�����
H

ð4Þ

On the basis of the MMD theory [43], the distance

between distributions of two sets of samples is just the

distance between the mean values of these two sets of

samples in a RKHS.

In order to enable knowledge transfer for mismatching

distribution data sets, Brian et al. [45, 46] explored a

feature extraction perspective, starting with the popular

sparse coding approach, which learns a set of higher-order

features for the data. They improved the original sparse

coding technique by incorporating distribution distance

regularization and the target data label information into the

general objective function. Ren et al. [47] proposed a

multiple kernel learning framework improved by MMD to

solve transfer learning problems. The model not only uti-

lizes the capacity of kernel learning to construct a non-

linear hyperplane which maximizes the separation margin,

but also reduces the distribution discrepancy between

training and testing data simultaneously. Zhang et al. [48]

proposed an approach, which performs multiple related

clustering tasks simultaneously through domain adaptation.

A shared subspace will be learned, where the gap of dis-

tributions via MMD among tasks is reduced, and the shared

knowledge will be transferred through all tasks by

exploiting the strengthened relation in the learned sub-

space. Uguroglu et al. [49] presented a method to identify

variant and invariant features between two data sets. Unlike

traditional feature-based transfer learning methods, rather

than finding a projection of the feature space to maximize

the similarity between source domain and target domain

data via MMD, Duan et al. [50] proposed a cross-domain

kernel learning framework called domain transfer multiple

kernel learning (DTMKL), which simultaneously learns a

kernel function and a robust classifier by minimizing both

the structural risk functional and the distribution mismatch

via MMD between source domain and target domain data.

Motivated by the success of MMD used for transfer

learning problems, in this paper, we also employ MMD as

one of the basic distribution distance estimation criteria,

and our goal is to reduce distribution gap between the

projected source and target domain subspace. The differ-

ence with the above algorithms is that we consider not only

the distribution estimation but also the sparse regulariza-

tion, which is important to handling over-fitting problem.

2.5 Bregman divergence

Definition [51] Let u be a continuous-differentiable real-

valued and strict convex function defined on a closed

convex set X, and a Bregman distance function du(x,

y) associated with the function u is defined as follows:

duðx; yÞ ¼ ruðxÞ � ruðyÞ � ruðyÞ; ðx� yÞh i ð5Þ

for any points x, y [ X, whereru(y) is the gradient of u
evaluated at y.

According to the definition, different convex functions u
define different specific forms of Bregman divergences.

Some frequently used divergences are all specific forms of

Bregman divergences that are showed in Table 1 [52].
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There are some important properties of Bregman

divergence. A Bregman divergence is not generally sym-

metric, that is, it does not always hold that du(x, y) = du(y,

x). The squared Euclidean distance and the squared Ma-

halanobis distance are two examples of symmetric Breg-

man divergences, and the Kullback–Leibler (K–L)

divergence is asymmetric. A Bregman divergence du(x,

y) is convex w.r.t. its left variate x, but non-convex w.r.t. its

right variate y. More details about Bregman divergence can

be found in [51].

Si et al. [53] presented a family of subspace learning

algorithms based on Bregman divergence regularization,

which transfers the knowledge gained in the source domain

data to the target domain data. The transfer subspace

learning (TSL) framework extends many classical subspace

learning algorithms under transfer learning settings, such as

TPCA, TLDA, TLPP, and TMFA. In the following work,

Si et al. [54, 55] proposed the cross-domain discriminative

Hessian Eigenmaps (CDHE) and cross-domain discrimi-

native locally linear embedding (CDLLE), which incor-

porated Bregman divergence regularization. Wu et al. [56]

proposed a scheme of learning Bregman distance function

with side information. Gao et al. [57] proposed a transfer

learning framework for latent variable model, which can

utilize the Bregman divergence of the source and target

domain data to modify the parameters of the obtained

latent variable model. Zhang et al. [58] deal with multitask

clustering-based Bregman divergence, which aims to

improve performance of each single task and also discover

the relationship between clusters of different tasks.

Motivated by these excellent works, we also unify the

Bregman divergence into our general transfer learning

framework. The advantage of our method is that we take

both distribution estimation and the sparse regularization

into consideration, so that our methods can be extended to

more real applications.

2.6 Maximum margin criterion (MMC)

MMC [3] aims at maximizing the average margin between

classes in the projected space. Therefore, the feature

extraction criterion is defined as:

J ¼ 1

2

XC

i¼1

XC

j¼1

pipjd Ci;Cj

� �
ð6Þ

where C is the number of distinct classes and pi, pj are the

prior probability of class i and class j, respectively; the

interclass margin is defined as:

d Ci;Cj

� �
¼ d mi;mj

� �
� s Cið Þ � s Cj

� �
s Cið Þ

¼ tr Sið Þ; s Cj

� �
¼ tr Sj

� �
ð7Þ

where mi, mj are the mean vectors of the class Ci and the

class Cj and Si, Sj are the covariance matrix of the class Ci

and the class Cj. After simple mathematical operation, we

can obtain the following formula:

J ¼ tr Sb � Swð Þ ð8Þ

The between-class scatter matrix Sb and the within-class

scatter matrix Sw are defined as:

Sb ¼
XC

i¼1

ni mi � mð Þ mi � mð ÞT

Sw ¼
XC

i¼1

Xi � mið Þ Xi � mið ÞT
ð9Þ

where ni is the number of class Ci and m is the mean vector

of all data. Then, the MMC can be formulated as:

arg max
W2X

FðWÞ ¼ arg max
W2X

trðWT Sb � Swð ÞWÞ ð10Þ

Obviously, we can get the optimal W by solving the gen-

eralized eigenvalue problem: (Sb - Sw)W = kW. There-

fore, W is composed of the first d largest eigenvectors of

Sb - Sw.

The number of clusters is predefined as c, F [ Rn9c is

the indicator matrix, Fij ¼ 1
	 ffiffiffi

lj

p
if xi belong to jth cluster,

and Fij = 0 otherwise, where lj is the number of samples in

jth cluster. We can easily verify the following equations:

Sw ¼ X I � FFT
� �

XT ; Sb ¼ XFFT XT ð11Þ

Different with LDA, we need not calculate the inverse

of Sw, which allows us to avoid the small sample size

problem easily. Due to the advantage of MMC method, we

employ it as an example to test the efficiency of our

Table 1 Some frequently used

divergences
Domain u(x) du(x, y) Divergence

R
d

xk k2 x� yk k2 Squared Euclidean distance

R
d xTAy (x - y)TA(x - y) Squared Mahalanobis distance

d-Simplex Pd

j¼1

xj log2 xj

Pd

j¼1

xj log2
xj

yj

� � Kullback–Leibler (K–L) divergence

R?? -log(x) x
y� log x

y

� �
� 1 Itakura–Saito distance
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framework. Of course, our framework is suitable for any

subspace learning methods.

3 Transfer sparse subspace learning (TSSL)

3.1 Problem statement and notations

In a transfer learning setting, we denote the source domain

data as DS ¼ x1; z1ð Þ; x2; z2ð Þ; . . .; xn1
; zn1

ð Þf g; xi [ R
m,

i = 1, 2,…,n1 and zi is the corresponding label. Similarly,

we denote the target domain data as DT ¼ xn1þ1; xn1þ2;f
. . .; xn1þn2

g; and we assumed xi [ R
m, i = n1 ? 2,…,n1 ?

n2. Denote X = [x1, x2,…,xn] [ Rm9n, where n = n1 ? n2.

Let P(XS) and Q(XT) be the marginal distribution of XS and

XT, respectively, and usually P(XS) = Q(XT).

3.2 General framework

3.2.1 Subspace learning framework

A subspace learning algorithm finds a low-dimensional

subspace R
d, where samples from different classes can be

well separated or a specific redundancy is minimized. The

objective function of subspace learning framework is as

follows:

W ¼ arg min
W2X

FðWÞ ð12Þ

Whatever the objective is, to approximate the transformation

from R
m to R

d, the linear function can be used, yi = Wxi
T ,

where i = 1, 2,…n1 ? n2, where yi is the low-dimensional

representation of the samples xi, W [ R
m9d, xi [ R

m,

yi [ R
d. Denote the low-dimensional samples as:

Y ¼ YS [ YT ; YS ¼ y1; y2; . . .; yn1
f g; YT

¼ yn1þ1; yn1þ2; . . .; yn1þn2
f g

Let the probability density for the source domain data and

the target domain data in the projected subspace W be p(ys)

and q(yt), respectively, and in general p(ys) = p(yt).

In this paper, we use the MMC as the subspace learning

method. Of course, our framework can be easily extended

to all of other subspace learning methods such as PCA,

LDA, and LPP.

3.2.2 Incorporate sparse regularization

The regularization principals can deal with various

machine learning problems [53], and there are some

advantages of incorporating sparse regularization to the

subspace learning framework. First, it can make the sub-

space more succinct and simpler, and the calculation will

be more effective. Parsimony is especially an important

factor when the dimension of the original samples is very

high. Second, it can control the importance of original

dimensions and decrease the influence brought by possible

over-fitting problem. Third, it provides a good interpreta-

tion of the subspace and thus reveals an explicit relation-

ship between the objective of the model and the given

variables. It is important because we can understand the

problem better by learning which kind of dimension plays

more important role.The objective function of sparse sub-

space learning framework incorporated with sparse regu-

larization is as follows:

W ¼ arg min
W2X

FðWÞ þ aUðWÞ ð13Þ

We enforce the sparsity penalty on the projection matrix

W and encourage the rows of W to be zeroed as much as

possible. The intuition behind this is that we expect the

source domain and target domain data to only depend on a

subset of the latent dimensions. The zero-valued rows of

W remove the influence of the corresponding latent

dimensions.

In this paper, we enforced L2,1-norm regularization on

the W, the rows of W will be zero as much as possible. This

lets us automatically discover the dimensionality of the

latent space. Furthermore, in our transfer learning setting,

we assume the source domain and the target domain share

some information, and this regularization will favor rep-

resenting this shared information in a common latent

dimension space.

3.2.3 Incorporate distribution divergence regularization

The subspace learning framework incorporated with sparse

regularization works well when source domain data and

target domain data are independent and identically dis-

tributed (i.i.d). But in transfer learning setting, we relax this

assumption, that is, P(XS) = Q(XT). Then, the distributions

of low-dimensional projected data are also different, that is,

P(YS) = Q(YT). So we should take the difference between

P(YS) and Q(YT) into consideration and ensure they are

close to each other in the projected subspace. Let Dist(YS,

YT) be the distance estimation of the different distributions

between the source and target domains in the projected

subspace. Then, we can get the general framework for

transfer sparse subspace learning as follows:

W ¼ arg min
W2X

FðWÞ þ aUðWÞ þ bDist YS; YTð Þ ð14Þ

In this paper, we use the MMD criterion and the Bregman

divergence criterion as the two main regularizations. Of

course, our framework can be easily extended to all of

other distribution divergence regularizations such as Kull-

back–Leibler (K–L) divergence, b divergence, Jensen–

Shannon divergence, and v2 divergence.
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3.3 MMD-based regularization

3.3.1 Reformulation of MMD regularization

Pan et al. [41] developed a transfer learning technique for

learning in a latent space, called MMDE. MMDE embeds the

data from both domains into a common low-dimensional latent

subspace. The key idea is to formulate it as a kernel learning

problem using the kernel trick, Kij = K(xi, xj) = /(xi)
T/(xj),

and to learn the Kernel matrix defined on all the data:

K ¼ KYS;YS
KYS;YT

KT
YT ;YS

KYT ;YT


 �
2 Rðn1þn2Þ�ðn1þn2Þ ð15Þ

where KYS;YS
; KYT ;YT

and KYS;YT
are the Gram matrix defined

on the source domain DS , target domain DT , and cross-

domains, respectively. YS and YT are the low-dimensional

representations of source domain data XS and target domain

data XT, respectively. Then, we can get the new

formulation of minimizing the distance (measured by

MMD) between the two domains as:

Dist YS; YTð Þ ¼ trðKLÞ ð16Þ

where L = [Lij] C 0 with

Lij ¼

1
n2

1

when xi; xj 2 XS

1
n2

2

when xi; xj 2 XT

� 1
n1n2

otherwise

8
><

>:
ð17Þ

There are several limitations of MMDE. First, it is trans-

ductive and cannot handle out-of-domain samples. Second,

the resultant kernel learning problem has to be solved by

expensive SDP complexity solvers. Third, the obtained

K has to be processed by PCA. This may discard potential

useful information in K.

To overcome the limitations of MMDE above, Pan pro-

posed a new feature extraction method, TCA, for transfer

learning [42]. It learns a set of transfer components in a

RKHS such that when projecting domain data onto the latent

space spanned by the transfer components, the distance

between domains can be reduced. According to the empirical

kernel map [59], K = (KK-1/2)(K-1/2K), the projection

matrix ~W 2 R
ðn1þn2Þ�m transforms the empirical kernel map

features to an m-dimensional space (where m � n1 ? n1).

The new resultant kernel matrix is as follows:

~K ¼ ðKK�1=2 ~WÞð ~WT K�1=2KÞ ¼ KWWT K

where W ¼ K�1=2 ~W : The distance between the two

domains can be formulated as:

Dist YS; YTð Þ ¼ trð ~KLÞ ¼ tr KWWT K
� �

L
� �

¼ tr WT KLKW
� �

ð18Þ

3.3.2 Reformulation of sparse regularization

In this paper, we incorporate L2,1-norm to the objective as

the sparse regularization.

Let UðWÞ ¼ Wk k2;1¼
Pm

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPd
j¼1 w2

ij

q
¼
Pm

i¼1 wik k2,

D = (dij) [ Rm9m be the diagonal matrix with the ith

diagonal element, dii ¼ 1
	

2 wik k2

� �
; i ¼ 1; 2; . . .;m, where

wi is the ith row of W. It can be easily verified that [21]

min Wk k2;1, min tr WTDW
� �

ð19Þ

For more details, please refer to [21].

3.3.3 Transfer sparse subspace learning–based MMD

(TSSL_MMD)

Besides reducing the distance between two marginal dis-

tributions, we should also preserve data properties that are

useful for the target supervised learning task. In this part, we

select the MMC as the base subspace learning method. As

we know, the formulation of MMC is equally as follows:

arg min
WT W¼I

FðWÞ ¼ arg min
WT W¼I

tr WT Sw � Sbð ÞW
� �

ð20Þ

To avoid the rank deficiency of the denominator in the

generalized eigenvalue decomposition, a regularization

term WTW = I is needed.

Then, we can get the final optimization formulation of

the transfer sparse subspace learning–based MMD

(TSSL_MMD):

arg min
WT W¼I

tr WT Sw � Sbð ÞW
� �

þ atr WT DW
� �

þ btr WT KLKW
� �

ð21Þ

The first term of Eq. (21) is to learn a shared subspace,

the second term is to handle data sparsity and over-fitting

problems, and the last term is to reduce the gap of

distributions via MMD among domains in the reduced

subspace. By minimizing Eq. (21), the shared knowledge

will be transferred through domains by exploiting the

strengthened relation in the learned subspace.

3.3.4 Solution for TSSL_MMD

According to Eq. (11), we can reformulate the

TSSL_MMD as follows:

arg min
WT W¼I
FT F¼I

tr WT X I � 2FFT
� �

XT W
� �

þ atr WT DW
� �

þ btr WT KLKW
� �

ð22Þ

We can see that there are three different variables that

should be optimized, that is, W, D, and F. It is difficult to

compute them simultaneously. We alternately optimize

them, and then we can get W, D, and F.
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Step 1 Fixing W, compute F, the second and the third

term are fixed, so the optimization problem becomes

arg max
FT F¼I

tr FT XT WWT XF
� �

Clearly, we can use spectral decomposition technique to

solve this problem. That is, the optimal F is formed by the

eigenvectors corresponding to the m largest eigenvalues of

the matrix XTWWTX.

Step 2 Fixing F, compute W and D, we notice that there

are still two variables to be optimized. We use nesting

optimization technique.

Step 2.1 Fixing W, compute D, we can easily update D

as follows:

D ¼ ðdiiÞ; where dii ¼ 1
.

2 wi
�� ��

2

� �
; i ¼ 1; 2; . . .;m

Step 2.2 Fixing D, compute W, the optimization problem

becomes

arg min
WT W¼I

tr WTðX I � 2FFT
� �

XT þ aDþ bKLKÞW
� �

We can also use spectral decomposition technique to

solve this problem. Moreover, the optimal W is formed by

the eigenvectors corresponding to the m smallest

eigenvalues of the matrix X(I - 2FFT)XT ? aD ? bKLK,

where m � n1 ? n2 - 1.

The iteration procedure is repeated until the algorithm

converges. We also give the algorithm convergence anal-

ysis in the next section.

The main algorithm is presented in Table 5.

3.3.5 Convergence analysis of TSSL_MMD

In this section, we will prove that TSSL_MMD monoton-

ically decreases the objective of the problem in Eq. (21).

Firstly, we give the lemma from [21].

Lemma 1 For any nonzero vector w, v [ Rd, the fol-

lowing inequality holds.

wk k2�
wk k2

2

2 vk k2

� vk k2�
vk k2

2

2 vk k2

Theorem 1 The algorithm will monotonically decrease

the objective of the problem in Eq. (21) in each iteration

and will converge to the optimum of the problem.

Proof It can be easily verified that optimizing Eq. (21) is

equivalent to solving Eq. (22). As seen in algorithm, when

fixing D as Dt, we can compute W and F. In the t iteration,

we should solve the following problem:

Wtþ1;Ftþ1 ¼ arg min
WT W¼I;FT F¼I

tr WT X I � 2FFT
� �

XT W
� �

þ atr WT DtW
� �

þ btr WT KLKW
� �

Then we can get the following equation:

tr WT
tþ1X I � 2Ftþ1FT

tþ1

� �
XTWtþ1

� �
þ atr WT

tþ1DtWtþ1

� �

þ btr WT
tþ1KLKWtþ1

� �
� tr WT

t X I � 2FtF
T
t

� �
XT Wt

� �

þ atr WT
t DtWt

� �
þ btr WT

t KLKWt

� �

Since

Wk k2;1¼
Xm

i¼1

wi
�� ��

2
; dii ¼ 1

.
2 wi
�� ��

2

� �
; i ¼ 1; 2; . . .;m

wi is the ith row of W. The above inequality indicates that

tr WT
tþ1X I � 2Ftþ1FT

tþ1

� �
XT Wtþ1

� �
þ a

Xm

i¼1

wi
tþ1

�� ��2

2

2 wi
t

�� ��
2

þ btr WT
tþ1KLKWtþ1

� �
� tr WT

t X I � 2FtF
T
t

� �
XT Wt

� �

þ a
Xm

i¼1

wi
t

�� ��2

2

2 wi
t

�� ��
2

þ btr WT
t KLKWt

� �
ð23Þ

According to Lemma 1, for each i, we have

wi
tþ1

�� ��
2
�

wi
tþ1

�� ��2

2

2 wi
t

�� ��
2

� wi
t

�� ��
2
�

wi
t

�� ��2

2

2 wi
t

�� ��
2

Then the following inequality holds

Xm

i¼1

wi
tþ1

�� ��
2
�

wi
tþ1

�� ��2

2

2 wi
t

�� ��
2

�
Xm

i¼1

wi
t

�� ��
2
�

wi
t

�� ��2

2

2 wi
t

�� ��
2

ð24Þ

Combining Eqs. (23) and (24), we can get the following

result:

tr WT
tþ1X I � 2Ftþ1FT

tþ1

� �
XTWtþ1

� �
þ a

Xd

i¼1

wi
tþ1

�� ��
2

þ btr WT
tþ1KLKWtþ1

� �
� tr WT

t X I � 2FtF
T
t

� �
XT Wt

� �

þ a
Xd

i¼1

wi
t

�� ��
2
þ btr WT

t KLKWt

� �

That is to say

tr WT
tþ1X I � 2Ftþ1FT

tþ1

� �
XT Wtþ1

� �
þ a Wtþ1k k2;1

þ btr WT
tþ1KLKWtþ1

� �
� tr WT

t X I � 2FtF
T
t

� �
XT Wt

� �

þ a Wtk k2;1þbtr WT
t KLKWt

� �

This inequality indicates the algorithm will monotoni-

cally decrease the objective of the problem in Eq. (21) in

each iteration. Besides, since the three items in Eq. (21)

are convex functions and the objective function has

lower bounds, such as zero, the above iteration will

converge to the optimum solution. In the following

experiment section, we can see that our algorithm con-

verges fast. h
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3.4 Bregman divergence–based regularization

3.4.1 Reformulation of Bregman divergence regularization

On the basis of the definition above, we can give the

Bregman divergence–based regularization, which measures

the distance between P(YS) and Q(YT).

DistðYS; YTÞ ¼
Z

d p ysð Þ; q ytð Þð Þdl ð25Þ

where dl is the Lebesgue measure. The right side is also

called the U-divergence on the subspace R
d. When we set

u(y) = y2, the regularization item reduces to squared

Euclidean distance form:

DistðYS; YTÞ ¼
Z

d p ysð Þ; q ytð Þð Þdl ¼
Z

p ysð Þ; q ytð Þð Þ2dy

ð26Þ

Then, we use kernel density estimation (KDE) technique

[60] to estimate the distribution P(YS) and Q(YT) in the

projected subspace W, that is,

p ysð Þ ¼ 1=n1ð Þ
Xn1

i¼1

GR1
y� yið Þ; q ytð Þ

¼ 1=n2ð Þ
Xn1þn2

j¼n1þ1

GR2
y� yj

� �
ð27Þ

For two arbitrary Gaussian kernels, we haveZ
GR1

y� yið ÞGR2
y� yj

� �
¼ GR1þR2

yi � yj

� �
ð28Þ

Then, we can get the discrete form of Bregman divergence:

Dist YS; YTð Þ ¼ 1

n2
1

Xn1

i¼1

Xn1

j¼1

GR11
yj � yi

� �

þ 1

n2
2

Xn1þn2

i¼n1þ1

Xn1þn2

j¼n1þ1

GR22
yj � yi

� �

� 1

n1n2

Xn1

i¼1

Xn1þn2

j¼n1þ1

GR12
yj � yi

� �

ð29Þ

where

R11 ¼ R1 þ R1; R12 ¼ R1 þ R2; R22 ¼ R2 þ R2.

3.4.2 Transfer sparse subspace learning–based Bregman

divergence (TSSL_BD)

In this section, we presented a Bregman divergence–based

regularization Dist(YS, YT), which measures the distribution

difference of samples drawn from different domains in a

projected subspace. We also employ the L2,1-norm as the

sparse regularization, and the MMC as the base subspace

learning method. Then, we can get the final optimization

formulation of the transfer sparse subspace learning–based

Bregman divergence (TSSL_BD)

arg min
WT W¼I

tr WTðSw � SbÞW
� �

þ atr WT DW
� �

þ bDist YS; YTð Þ: ð30Þ

3.4.3 Solution for TSSL_BD

The convexity of TSSL_BD method depends on all of the

three terms of the objective function. The convexity of the

first term F(W) depends on a particular subspace learning

method, such as PCA, MMC, and LPP. The convexity of

the second term U(W) depends on the selection of sparse

regularization, such as L1-norm, L2-norm, and L2,1-norm.

The convexity of the third term Dist(YS, YT) depends on the

selection of the distribution estimation criteria of the dif-

ferent data sets. So it is not easy to give a general convexity

of TSSL problem theoretically, and it is problem

dependent.

Because the Eq. (30) is not convex, the solution can be

obtained by the gradient decent algorithm, that is,

W  W � gðoWtr WT Sw � Sbð ÞW
� �

þ aoW tr WT DW
� �

þboWDist YS; YTð ÞÞ ð31Þ

where g is the learning rate and qW is the gradient with

respect to W.

Next, we calculate the derivative of the three terms one

by one.

First, it is simple that the derivative of tr(Sw -

Sb)W with respect to W is

oW tr WT Sw � Sbð ÞW
� �

¼ 2 Sw � Sbð ÞW ð32Þ

Second, due to the fact that D is related with W as

follows:

dii ¼ 1
.

2 wi
�� ��

2

� �
; wi
�� ��

2
¼
Xd

j¼1

w2
ij

So the derivative of tr(WTDW) with respect to W is as

follows:

otr WT DWð Þ
oW

¼
o
Pd

i¼1

Pm
j¼1 w2

jidjj

� �

owj0i0
DW

¼ 2
Xd

i¼1

Xm

j¼1

dj0i0wj0i0 þ
Xd

i¼1

Xm

j¼1

w2
j0i0

odj0j0

owj0i0

¼ 2
Xd

i¼1

Xm

j¼1

dj0i0wj0i0

þ
Xd

i¼1

Xm

j¼1

w2
j0i0

wj0i0

�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPd

j¼1 w2
i0j0

q� �3

¼
Xd

i¼1

Xm

j¼1

dj0i0wj0i0 ¼ DW ð33Þ
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Third, similar to [53], we can get the derivative of Dist(YS,

YT) with respect to W:

Xn1þn2

i¼1

DistðYS; YTÞ
oyi

oyi

oW

¼
Xn1

i¼1

DistðYS; YTÞ
oyi

oyi

oW
þ
Xn1þn2

i¼n1þ1

DistðYS;YTÞ
oyi

oyi

oW

¼ 2

n2
1

Xn1

i¼1

Xn1

j¼1

GR11
ðyi � yjÞðR11Þ�1ðyj � yiÞxT

i

þ 2

n2
2

Xn1þn2

i¼n1þ1

Xn1þn2

j¼n1þ1

GR22
ðyi � yjÞðR22Þ�1ðyj � yiÞxT

i

� 2

n1n2

Xn1

i¼1

Xn1þn2

j¼n1þ1

GR12
ðyj � yiÞðR12Þ�1ðyj � yiÞxT

i

� 2

n1n2

Xn1þn2

i¼n1þ1

Xn1

j¼1

GR12
ðyj � yiÞðR12Þ�1ðyj � yiÞxT

i

ð34Þ

So we can obtain a solution W of TSSL_BD in an iterative

way.

Similar to Sect. 3.3.4, after obtaining the projection

matrix W, we can predict the labels of target domain data.

In the training stage, the labels of target domain are blind to

the subspace learning methods. One reference image for

each test class is preserved, so that the classification can be

done in the testing stage. Then, we adopt the nearest

neighbor classifier to predict the labels of remaining test

images in the selected subspace. The main algorithm is

presented in Table 6.

In this section, we do not give any theoretical conver-

gence analysis, and instead, we give some experimental

results in the next section. Experimental results demon-

strate that we can get a fast convergence.

4 Experimental results

4.1 Data sets descriptions

4.1.1 20-Newsgroups data sets

The 20-newsgroups data set collects approximately 20,000

documents across 20 different newsgroups. It is widely

used to test the performance of text mining algorithms. We

employed the conventional strategy to construct the data

sets, that is, ignored the headers, removed stop words, and

selected the top words by mutual information. In order to

make the 20-newsgroups data set suitable for our transfer

learning problem setting, we reorganize the 20 subcate-

gories and put them in related but different domains. The

preprocessing strategy of 20-newsgroups data set is similar

to [61]. We reorganize the 20 subcategories into 6 source

and target domain pairs. Within each domain pair, the texts

are from only two top categories. And within each domain

in the pair, positive instances consist of some subcategories

in one top category, while negative instances consist of

some other subcategories in the other top category. In each

data set, we randomly selected 100 target documents as the

training samples, and the remaining were used as the

testing samples. Detail settings of the 20-newsgroups data

set are shown in Table 2.

4.1.2 Face image data sets

To the best of our knowledge, no public face data sets are

constructed for transfer learning. In this paper, similar to

[53], we build a set of data sets based on the existing face

data sets, for example, ORL [62], YALE [2], FERET [63],

and UMIST [64]. ORL face database [62] contains 10

images for each of the 40 human subjects, which are taken

Table 2 Data description: the 20-newsgroups data sets (the number of the document is inside the parentheses)

Data

set

The training procedure The testing procedure

Source (labeled) Source (labeled) Target (unlabeled) Target (unlabeled) Target (to be

predicted)

Target (to be

predicted)

C2R com.graphics (973) rec.sport.baseball

(994)

com.windows.x

(100)

rec.sport.hockey

(100)

com.windows.x

(888)

rec.sport.hockey

(899)

S2T sci.electronics (984) talk.politics.misc

(775)

sci.space (100) talk.religion.misc

(100)

sci.space (887) talk.religion.misc

(528)

C2S com.graphics (973) sci.space (987) com.windows.x

(100)

sci.electronics (100) com.windows.x

(888)

sci.electronics (884)

T2R rec.sport.baseball

(994)

talk.politics.misc

(775)

rec.sport.hockey

(100)

talk.religion.misc

(100)

rec.sport.hockey

(899)

talk.religion.misc

(528)

C2T com.graphics (973) talk.politics.misc

(775)

com.windows.x

(100)

talk.religion.misc

(100)

com.windows.x

(888)

talk.religion.misc

(528)

R2S rec.sport.baseball

(994)

sci.space (987) rec.sport.hockey

(100)

sci.electronics (100) rec.sport.hockey

(899)

sci.electronics (884)
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at different times, varying the lighting, facial expressions,

and facial details. The original images (with 256 gray

levels) have size 92 9 112, which are resized to 32 9 32

for efficiency. The YALE face database [2] consists of 165

images from 15 individuals, and each has 11 images with

different facial expressions or configurations. The FERET

face database [63] contains 13,539 face images collected

from 1565 individuals, where images are photographed

with different sizes, poses, illuminations, and facial

expressions. The UMIST face database [64] consists of 564

images of 20 people with different races, genders, and

appearances, covering a range of poses from profile to

frontal views. For simplicity, we randomly select 100

individuals, each of which has 6 images for FERET. All

images are used from the other three face databases. We

generated six new data sets for transfer learning settings by

mixing some of them together. Detail settings of the new

face image data sets are shown in Table 3.

4.2 Experimental setup

For the text data sets, we compare our transfer sparse

subspace learning methods, TSSL_MMD and TSSL_BD,

with the following typical methods:

1. SVM, use linear support vector machine to train a

classifier in the original space of source domain, and

then directly apply this classifier to the testing target

data;

2. PCA [2], first apply PCA to get a latent space of source

and target domain and then use SVM to train a

classifier for the testing target data;

3. MMDE [41], TCA [42], SCL [35], and TSL [53], some

classical transfer learning methods, first get the

common latent space of source and target domain,

and then use SVM to train a classifier for the testing

target data.

Table 3 Data description: the face image data sets (the number of the

images is inside the parentheses)

Date

sets

The source domain data set

(labeled)

The target domain data set

(unlabeled)

O2Y ORL (400) YALE (165)

O2F ORL (400) FERET (600)

O2U ORL (400) UMIST (564)

Y2F YALE (165) FERET (600)

Y2U YALE (165) UMIST (564)

F2U FERET (600) UMIST (564)
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Fig. 1 The performances of various methods based on different subspace dimensions on the text data sets
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Fig. 2 The performances of various methods based on different subspace dimensions on the face image data sets

Table 4 The classification accuracies of various methods (the standard deviations are inside the parentheses)

Methods C2R S2T C2S T2R C2T R2S

Text data sets

SVM 74.32(2.36) 75.21(3.58) 71.25(6.01) 76.25(1.98) 77.69(2.05) 78.01(3.22)

PCA 82.14(4.01) 79.26(1.02) 80.32(2.36) 78.23(7.98) 81.29(2.55) 80.00(2.87)

SCL 80.68(1.08) 79.65(3.58) 82.25(5.25) 79.25(2.14) 80.56(2.55) 81.99(1.99)

MMDE 81.58(2.58) 82.25(1.78) 80.25(2.33) 79.36(2.55) 80.33(2.64) 82.36(2.99)

TCA 82.19(5.88) 82.69(4.66) 79.20(3.55) 81.55(6.22) 80.56(4.81) 84.58(6.11)

TSL 81.02(2.01) 83.56(5.22) 81.32(2.69) 80.65(6.32) 81.00(3.55) 83.02(2.71)

TSSL_MMD 85.02(2.05) 86.01(2.51) 83.99(6.05) 85.45(3.42) 84.02(6.00) 86.91(2.19)

TSSL_BD 83.99(2.06) 84.06(5.02) 84.02(6.33) 84.36(2.65) 83.01(6.03) 85.32(2.36)

O2Y O2F O2U Y2F Y2U F2U

Face image data sets

PCA 29.02(3.06) 28.36(3.25) 31.02(3.57) 32.06(2.15) 33.67(3.85) 30.48(2.15)

MMC 34.06(3.51) 35.28(3.49) 38.48(4.02) 37.29(2.59) 38.48(6.15) 36.01(3.16)

SCL 25.05(6.56) 24.58(3.15) 22.15(3.49) 30.15(3.49) 31.09(2.55) 25.02(3.41)

MMDE 41.09(3.01) 45.25(2.01) 43.12(3.09) 42.28(4.21) 43.15(2.01) 45.28(3.65)

TCA 50.36(3.36) 52.14(2.16) 54.15(3.16) 52.19(3.16) 52.59(2.65) 54.16(6.13)

TSL 59.16(2.03) 61.29(3.12) 60.39(2.98) 62.35(3.21) 62.65(2.68) 63.16(2.98)

TSSL_MMD 63.02(3.49) 64.06(5.06) 61.06(2.69) 66.01(3.64) 66.00(6.01) 64.36(2.58)

TSSL_BD 66.03(6.69) 65.69(3.67) 63.69(3.22) 67.00(6.01) 68.69(2.88) 65.01(6.00)
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For the face image data sets, we compare our transfer

sparse subspace learning methods, TSSL_MMD and

TSSL_BD, with the following typical methods:

1. PCA [2], MMC [3], first apply PCA or MMC to get a

latent space of source domain W, and then project the

target domain data into this latent space by W, and then

use KNN to find labels of unlabeled target domain

data;

2. MMDE [41], TCA [42], SCL [35], and TSL [53], some

classical transfer learning methods, first get the

common latent space of source and target domain,

and then use KNN to find labels of unlabeled target

domain data.

In this section, we use classification accuracy to measure

the classification performance. We run 10 repetitions and

report the means and the standard deviations of all

methods.

In TSSL_MMD method, the most important factor is the

selection of kernel function. On the basis of the well-

known observation that the linear kernel is often adequate

for high-dimensional text data [41], we also employ the

linear kernel function for 20-newsgroup data. On the basis

of the fact that the manifold assumption of the face image

data set is much stronger than the text data, we employ

Laplacian kernel function for face image data.

In TSSL_BD method, we initialized W as the MMC

projection matrix and empirically set the learning rate as

g(k) = g(0)/k. The intuition is that in the forepart, we give

large step sizes for iterations because the initial of W is far

away from the optimal solution, and in the afterward, we

give small step sizes for iterations and let it gradually

approach to the optimal solution.

4.3 Overall comparison results

In this section, we perform three groups of experiments.

The first group is the classification accuracies of various

methods on both of the text data and face image data. The

second group is the convergence property of TSSL meth-

ods. The last group is the sensitivity of the regularization

parameters.

Table 5 Transfer sparse subspace learning based on MMD (TSSL_MMD)

Input: The source domain data DS ¼ x1; z1ð Þ; x2; z2ð Þ; . . .; xn1
; zn1

ð Þf g; the target domain data DT ¼ xn1þ1; xn1þ2; . . .; xn1þn2
f g, X = [x1,

x2,…,xn] [ Rm9n, n = n1 ? n2, balance parameters a, b

Output: The labels of the target domain data

Initialize: Construct kernel matrix K form the source and target domain data based on Eq. (15), matrix L based on Eq. (17), set t = 0.

Initialize Dt [ Rm 9 m as an identity matrix

Stage one: Computing Projection matrix W, alternatively update F, W and D until convergence

1: Fixing Wt, compute Ft?1. The optimal Ft?1 is formed by the eigenvectors corresponding to the m largest eigenvalues of the matrix

XTWtWt
TX

2: Fixing F, compute Wt?1 and Dt?1. We use nesting optimization technique

2.1: Fixing Wt, compute Dt?1.Dtþ1 ¼ diið Þ; where dii ¼ 1
.

2 wi
tþ1

�� ��
2

� �

2.2: Fixing Dt, compute Wt?1. The optimal Wt?1 is formed by the eigenvectors corresponding to the m smallest eigenvalues of the matrix

X(I - 2FtFt
T)XT ? aDt ? bKLK

Stage two: Predict the labels of the target domain data

1: Get the new low-dimensionality representations of the original data via Y = WTX,

Y ¼ YS [ YT ;YS ¼ y1; y2; . . .; yn1
f g; YT ¼ yn1þ1; yn1þ2; . . .; yn1þn2

f g
2: Learn a classifier or regressor, f:yi ? zi, i = 1, 2,…,n1

3: Use the learned classifier or regressor to predict the labels of the target domain data, zi = f(xi), i = n1 ? 1, n1 ? 2,…,n1 ? n2

Table 6 Transfer sparse subspace learning based on BD (TSSL_BD)

Input: The source domain data DS ¼ x1; z1ð Þ; x2; z2ð Þ; . . .; xn1
; zn1

ð Þf g; the target domain data DT ¼ xn1þ1; xn1þ2; . . .; xn1þn2
f g, X = [x1,

x2,…,xn] [ Rm9n, n = n1 ? n2, balance parameters a, b

Output: The labels of the target domain data

Initialize: Construct kernel matrix K form the source and target domain data based on Eq. (15), matrix L based on Eq. (17). Initialize W as

MMC projection matrix, set g(k) = g(0)/k

Stage one: Computing Projection matrix W by the gradient decent algorithm

Use source domain and target domain data to learn the projection matrix W based on Eq. (30–34)

Stage two: Predict the labels of the target domain data

1: Get the new low-dimensionality representations of target domain data via YT = WTX, YT ¼ yn1þ1; yn1þ2; . . .; yn1þn2
f g

2: Use KNN classifier to predict the labels of the target domain data, zi = f(xi), i = n1 ? 1, n1 ? 2,…,n1 ? n2
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4.3.1 Classification accuracies of various methods

Firstly, on the text data, the number of dimensionality of

the subspace varies from 5 to 40, and on the face image

data, the number of dimensionality of the subspace varies

from 10 to 80. Figures 1 and 2 show the performances of

various methods on the text data sets and the face image

data sets separately.

Secondly, we fix the dimensionality of the subspace at

20 on the text data and fix the dimensionality of sub-

space at 40 on the face image data, and then we can get

the classification accuracies of various methods in

Table 4.

From Figs. 1 and 2 and Tables 4, 5 and 6, we can see that

our TSSL methods can outperform other methods on all of

the text data sets and the face image data sets. There are
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several observations. The numbers showed in bold are the

best results among the eight methods.

1. The SVM method on text data sets and PCA or MMC

methods on the face image data sets perform worse

than other transfer learning methods because neither of

them takes the distribution difference of source and

target domain into consideration. The worst method on

the face image data set is SCL, maybe SCL is

developed for Natural Language Processing (NLP),

and it cannot be suitable for image data well. MMC

performs better than PCA because it considers more

discriminant structure of face image data set, and that

is why we select MMC as the base subspace learning

method in the following methods.

2. On some text data sets, such as C2R and C2T, PCA

sometimes performs as well as traditional transfer

learning methods. This is because these two data sets

may have more similarities than others, so they need

not transfer to each other.

3. The representative transfer learning methods, MMDE,

TCA, and TSL, perform much better than PCA, but

worse than our TSSL methods. The reason is that the

previous methods only consider the distribution dif-

ference of source and target domain data, but in our

TSSL methods, we also enforce sparse regularization

on the objective function to get better results, and then

it can transfer more useful information from source

domain to target domain.

4. There is another observation that TSSL_MMD is better

than TSSL_BD on the text data, but worse on the face

image data. Maybe, the MMD distance criterion is more

suitable for text data, and Bregman divergence distance

criterion is more suitable for face image data. This is an

open problem, and we will focus on it in the future.

5. The classification accuracy results on the face image

data are lower than text data sets because there is less

commonality between the source and target domains

on the face image data sets.

4.3.2 Convergence property

In this section, we test the convergence property of our TSSL

methods. We select one text data set C2R and one face image

data set O2Y as the basic databases to the experiment.

The results in Fig. 3 showed that both of TSSL_MMD

and TSSL_BD can converge fast and the number of iter-

ation is \20.

4.3.3 Sensitivity analysis of the TSSL parameters

There are two parameters a and b in TSSL methods to

discuss. In intuition, when we set a larger, then the sparse

regularization favors larger numbers of zero rows in the

projection matrix W, which makes the source and target

domains share more information in the common subspace.

But if we set a too large, the most rows of W will be zeros,

which is not suitable for transfer either. Similarly, when we

set b larger, the distribution difference between source and

target domains will be smaller. But if we set b too large,

there will be less information can be transferred from

source domain to target domain.

In a word, we should select duly parameters to make

transfer learning more effectively. We first determine two

parameters a and b of TSSL method by grid search and

then change them within certain ranges.

The main procedure is as follows. Firstly, we fix a = 1

and search for the best b value based on the validation set

in the range of [10-5, 105]. Then, we fix b and search the

best value in the range of [10-1 101]. Finally, we let a vary

from 1.4 to 2.3, let b vary in the range of [10-2, 10-1]. The

classification accuracies with different a and b on the S2T

data set and the F2U data set are shown in Fig. 4. As seen

from Fig. 4, when the two parameters are changed within a

certain range, the performance of TSSL changes within a

certain range.

5 Conclusion and discussion

In this paper, we proposed a general framework for

transfer sparse subspace learning, which is suitable for

different assumptions on the divergence measures of the

data distributions, such as MMD, Bregman divergence,

and K–L divergence. To overcome over-fitting problems,

we employ sparse regularization on the objective function

and give different solutions to the problems based on

different distribution distance estimation criteria. Experi-

ments on both text data sets and face image data sets

verify the efficiency and effectiveness of the proposed

TSSL methods.

In the future, we plan to extend our TSSL framework to

a multi-source-domain setting. We also plan to consider the

heterogeneous transfer learning (HTL), which is a more

challenging transfer learning setting. HTL considers not

only the difference distributions between the source and

target domains but also the different feature spaces

between them.

There is another profound insight direction. In this

paper, we used unsupervised divergence estimation terms

and ignored the labeled target domain data. In future work,

we will find another divergence estimation regularization

that can make full use of the supervised information of

target domain data and finally improve the accuracy of

distribution divergence estimation.
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