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Abstract Wind energy conversion systems can work by

fixed and variable speed using the power electronic con-

verters. The variable-speed type is more desirable because

of its ability to achieve maximum efficiency at all wind

speeds. The main operational region for wind turbines

according to wind speed is divided into partial load and full

load. In the partial-load region, the main goal is to maxi-

mize the power captured from the wind. This goal can be

achieved by controlling the generator torque such that the

optimal tip speed ratio is tracked. Since the wind turbine

systems are nonlinear in nature and due to modeling

uncertainties, this goal is difficult to be achieved in practice.

The proportional-integral (PI) controller, due to its robust-

ness and simplicity, is very often used in practical appli-

cations, but finding its optimal gains is a challenging task. In

this paper, to cope with nonlinearities and at the same time

modeling uncertainties of wind turbines, a PI torque con-

troller is proposed such that its optimal gains are derived via

a novel scheme based on particle swarm optimization

algorithm and fuzzy logic theory. The proposed method is

applied to a 5-MW wind turbine model. The simulation

results show the effectiveness of the proposed method in

capturing maximum power in the partial-load region while

coping well with nonlinearities and uncertainties.

Keywords PSO algorithm � Fuzzy PI controller �
Variable-speed wind turbine � MPPT controller �
ATF controller

1 Introduction

Wind is a safe, clean, and nature-friendly type of energy.

Thus, many countries are interested to invest on the wind

energy. The worldwide total installed capacity has reached

more than 238 GW by the end of 2011. This represents an

increase of 21 %, with an increase in the size of the annual

global market of just over 6 %. Today, about 75 countries

worldwide have commercial wind power installations, with

22 of them already passing the 1 GW level [1]. However,

the main disadvantage of wind is due to the fast changes in

wind’s speed and direction. Hence, the wind power varies

depending on the environmental factors, which causes the

need for accurate on-line identification of the optimal

operating point [2].

Wind energy conversion systems (WECSs), as an

example of wind turbines, can work by fixed speed and

variable speed using the power electronic converters. The

variable-speed type is more desirable because of its ability

to achieve maximum efficiency at all wind speeds [3]. The

variable-speed wind turbines mostly use doubly fed

induction generator (DFIG) with half (small) converters.

However, the wind turbines with full converters are mostly

based on synchronous generators [4]. In the structures

based on DFIG, the converter is small since only a fraction

of the output power from generator goes through it. These

structures, owing to the small converters, minimize the

production cost and power losses in converter. However,

the fully rated converters are commonly used for gearless

structures that are able to give smoother power output and
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can operate in full frequency-range variation. However, in

comparison with DFIG, due to using large converters, the

production cost and power losses in converter will be

dramatically increased [5].

The main operational region for wind turbines according

to wind speed is divided into partial load and full load. In

the partial-load region, which is between the wind speed

Vcut-in (approximately 3 m/s) and Vrated (approximately

12 m/s), the objective is to capture the maximum power

from the wind. This is done by controlling generator speed

using the generator torque and thus the rotor current

through DFIG converter. In the full-load region, which is

between the wind speeds Vrated and Vcut-out (approximately

25 m/s), the objective is to tune the pitch angles to keep the

generator power in its nominal value [6]. In this paper, our

focus is on the partial-load region, and thus the objective is

to capture the maximum wind power.

The output power of a WECS is maximized if the rotor

is driven at an optimal rotational speed for a particular

wind speed. To achieve this, the maximum power point

tracking (MPPT) controllers are usually employed.

Knowledge of the turbine dynamics and instantaneous

measurements of the wind speed and rotor speed are

required in implementation of an MPPT controller. To

obtain the optimal operating point, rotor-generator char-

acteristics should be known, and these are different from

one system to another. The MPPT control of WECSs

becomes difficult due to fluctuation in wind speed and rotor

inertia [7].

Most of the implementations of MPPT controllers are

model-based methods. In the model-based methods, the

approximate knowledge about the mathematical model of

the plant should be known in advance for designing the

controller. However, due to the different kinds of uncer-

tainties, this is a difficult task in practical applications,

especially for large-scale systems like wind turbines.

However, the model-free methods do not need mathemat-

ical model, and design of the controller is based on input–

output data from the real system. Thus, by using model-

free methods, we can cope with nonlinearities and uncer-

tainties at the same time.

Based on the comparison made in [8] between the per-

formance of different MPPT algorithms on the basis of

various speed profiles and ability to achieve the maximum

energy yield, the optimal torque control has been found to

be the best MPPT method for the wind energy systems due

to its simplicity.

In this paper, an optimal proportional-integral (PI)

controller is proposed to maximize the captured wind

power. The proposed method is based on particle swarm

optimization (PSO) algorithm and fuzzy logic theory. The

PSO is used to regulate the fuzzy membership functions for

the partial-load region according to different wind speeds

and considering the objective of maximizing the captured

power. Then, the PI gains are derived for each wind speed

using the optimized fuzzy system similar to a gain-sched-

uling controller. The proposed PI controller guarantees the

optimal tip speed ratio (TSR) tracking.

This paper is organized as follows: Related work is

reviewed in Sect. 2. Section 3 describes the problem defi-

nition and preliminaries. For this purpose, the wind turbine

model, which is a variable-speed 5-MW wind turbine, is

presented. It should be noted that the mathematical model

only is used for simulation purposes and the proposed

controller design procedure does not need the mathematical

model. In addition, the foundations of PSO algorithm and

fuzzy logic systems (FLSs) are briefly described in Sect. 3.

The proposed control strategy is presented in Sect. 4. In

Sect. 5, the proposed method is applied to a 5-MW wind

turbine model and the performance results are compared

with two recent stated methods. Finally, Sect. 6 concludes

the main advantages of the proposed method.

2 Related work

In recent years, several researches have been conducted on

the methods to capture maximum wind power in partial-

load region. For example, Liao et al. [9] have shown that

by assuming that the input power to the drive train is equal

to the output power from it, the smooth torque signal is

derived. However, in turbulent winds, the large rotor inertia

prevents it from changing speed fast enough to follow the

wind. Thus, the rotor speed will be smaller than the optimal

value. Hence, the power coefficient will be declined, which

consequently decreases the captured power. However, the

above method considering the friction effects for a drive-

train model was expanded in [10] to reduce the steady-state

error.

To achieve maximum output power of a WECS, several

control methods have been proposed such as PI control

[11], robust control based on H? [12], linear quadratic

Gaussian (LQG) control [11], optimal control [13], sliding

mode control (SMC) [14], state feedback control [15],

predictive control [16], fuzzy control [7, 17–20], adaptive

control [21], artificial neural network (ANN)-based control

[18], and different hybrid approaches such as combination

of fuzzy model and genetic algorithm (GA) and recursive

least-squares (RLS) optimization methods [22, 23], com-

bination of fuzzy ANN and PSO algorithm [24–26], hybrid

of classic control and evolutionary strategy algorithm [27],

hybrid of ANN and fuzzy inference system (FIS) [2, 18],

combination of PI and SMC [28], integration of model

predictive control (MPC) and evolutionary computation

[29], and embedding fuzzy controller into model reference

adaptive control framework [30].
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As examples of classic control approaches in this field,

Van der Hoven wind model is considered in the frequency

domain, and LQG and PI controllers have been designed in

[11] for high and low frequencies, respectively. Vihriälä

et al. [13] have attempted to track optimal generator speed

with the approach of using the feedforward aerodynamic

torque controller. Beltran et al. [14] have reduced the

steady-state error of tracking the optimal speed by using a

high-order sliding mode controller as a nonlinear method.

Boukhezzar and Siguerdidjane [15] have used nonlinear

static and dynamic state feedback controllers for this pur-

pose. Bououden et al. [16] have proposed a fuzzy model-

based multivariable predictive control (FMMPC) for wind

turbine generator. They have combined the linear matrix

inequalities (LMI) technique with predictive approach to

design a FMMPC law by solving a convex optimization

problem subject to LMI conditions.

As samples of soft computing–based methods, Narayana

et al. [7] have proposed an adaptive filter with a fuzzy

MPPT controller for small-scale WECSs. In addition, an

FIS and a radial basis function (RBF) neural network have

been used for dynamic modeling of wind turbine rotor in

[18].

As samples of hybrid approaches in this field, Calderaro

et al. [22] have presented a data-driven design methodol-

ogy able to generate a Takagi–Sugeno–Kang (TSK) fuzzy

model for maximum energy extraction from the variable-

speed wind turbines. In order to obtain the TSK model,

fuzzy clustering methods for partitioning the input–output

space, combined with GA and RLS optimization methods,

have been used for model parameter adaptation. Lin et al.

[26] have employed a recurrent fuzzy neural network

(RFNN) controller in which PSO algorithm has been

adopted to adapt the learning rates in the back-propagation

process. Lin and Hong [25] have proposed a Wilcoxon

RBF network with hill-climb searching (HCS) MPPT

strategy for a permanent magnet synchronous generator

(PMSG) with a variable-speed wind turbine. Kusiak and

Zheng [27] have developed an evolutionary computation

approach for optimization of power factor and power out-

put of wind turbines by optimal control settings. Sargolzaei

and Kianifar [18] have used an adaptive neuro-fuzzy

inference system (ANFIS) for dynamic modeling of wind

turbine rotor and compared this system with FIS and RBF

neural network. Meharrar et al. [2] have combined Sugeno

fuzzy model and neural network for MPPT in a variable-

speed wind generator.

3 Problem definition and preliminaries

The model of wind turbine, the definition of problem, and

foundations of the PSO algorithm and fuzzy logic systems

are briefly described in this section.

3.1 Wind turbine model

The schematic of a wind turbine system can be seen in

Fig. 1. The available power of the wind based on the radius

of the rotor is determined as follows:

Pv ¼ 0:5Aqv3 ð1Þ

where A is the swept area by blades, v is the actual wind

speed, and q is the air density.

Generally, a turbine can capture only a fraction of this

power. This fraction is called power coefficient or Betz

limit called Cp. The Cp is a function of pitch angle (b) and

TSR (k) defined as follows:

k ¼ wr � R

v
ð2Þ

where wr is the rotor angular speed, and R is the radius of

the rotor. For instance, the Cp for 5-MW wind turbine is

depicted in Fig. 2. Thus, the power captured by turbine can

be stated as follows:

Pa ¼ 0:5Aqv3Cpðk; bÞ ð3Þ
So, the aerodynamic torque can be obtained as:

Ta ¼
Pa

wr

ð4Þ

The collection of low-speed shaft, gearbox, and high-

speed shaft is called drive train. In this paper, a two-mass

model is considered for drive train [15] (as depicted in

Fig. 3) with parameters stated in Table 1.

Fig. 1 Schematic of wind

turbine system
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The model of the drive train can be stated by the

following equations (Fig. 3):

Jr _wr ¼ Ta � Tls � Krwr ð5Þ
Tls ¼ Klsðhr � hlsÞ þ Blsðwr � wlsÞ ð6Þ
Jg _wg ¼ Ths � Kgwg � Tg ð7Þ

where hr, hls, and wls are rotor-side angular deviation, gear-

box-side angular deviation, and the speed of low-speed shaft,

respectively. Meanwhile, Ta, Tls, Ths, and Tg are aerodynamic,

low-speed shaft, high-speed shaft, and generator torques,

respectively. It should be noted that wg is the generator speed.

Considering the gearbox ratio as:

g ¼ Tls

Ths

¼ wg

wls

¼ hg

hls

ð8Þ

with hg as the generator angular deviation, by using (5–7)

and (8) we have:

_Tls ¼ Kls �
BlsKr

Jr

� �
wr þ

1

g
BlsKg

Jg

� Kls

� �
wg

� Bls

Jr þ g2Jg

g2JgJr

� �
Tls þ

BlsTa

Jr

þ BlsTg

gJg

ð9Þ

3.2 Problem definition

In the partial-load region, the objective is to track Cp(max) to

capture the maximum power. It can be seen from Fig. 2

that Cp(max) is given at b = 0 and k = kopt, which in Fig. 2

is 7.55. By setting the blades to be orthogonal on the wind

direction, the b = 0 is fulfilled. However, in order to keep

k at kopt, the rotor speed should be tuned by a controller.

To solve this problem, two common methods have been

used [10, 13]. In [10], the conventional MPPT (CMPPT)

calculates the electromagnetic torque as follows:

TgðoptÞ ¼ Koptw
2
g � Kwg ð10Þ

where

Kopt ¼
qpR5CpðmaxÞ

2k3g3
; K ¼ Kg þ

Kr

g2

� �
: ð11Þ

In other strategy [13], by extending X ¼ ½wr wg Tls� to

Xe ¼ ½ŵr ŵg T̂ls T̂a� and using Kalman filter to estimate Xe,

Tg(opt) is obtained as follows:

TgðoptÞ ¼
T̂a

g
� Kr

g2
þ Kg

� �
ŵg �

Kc

g2
wgðrefÞ � ŵg

� �
ð12Þ

where

wgðrefÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
T̂a

gKopt

s
: ð13Þ

Fig. 2 Cp for a 5-MW wind turbine [15]

Fig. 3 Drive-train two-mass

model
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Moreover, Kc is a parameter chosen by the designer to

reduce steady-state error. This method is called

aerodynamic torque feedforward (ATF) controller. The

performance of the proposed method in this paper is

compared by the ones in [10] and [13] described above.

3.3 PSO algorithm

The particle swarm optimization (PSO) algorithm is a

biologically inspired algorithm motivated by social anal-

ogy. PSO provides a population-based search procedure, in

which individuals, called particles, change their position

(state) with time. In a PSO system, particles fly around in a

multidimensional search space. During flight, each particle

adjusts its position according to its own experience and

neighboring particle, making use of the best position

encountered by itself and its neighbor. In PSO algorithm,

each particle has a velocity and a position as follows [31]:

viðk þ 1Þ ¼ viðkÞ þ c1iðPi � xiðkÞÞ þ c2iðG� xiðkÞÞ ð14Þ
xiðk þ 1Þ ¼ xiðkÞ þ viðk þ 1Þ ð15Þ

where i is the particle index, k is the discrete time index, vi is

the velocity of ith particle, xi is position of ith particle, Pi is the

best position found by ith particle (personal best), G is the best

position found by swarm (global best), and c1i and c2i are

random numbers in the interval [0,1] applied to ith particle. In

our simulations, the following equation is used for velocity

[32]:

viðk þ 1Þ ¼ uðkÞviðkÞ þ a1 c1iðPi � xiðkÞÞ½ �
þ a2 c2iðG� xiðkÞÞ½ � ð16Þ

in which u(k) is the inertia function, and a1 and a2 are the

acceleration constants. In this paper, linear decreasing

strategy has been used, in which an initially large inertia

weight (i.e., 0.9) is linearly decreased to a small value (i.e.,

0.1) as follows:

uðkÞ ¼ uð0Þ � uðNTÞ½ � ðNT � kÞ
NT

þ uðNTÞ ð17Þ

where NT is the maximum number of time steps for which

the algorithm is executed, u(0) is the initial inertia weight,

and u(NT) is the final inertia weight. The steps of PSO

algorithm are as follows:

Step 1 (Initialization): Initialize swarm and randomize

the position and velocity of each particle (xi, vi; i = 1, …,

M).

Step 2 (Fitness function evaluation): Compute the fitness

function of each particle (y(i) = fitness(xi)).

Step 3 (Initialization of the best personal and global

positions): Initialize each Pi and G as Pi0 = yi and

G = min(Pi0); i = 1, …, M.

Step 4 (Velocity and position update): Update the

velocity of particle using dynamic inertia weight (Eqs. 16,

17) and control it by velocity clamping as follows:

viðk þ 1Þ ¼ viðk þ 1Þ if viðk þ 1Þ\Vmax

Vmax if viðk þ 1Þ�Vmax

�
ð18Þ

Update the position of particle (Eq. 15).

Step 5 (Update of the best personal and global posi-

tions): Update Pi and G based on the new value of fit-

ness function as yi,new = fitness(xi,new), Pi = yi,new, and

G = min(Pi).

Step 6 (Test): If the stop conditions are not satisfied, go

to Step 4. Otherwise, stop and return G as the best solution.

3.4 Fuzzy logic system (FLS)

Fuzzy logic was first introduced by Lotfi A. Zadeh in 1965

[33]. A fuzzy system is based on fuzzy logic, which has

reasoning similar to human’s reasoning. The fuzzy system

is a particular form of nonlinear mapping depicted in

Fig. 4.

The fuzzifier maps a numerical input to a fuzzy set, and

the defuzzifier maps a fuzzy set to a numerical output. The

fuzzy inference engine based on fuzzy IF–THEN rules in

fuzzy rule base maps the input fuzzy set to the output fuzzy

set. Most often, singleton fuzzifier, center average de-

fuzzifier, and product inference engine are used. The

design of FLS does not require complicated mathematical

calculations, the FLS can be easily generalized and

developed, and they can cope well with uncertainties and

nonlinearities. However, all of these advantages are

achieved, if the membership functions are well tuned.

Unfortunately, there is not a unique method to tune the

membership functions. However, this goal can be achieved

using intelligent optimization methods [34].

4 Proposed method

The objective in this paper is to propose an optimal PI

controller, which for any wind-speed profile can capture

Table 1 5-MW wind turbine mechanical parameters [15]

Parameter Notation Value

Rotor radius R 63 m

Air density q 1.2231 kg/m3

Rotor inertia Jr 3,556 9 103 kg m2

Generator inertia Jg 534 kg m2

Shaft damping coefficient Kls 6.215 kN m/(rad/s)

Shaft stiffness coefficient Bls 867.64 kN m/rad

Rotor friction coefficient Kr 1,972 N m/(rad/s)

Generator friction coefficient Kg 4.235 N m/(rad/s)

Gearbox ratio g 97

Optimal tip speed ratio (partial rate) kopt 7.55
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the maximum power. The proposed method has two

stages (Figs. 5, 6): In the first stage, the PSO algorithm

is applied to derive a pair of PI gains for some wind

speeds (Fig. 5). In the second stage, the data derived in

the first stage are used to tune the membership functions

of a one-input two-output fuzzy system. This fuzzy

system is used to give the optimal PI gains in each wind

speed (Fig. 6).

Figure 7 shows the desired k and Cp versus wind speed

in both partial- and full-load operational regions. Here, the

focus is on partial-load region. It can be seen from Fig. 7

that at the beginning k is chosen larger than the optimal

value, since the abrupt change in the generator speed

causes a bump in torque signal and thus may lead the

generator into the motoring mode.

The wind speed is assumed in the interval [3,11.3] in the

partial-load region. Since the measurement of wr is with

considerable noise in practice, we use the measured wg to

derive wr with desirable accuracy as wr = wg/g. The fol-

lowing cost function is used for PSO algorithm:

C ¼
ZT

0

wgðtÞ
g
� vðtÞ � kopt

R

����
����dt ð19Þ

where T denotes the total simulation time and should be

selected by the designer, and wr(opt) is derived using (3) as

follows:

Fuzzifier Defuzzifier

Fuzzy Inference
Engine

Fuzzy Rule Base
Numerical Input Numerical Output

Fig. 4 Schematic of a FLS

PI Controller

PSO
Algorithm

Wind Turbine( )r optw gw+

-

gT

Some Wind Speeds in 
[3,11.3] 

1/η

( )
opt

r opt

v
w

R

λ
=

pK iK

Fig. 5 Block diagram of the proposed controller in stage 1: preparing optimal data for training FLS (an off-line procedure)

PI Controller

FLS
Trained using the data 

derived in stage 1 (Fig. 5)

Wind Turbine
( )r optw gw+

-

gT

Wind Speed Profile 

1/η

( )
opt

r opt

v
w

R

λ
=

pK
iK

LPF in (21)
0.01α =

( )r opt fw

Fig. 6 Block diagram of the proposed controller in stage 2: using the trained FLS by the data derived in stage 1 to control wind turbines for any

wind-speed profile
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wrðoptÞ ¼
vkopt

R
ð20Þ

The optimal PI gains for some wind speeds are obtained

using the PSO algorithm.

In the second stage, depicted in Fig. 6, the data derived

by PSO are used to make the fuzzy logic system called

FLS. The input membership functions of the FLS, as shown

in Fig. 8, are chosen Gaussian with centers at wind speeds

[3, 3.5, 4, 4.5, 5, 6, 7, 8, 9, 10, 10.8, 11.3]. The output

membership functions can be any type of membership

functions with centers at optimal Kp’s and Ki’s for dif-

ferent wind speeds. Using singleton fuzzifier, center aver-

age defuzzifier and product inference engine, the optimal

Kp and Ki are obtained from the fuzzy system for each

wind-speed profile in the partial-load region.

In order to decrease the torque fluctuations that are

usually caused by fast variations in wind speed a low-pass

filter (LPF) is used to filter the optimal rotor speed. This is

because, due to (2) and considering a constant TSR, the fast

variations in wind speed causes fast variations in optimal

rotor speed, which thus leads to torque fluctuations. Thus,

the optimal rotor speed is filtered using the following

second-order low-pass filter (LPF):

HðsÞ ¼ 1

a2s2 þ 2asþ 1
ð21Þ

where s is the Laplace variable. In order to avoid the

attenuation of the filtered optimal rotor speed from the

original optimal rotor speed, a should be chosen small

enough. In this paper, it is chosen as 0.01. This gives a

smoother optimal rotor speed, thus a smoother torque

signal.

5 Simulation results and comparisons

In this section, the proposed controller is applied to a

5-MW wind turbine model. In our simulations, the

parameters of PSO algorithm are set as shown in Table 2.

The cost values (based on Eq. 19) and the derived gains

for different wind speeds are reported in Table 3. Since the

starting and the ending of wind-speed interval are more

important, the step size for them is chosen smaller.

Fig. 7 k and Cp curves for WT model

Table 2 PSO parameters setting

Parameter Value

Size of population 10

Maximum particle velocity 50,000

a1 2.2

a2 1.8

Initial inertia weight 0.9

Final inertia weight 0.1

Maximum number of iterations 80

Fig. 8 FLS input membership

functions
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Figure 9 shows the wind-speed profile for this simula-

tion. It should be noted this is an arbitrary wind-speed

profile and one can choose any other profiles; this is due to

the independency of the proposed method to wind-speed

profiles.

Figure 10 shows the power coefficient for different

methods. It should be noted that Cp(max) = 0.482 for the

wind turbine in this simulation.

The rotor speed for different methods is shown in

Fig. 11. It can be seen from Figs. 10 and 11 that the pro-

posed method in average is able to track the optimal power

coefficient better than the conventional methods and thus is

able to track the desired rotor speed better.

The torque signal and the captured power are shown in

Figs. 12 and 13, respectively. It can be seen that the pro-

posed torque signal has acceptable fluctuations in com-

parison with the conventional methods. Meanwhile, to

compare the captured power for different methods, the

following criterion is used:

J ¼ 1

T

ZT

0

WðtÞdt ð22Þ

where W(t) can be P(t) or Cp(t), that is, output power or

power coefficient, respectively. Obviously, the method that

gives a bigger number for J (bigger Pout(avg) or Cp(avg)) has

captured the larger power.

Also, the performance of the proposed controller is

compared with the commonly used strategies mentioned

before (CMPPT and ATF). Table 4 demonstrates the

results. It shows that the proposed method has a better

power capturing performance in comparison with the other

methods. It can be stated that the proposed method is able

to capture effective power in partial load while giving

acceptable fluctuations in torque signal.

Table 3 Optimization results by PSO

Wind speed

(m/s)

3 3.5 4 4.5

Cost value 0.2143 0.0742 0.2054 0.1358

Kp -939,182 -1,530,251 -1,139,631 -1,413,165

Ki -1,135,945 -8,638,552 -3,293,601 -6,710,402

Wind speed

(m/s)

5 6 7 8

Cost value 0.1696 0.2350 0.3161 0.4092

Kp -1,365,848 -1,437,636 -1,446,336 -1,453,568

Ki -6,625,171 -6,739,611 -6,764,420 -6,795,668

Wind speed

(m/s)

9 10 10.8 11.35

Cost value 0.5141 0.6307 0.7323 0.8065

Kp -1,456,384 -1,454,627 -1,454,229 -1,456,595

Ki -6,782,408 -6,737,128 -6,725,318 -6,738,738
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Fig. 9 Wind-speed profile
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Fig. 10 Power coefficient for different methods: proposed method

(magenta, continuous line), CMPPT (green, dashed line), and ATF

(blue, dotted line) (color figure online)
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Fig. 11 Generator speed for different methods: proposed method

(magenta, continuous line), CMPPT (green, dashed line), and ATF

(blue, dotted line) (color figure online)
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6 Conclusions

In this paper, an optimal PI torque controller has been

proposed for wind turbines to capture the maximum power

in the partial-load region. The proposed controller uses the

PSO technique to derive the optimal PI gains for some

wind speeds in the partial-load region. Then, a fuzzy sys-

tem as a decision maker, by using the derived information

by PSO algorithm, has been proposed to give the PI gain

for any wind speed. Moreover, to cope with fluctuations in

torque signal caused by the wind-speed variations, an LPF

filter has been used. The simulation results have shown the

superiority of proposed method in comparison with the

commonly used methods in capturing maximum power.
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