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Abstract In this paper, we propose a Gabor-based face

recognition method. This method fuses multi-resolution

Gabor features of face images at the matching score level.

The first implementation scheme of this method directly

takes the sum of the matching scores of multi-resolution

Gabor features of face images as the final matching score.

The second implementation scheme first codes the phase of

the Gabor feature and then uses a weighted matching score

level fusion algorithm to fuse the magnitude and phase of

the Gabor feature. A number of experimental results show

that the proposed method has a good performance and

outperforms conventional Gabor-based face recognition

methods that equally treat all the Gabor features and

directly fuse them at the feature level. The experimental

result also illustrates that in face recognition, the low-res-

olution representation of the phase of the Gabor feature

such as the code of the phase is more discriminative than

the phase itself. The codes of our method will be available

at http://www.yongxu.org/lunwen.html.

Keywords Face recognition � Pattern recognition �
Feature fusion � Biometrics

1 Introduction

In the past two decades, automated face recognition have

attracted much attention [1–3]. Appearance-based methods

are one kind of the most widely used face recognition

methods. Typical appearance-based face recognition

methods include face recognition based on principal com-

ponent analysis (PCA) [4], linear discriminant analysis

(LDA) [5, 6] and Gabor wavelets. It has been commonly

admitted that Gabor-feature-based method is one of the

state-of-art appearance-based face recognition methods

[7–9].

It is regarded that Gabor-feature-based methods can be

grouped into analytical methods and holistic methods.

Analytical methods compute the response of an image to a

Gabor wavelet in a set of discrete locations such as the

eyes, eyebrows, chin and nose, whereas holistic methods

make use of a global response of the face image [7–9].

Holistic methods are also usually combined with other

methods such PCA, LDA, 2DPCA [10] and kernel methods

for face recognition applications. It has been demonstrated

that holistic face recognition methods outperform analyti-

cal methods and holistic algorithms of Gabor-feature-based

methods rank higher than their analytical counterparts [8].

This is mainly because holistic methods and algorithms

rely not only on the Gabor coefficients computed on a

limited number of facial landmarks (as analytical methods

do), but they also extract relevant information on the global

distribution of the facial structure [8]. Moreover, the

holistic methods are easier to implement.

When investigating the fusion strategy that fuses the

Gabor transformation results of face images, we identify

the following aspects. Many Gabor-feature-based face

recognition applications take into account a filter bank with

five frequencies and eight orientations. Moreover, the

Y. Xu (&) � Z. Li � J.-S. Pan

Shenzhen Graduate School,

Harbin Institute of Technology, Shenzhen, China

e-mail: laterfall286@yahoo.com

J.-Y. Yang

School of Computer Science and Technology,

Nanjing University of Science and Technology,

Nanjing, People’s Republic of China

123

Neural Comput & Applic (2013) 23:1251–1256

DOI 10.1007/s00521-012-1066-3

http://www.yongxu.org/lunwen.html


majority of Gabor-feature-based face recognition methods

first extract Gabor features of the face image with respect

to different orientations and spatial frequencies and treats

the concatenations of all the Gabor features as the repre-

sentation of the face image [11, 12]. We refer to these

methods as conventional Gabor-based face recognition

methods (CGFRM). Hereafter, a Gabor feature means the

transformation result of an image with respect to a fre-

quency and orientation. A Gabor feature is a complex

matrix with the same size as the original image. The real

and imaginary parts of the complex number in the Gabor

feature denote the real and imaginary parts of the trans-

formation result of a pixel, respectively. It is clear that

most of CGFRMs directly fuse multiple Gabor features at

the feature level. On the other hand, in previous literatures

there are also two examples of decision level fusion and

matching score level fusion of Gabor features. Specifically,

Wang et al. [13] divided the 64 Gaborface features into

groups and simultaneously apply classification algorithms

to these feature groups, and then performed the decision

level fusion to obtain the final classification results. Serrano

et al. [14] fused the Gabor features at the matching score

level. They first respectively applied 40 classifies to 40

Gabor features and then directly summed 40 SVM

matching scores to produce the final matching score.

We think that there is a space to improve the fusion

strategy in previous CGFRM. First, the literature has

pointed out that the decision level fusion cannot completely

exploit the information of the multiple features [15]. Sec-

ond, CGFRM equally combines all the Gabor features at

the feature level and ignores the fact that different Gabor

features might have different influence on face recognition.

Actually, experimental results have shown that Gabor

banks with different frequencies and orientations lead to

different performances of face recognition [16]. In our

opinion, the matching score level fusion has a great

potential to exert the performance of different Gabor fea-

tures. Though a matching score level fusion method has

been proposed in [14], the method is very computationally

inefficient. This is because the method was based on 40

support vector machines (SVM). More importantly, in [14]

only SVM was used as the classifier; it is not known

whether the matching score level fusion strategy combined

with other classifiers can perform well or not. Moreover, in

[14] only the magnitude of the Gabor feature was exploited

and the authors did not explore the applicability of the

phase.

We note that previous studies also attempted to improve

the discriminant capability of Gabor features by selecting

optimal parameters for the Gabor wavelet [17, 18]. Perez

et al. [19] used entropy and genetic algorithms to select

Gabor jets and exploited a weighted Borda count to per-

form classification. Guo et al. [20] encoded Gabor phase

difference relationships between neighborhood and pixels

and used the codes to represent the image. Štruc et al.

[21, 22] integrated the phase of the Gabor feature with

LDA for face recognition. Previous studies have also

shown that the code or histogram of the phase of the Gabor

feature rather than the phase itself can lead to a promising

face recognition performance [19, 23]. This indeed some-

what implies that low-resolution representation of the

phase is suitable for face recognition.

It seems that different biometrics applications prefer

different information of the Gabor feature. For example,

Gabor-based face recognition usually uses the magnitude

that is directly associated with both the real and imaginary

parts of the Gabor feature, whereas Gabor-based palmprint

authentication usually exploits only the real part of the

Gabor feature [22].

In this paper, we propose a matching score level fusion

method on Gabor features. The first scheme of the method

views the Gabor features with different spatial frequencies

as the features of face images with respect to different

resolutions and directly summed the matching score to

obtain the final score. These features are also referred to as

multi-resolution Gabor features of face images. The second

scheme first encodes the phase of the Gabor feature and

then takes the weighted sum of the matching scores of the

magnitude and phase of the Gabor features with different

spatial frequencies to obtain the final score. The weighted

fusion scheme has the following rationale: the magnitude

and phase of the Gabor feature have different capabilities

in representing and recognizing the face, and a proper

weight is able to denote this capability. We also illustrate

that in face recognition, the low-resolution representation

of the phase of the Gabor feature such as the code of the

phase is more discriminative than the phase itself.

2 Gabor transform and our method

The Gabor filter takes the form of a complex plane wave

modulated by a Gaussian envelope function. The Gabor

filter can be formulated in spatial-frequency domain as:

wu;vðzÞ ¼
jjku;vjj

r2
eð�jjku;vjj2jjzjj2=2r2Þ½eizku;v � e�r2=2� ð1Þ

where z ¼ ðx; yÞ, r ¼ 2p, ku;v ¼
kv cos /u

kv sin /u

 !
, and kv and

/u control the scale and orientation of the Gabor wavelet,

respectively. The first term in the brackets is the oscillatory

part of the kernel and the second compensates the DC

value. Let image matrix IðzÞðz ¼ ðx; yÞÞ be a facial matrix,

and then the Gaborface is represented as the convolution of

IðzÞ with the Gabor wavelet wu;vðzÞ, which can be defined

as Ou;vðzÞ ¼ IðzÞ � wu;vðzÞ.
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2.1 The first scheme of our method

The first scheme of our method first respectively runs for

each of all the spatial frequencies. For every spatial fre-

quency, this scheme first performs all the Gabor transfor-

mations with respect to different orientations for all the

face images and then concatenates the magnitudes of all

the Gabor features, with respect to different orientations, of

a face image to form a matrix. Let Yf and Xi
f denote the

matrices of the Gabor features with respect to frequency f

of the test sample and i-th training sample, respectively.

The first scheme calculates the distance between the

training and test samples using d
f
i ¼ jjXi

f � Yf jj. d
f
i is used

as the matching score of the magnitude of the Gabor fea-

ture with respect to frequency f of the test sample and i-th

training sample. The matching scores are fused using

di ¼
PfN

f¼f1
d

f
i . f1; . . .; fN stand for N frequencies. di is

referred to as final matching score between the test sample

and i-th training sample. di indeed denotes the sum of the

similarities between the N Gabor features of the test sample

and i-th training sample. It is clear that the smaller the di,

the higher the similarity between the test sample and i-th

training sample. If k ¼ arg mini di, the first scheme con-

siders that the test sample is from the same class as the k-th

training sample.

2.2 The second scheme of our method

The second scheme of our method uses a weighted

matching score level fusion strategy to fuse the magnitude

and phase code of the Gabor feature. This scheme uses the

same way as the first scheme to obtain the magnitude of the

Gabor feature. Moreover, it also codes the phase and uses it

for face recognition.

The main steps of the second scheme of our method are

as follows: it first respectively runs for each of all the

spatial frequencies and performs all the Gabor transfor-

mations with respect to different orientations for all the

face images. For each frequency, it concatenates the

magnitudes of all the Gabor features with respect to dif-

ferent orientations of a face image to form a matrix

(referred to as magnitude matrix). For each frequency, the

second scheme also concatenates the codes of the ‘‘phase’’

of all the Gabor features to produce a matrix (referred to as

phase matrix). If there are m frequencies, then we obtain m

magnitude matrices and m phase matrices each corre-

sponding to one frequency.

Let Xi
f and Yf denote the magnitude matrices with

respect to frequency f of the i-th training sample and test

sample, respectively. The distance between Xi
f and Yf are

calculated using d
f
i ¼ jjXi

f � Yf jj. d
f
i is also the matching

score with respect to frequency f of the test sample and i-th

training sample.

The second scheme of our method codes the ‘‘phase’’ as

number 1, 2, 3 or 4 as follows: let O be a Gabor feature.

The ‘‘phase’’ is coded using Cðm; nÞ ¼ 1, if ReðOðm; nÞÞ
[ 0 and ImðOðm; nÞÞ[ 0; Cðm; nÞ ¼ 2, if ReðOðm; nÞÞ
[ 0 and ImðOðm; nÞÞ� 0;Cðm; nÞ ¼ 3, if ReðOðm; nÞÞ� 0

and ImðOðm; nÞÞ� 0; Cðm; nÞ ¼ 4, if ReðOðm; nÞÞ� 0 and

ImðOðm; nÞÞ[ 0. Oðm; nÞ denotes the element located in

the m-th row and n-th column of O. C stands for the coding

result and has the same size as O. C is the so-called phase

matrix, also referred to as phase code. Cðm; nÞ denotes the

element located in the m-th row and n-th column of C.

Each sample including the training sample and test sample

has one phase matrix.

Let ~Cf and ~Ci
f denote the phase matrices with respect to

frequency f of the test sample and i-th training sample,

respectively. The distance between ~Ci
f and ~Cf are calcu-

lated using ~df
i ¼ jj~Ci

f � ~Cf jj. The second scheme normal-

izes the matching score using e
f
i ¼

d
f
i
�d

f

min

d
f
max�d

f

min

, ~ef
i ¼

~df
i
�~df

min

~df
max�~df

min

.

df
max; d

f
min denote the maximum and minimum values of d

f
i ,

respectively. ~df
max;

~df
min denote the maximum and minimum

values of ~df
i , respectively. It is clear that 0� e

f
i ;~e

f
i � 1.

The second scheme obtains the final matching scores

usingdi ¼ q1

Pf2
f¼f1

e
f
i þ q2

Pf2
f¼f1

~ef
i . q1 and q2 are the

weights. If k ¼ arg mini di, the second scheme considers

that the test sample is from the same class as the k-th

training sample.

2.3 Analysis of our method

This subsection mainly shows the characteristics and

rationales of our method. First, our method is based on the

matching score level fusion strategy and has the following

rationale. Among the fusion strategies of multi-biometrics,

the matching score level fusion is the most common

strategy owing to the ease in accessing and combining the

scores generated from different biometrics traits [4, 5, 24, 25].

Actually, the matching score level fusion conveys more

information than the decision level fusion. This is because

for a biometrics trait of a test sample, the decision level

fusion predicts its class label in the form of an integer

number and provides it for the final decision, whereas the

matching score level fusion provides the matching score

in the form of a real number for the final decision. The

matching score means the similarity or dissimilarity

between the test sample and each training sample. As a

result, the matching score level fusion exploits the infor-

mation of how the test sample is similar to every training

sample to obtain the final authentication result, but the
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decision level fusion can use only some integer numbers to

do so. Specifically, if there are N frequencies and M

training samples, our method will depend on NM real

numbers to produce the final authentication result. How-

ever, a decision level fusion method will use only N integer

numbers to obtain the final authentication result. Each of

these N integer numbers stands for the predicted class

label, of the test sample, generated from one frequency.

Compared with the feature level fusion, the matching score

level fusion allows the multiple biometrics traits to be

independently coped with. Moreover, when integrating the

matching scores of all the biometrics traits to obtain the

final authentication result, it can set a larger weight for a

more accurate biometrics trait. This is very useful for

obtaining the optimal result.

Second, the second scheme of our method provides a

reasonable way to fuse the magnitude and phase of the

Gabor feature of the face image. Superficially, most of

previous literatures regard that the phase of the Gabor

features of the face image is not so powerful in classi-

fying the subject as the magnitude. Actually, most of

CGFRM do not exploit the phase [7]. However, it has

also been demonstrated that codes of the phase can be

very useful for distinguishing the face [20, 21, 23]. As a

result, it is reasonable for our method to simply encode

the phase of the Gabor features and to fuse the magnitude

and phase code at the matching score level. As shown in

Sect. 3, the experimental result also illustrates that the

code of the phase is more discriminative than the phase

matrix itself.

3 Experiments

In this section, we test the two schemes of our method and

perform experimental comparison on the phase of the

Gabor feature and its code.

3.1 Experiments on the FERET face database

The FERET program ran from 1993 through 1997 and was

sponsored by the Department of Defense’s Counterdrug

Technology Development Program through the Defense

Advanced Research Products Agency (DARPA). The primary

mission of this program was to develop automatic face rec-

ognition capabilities that could be employed to assist security,

intelligence and law enforcement personnel in the perfor-

mance of their duties. The FERET image corpus was assem-

bled to support government monitored testing and evaluation

of face recognition algorithms using standardized tests and

procedures. The final corpus consists of 14051 eight-bit

grayscale images of human heads with views ranging from

frontal to left and right profiles.

We used a subset of the FERET face database as shown in

[26] to test our method. This subset includes 1,400 images of

200 individuals each providing seven images. It is composed

of the images whose names are marked with two-character

strings: ‘‘ba’’, ‘‘bj’’, ‘‘bk’’, ‘‘be’’, ‘‘bf’’, ‘‘bd’’, and ‘‘bg’’. This

subset involves variations in facial expression, illumination

and pose [26]. We cropped the facial portion of each original

image and resized the cropped image to 80 9 80 pixels and

pre-processed them by histogram equalization. In order to

reduce the computational cost, we further resized the images

into 40 9 40 matrices. We took the first four face images of

each subject as training images and treated the others as test

images. Before we tested our method and other methods, we

normalized each face image to a vector with the length of 1.

Table 1 shows the rates of classification errors of

CGFRM, the first and second schemes of our method on

the FERET face database. It is clear that both the first and

second schemes of our method obtain lower rates of clas-

sification errors than CGFRM. In addition, the second

scheme of our method can outperform the first scheme.

This is mainly because the weight in the second scheme

enables it to sufficiently exert the performance on face

Table 1 Rates of classification errors of CGFRM, the first and second schemes of our method on the FERET face database

v = 3 u = 3 v = 3 u = 5 v = 4 u = 3 v = 4 u = 4

CGFRM 28.3 % 21.0 % 26.2 % 28.3 %

The first scheme of our method 27.8 % 20.2 % 24.33 % 26.3 %

The second scheme of our method 26.83 % (0.95) 19.67 % (0.95) 23.50 % (0.95) 26.33 % (0.95)

26.00 % (0.90) 19.83 % (0.90) 23.17 % (0.90) 25.67 % (0.90)

26.17 % (0.80) 22.17 % (0.80) 22.50 % (0.80) 24.83 % (0.80)

25.17 % (0.75) 24.17 % (0.75) 23.50 % (0.75) 25.33 % (0.75)

25.83 % (0.70) 26.67 % (0.70) 23.17 % (0.70) 27.50 % (0.70)

The real numbers shown in the round brackets stand for the values of q1 in the second scheme of our method. In all the tables in this paper, f and

g denote the numbers of spatial frequencies and orientations, respectively. u = n means that /u in Eq. (1) were set to 0, 1=p; 2=p; . . .; ðn� 1Þ=p,

respectively. v = m means that kv in Eq. (1) were set to p=20=2; p=21=2; . . .;p=2ðm�1Þ=2, respectively
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recognition of the magnitude and phase of the Gabor feature.

Table 2 shows the rates of classification errors of face rec-

ognition based on either ‘‘phase code’’ or ‘‘original phase

angel’’ of the face images in the FERET face database. It

indicates that face recognition based on ‘‘phase code’’ can

produce a much lower rate of classification errors than face

recognition based on ‘‘original phase angel.’’ Hereafter,

‘‘original phase angel’’ is calculated as follows:

Aðm;nÞ¼ arctanaðm;nÞ, aðm;nÞ¼ ImðIðm;nÞ=ReðIðm;nÞ.
Aðm;nÞ is the so-called ‘‘original phase angel.’’ Face rec-

ognition based on ‘‘original phase angel’’ takes ‘‘original

phase angels’’ as features of the face image and uses the

nearest neighbor classifier to perform classification. Face

recognition based on ‘‘phase code’’ takes ‘‘phase code’’

defined as in Sect. 2.2 as features of the face image and also

uses the nearest neighbor classifier to perform classification.

3.2 Experiments on the Yale B face database

The Yale B face image database was obtained with varying

illuminations and unfixed poses. We used 45 face images

with pose 00 of each subject to conduct experiments. Each

of these images was cropped to form a 32 9 32 image. As

we did in [27], we divided these face images into four

subsets. The samples from subset 1 were used as training

samples, and the others were served as test samples.

Table 3 shows the rates of classification errors of

CGFRM, the first and second schemes of our method on

the Yale B face database. Table 4 also shows the rates of

classification errors of face recognition based on either

‘‘phase code’’ or ‘‘original phase angel’’ of the face images.

These two tables also confirm that both the first and second

schemes of our method can obtain lower rates of classifi-

cation errors than CGFRM. They also support the conclu-

sion that ‘face recognition based on ‘‘phase code’’ can

produce a much lower rate of classification errors than face

recognition based on ‘‘original phase angel’’’.

4 Conclusion

This paper shows that the matching score level fusion is a

good strategy for Gabor-feature-based face recognition and

the proposed two fusion schemes can obtain good perfor-

mance. The proposed matching score level fusion schemes

have the following rationale: first, the proposed schemes

can convey sufficient information of multiple Gabor fea-

tures to the face recognition procedure. As multi-resolution

Gabor features reflect different characteristics of the face

image and these Gabor features are independently dealt

with and fused, the matching score level fusion enables the

complementary information of different Gabor features to

be more sufficiently exploited for face recognition than the

direct feature level fusion that is usually adopted by pre-

vious Gabor-feature-based face recognition schemes. Sec-

ond, the second scheme proposed in this paper provides a

Table 2 Rates of classification errors of face recognition based on

either ‘‘phase code’’ or ‘‘original phase angel’’ of the face images in

the FERET face database

v = 3

u = 3 (%)

v = 3

u = 5 (%)

v = 4

u = 3 (%)

v = 4

u = 4 (%)

Phase code 60.50 54.83 53.50 50.00

Original

phase angel

76.83 66.50 57.67 59.33

Table 3 Rates of classification errors of CGFRM, the first and second schemes of our method on the Yale B face database

v = 3 u = 3 v = 3 u = 5 v = 4 u = 3 v = 4 u = 4

CGFRM 28.42 % 29.21 % 27.89 % 28.16 %

The first scheme of our method 27.89 % 27.63 % 27.63 % 28.42 %

The second scheme of our method 9.74 % (0.10) 11.84 % (0.10) 11.84 % (0.10) 14.21 % (0.10)

9.21 % (0.15) 11.84 % (0.15) 11.58 % (0.15) 14.21 % (0.15)

8.95 % (0.20) 12.11 % (0.20) 11.84 % (0.20) 13.95 % (0.20)

9.74 % (0.25) 12.11 % (0.25) 11.84 % (0.25) 13.42 % (0.25)

10.26 % (0.30) 12.11 % (0.30) 11.58 % (0.30) 13.42 % (0.30)

10.00 % (0.35) 11.84 % (0.35) 11.84 % (0.35) 13.42 % (0.35)

10.26 % (0.40) 11.84 % (0.40) 12.11 % (0.40) 13.95 % (0.40)

11.05 % (0.50) 12.89 % (0.50) 12.63 % (0.50) 13.42 % (0.50)

The real number shown in the round bracket denotes the value of q1 in the second scheme

Table 4 Rates of classification errors of face recognition based on

either ‘‘phase code’’ or ‘‘original phase angel’’ of the face images in

the Yale B face database

v = 3

u = 3 (%)

v = 3

u = 5 (%)

v = 4

u = 3 (%)

v = 4

u = 4 (%)

Phase code 10.79 12.11 13.16 14.21

Original

phase angel

33.16 29.21 30.53 33.42
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very effective way to fuse the magnitude and phase of the

Gabor features at the matching score level. Actually, by

properly setting the weight, the second scheme is easy to

control the influence on the final classification decision of

the magnitude and phase. The paper also illustrates that

face recognition based on ‘‘phase code’’ can produce a

much lower rate of classification errors than face recogni-

tion based on ‘‘original phase angel.’’
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21. Štruc V, Pavešić N (2010) The complete Gabor-Fisher classifier

for robust face recognition, EURASIP. J Adv Signal Process, vol

2010, article ID 847680. doi:10.1155/2010/847680

22. Yue F, Zuo W, Wang K, Zhang D (2008) A performance eval-

uation of filter design and coding schemes for palmprint recog-

nition. ICPR 2008, pp 1–4

23. Zhang B, Shan S, Chen X, Gao W (2007) Histogram of gabor

phase patterns (hgpp): a novel object representation approach for

face recognition. IEEE Trans Image Process 16(1):57–68

24. Tao Q, Veldhuis RNJ (2010) Biometric authentication system on

mobile personal devices. IEEE Trans Instrum Meas 59(4):763–

773

25. Sellahewa H, Jassim S (2010) Image-quality-based adaptive face

recognition. IEEE Trans Instrum Meas 59(4):805–813

26. Yang J, Yang J-Y, Frangi AF (2003) Combined fisherfaces

framework. Image Vision Comput 21(12):1037–1044

27. Xu Y, Yang J-Y, Jin Z, Zheng Y-J (2006) Local correlation

classification and its application to face recognition across illu-

mination. In: The international conference of machine learning

and cybernetics. Dalian, pp 3277–3281

1256 Neural Comput & Applic (2013) 23:1251–1256

123

http://dx.doi.org/10.1117/1.3359514
http://dx.doi.org/10.1155/2010/847680

	Face recognition based on fusion of multi-resolution Gabor features
	Abstract
	Introduction
	Gabor transform and our method
	The first scheme of our method
	The second scheme of our method
	Analysis of our method

	Experiments
	Experiments on the FERET face database
	Experiments on the Yale B face database

	Conclusion
	Acknowledgments
	References


