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Abstract The distribution of documents over two classes

in binary text categorization problem is generally uneven

where resampling approaches are shown to improve F1

scores. The improvement achieved is mainly due to the

gain in recall where precision may deteriorate. Since pre-

cision is the primary concern in some applications,

achieving higher F1 scores with a desired level of trade-off

between precision and recall is important. In this study, we

present an analytical comparison between unanimity and

majority voting rules. It is shown that unanimity rule can

provide better F1 scores compared to majority voting when

an ensemble of high recall but low precision classifiers is

considered. Then, category-based undersampling is pro-

posed to generate high recall members. The experiments

conducted on three datasets have shown that superior F1

scores can be realized compared to the support vector

machines(SVM)-based baseline system and voting over a

random undersampling-based ensemble.

Keywords Class imbalance � Resampling � Classifier

ensemble � Unanimity rule � Binary text categorization

1 Introduction

The volume of information on the web has grown drasti-

cally in the last decade mainly due to the increased demand

for sharing knowledge and cheaper storage mediums. Most

of the existing hypertext documents such as academic and

business web pages, news articles, and forums are in the

form of inter-linked natural language files. Organization of

such files into predefined categories for fast and effective

retrieval and spam filtering for electronic mails are two

primary application areas of automatic text categorization

which aims to save time and efforts. The basic components

of an automatic text categorization system are document

representation and classifier design. The bag of words

approach is generally used for document representation

where each word corresponds to a different feature [1]. In

this approach, the order, meaning, structure, and grammar

of words are not considered, and each document is repre-

sented by a high-dimensional feature vector where the

number of entries is equal to the number of words selected

from the vocabulary of the textual documents under con-

cern [2]. A variety of pattern classification techniques such

as neural networks [3], Rocchio method [4], naive Bayes

[5, 6], k-nearest neighbors [7], and support vector machines

(SVM) [8] are widely studied for text categorization. The

robustness of SVM in very high dimensional feature space

sets it as the state-of-the-art classifier for text categoriza-

tion since documents are generally represented as feature

vectors consisting of thousands of entries [9]. In its sim-

plest implementation, a linear SVM computes a hyperplane

which separates the samples belonging to different cate-

gories with the largest margin. Recent studies clearly

demonstrate that SVM achieves better scores compared to

its competitors such as k-NN, naive Bayes, and neural

networks [10, 11].
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The text categorization problem is generally tackled as

the solution of several independent binary classification

sub-problems. For a particular category, the positive class

includes all documents belonging to the target (minority)

category, whereas the negative (majority) class consists of

all documents from other categories. As a matter of fact,

the distribution of training documents in the classes is

generally uneven which leads to the well-known class

imbalance problem. Since the negative class has much

more documents compared to the positive, learning algo-

rithms are overwhelmed by the negative class, and hence,

they generally tend to classify the test samples as negative,

producing many false negatives [12–14]. In other words,

the performance of the categorization systems is generally

poor on the positive class. Since the performance on the

positive class is of primary concern, precision which is

defined as the percentage of documents which are correctly

labeled as positive and recall which is the percentage of

correctly classified positive documents are generally used

to compare different systems. However, since a categori-

zation system can be tuned to maximize either precision or

recall at the expense of the other, their harmonic mean

named as F1 score is considered as more significant [15].

In text categorization, it is desirable to have higher F1

scores by boosting both precision and recall. Nevertheless,

with imbalanced training examples, SVM-based categori-

zation systems often provide high precision but low recall

[16, 17]. Although it is a young field of pattern classifi-

cation, studies in class imbalance are rapidly growing and

various different techniques are proposed [18]. Resampling

technique which is also known as dataset balancing is the

most widely used approach to address the imbalance

problem [19]. In this approach, undersampling the majority

or oversampling the minority class before classifier con-

struction is applied [20]. In random undersampling

approach, a randomly selected subset of negative samples

is used in training the categorization system. Alternatively,

informed undersampling can be used. For instance, in

NearMiss-2 method [21, 22], the distance to the three

farthest minority samples is considered in selecting the

majority class samples. In general, better F1 scores are

achieved using undersampling techniques by improving

recall where precision generally deteriorates [23]. This is

due to the fact that undersampling mitigates the bias toward

the majority class and hence increases the number of false

positives. On the other hand, oversampling techniques such

as SMOTE (Synthetic Minority Over-sampling TEchnique)

[24] rarely produce higher precision in text categorization

compared to the case where resampling is not applied and

the gain in recall is generally smaller compared to under-

sampling [23]. It is recently shown by Sun et al. [16] that

random undersampling provides better F1 scores compared

to SMOTE on three benchmark text categorization

datasets. Li et al. [17] have also recently shown that,

despite the gain in recall, oversampling the minority class

brings down the precision value achieved by SVM in text

categorization problem. It is generally argued that under-

sampling techniques are more promising compared to

oversampling in various domains including text categori-

zation [22, 23, 25] although the opposite is observed in

some cases [12].

Since large number of negative samples are ignored, the

main drawback of undersampling is the loss of potentially

useful information. In order to avoid this, the use of an

ensemble of classifiers is considered and plenty of schemes

are proposed [13, 15, 18, 26]. Although the developed

schemes differ in various aspects, the major difference is in

the way the samples are selected. The most popular

approaches are random partitioning, clustering, bagging,

and boosting [26–33]. In bagging- and boosting-based

approaches, the ensembles are made up of weak learners,

each of which focuses on a different set of samples.

SMOTEBoost and DataBoost-IM are examples of such

schemes. In the former approach, samples from the

minority class are synthetically generated by focusing on

the difficult samples [34]. In the latter approach, synthetic

samples are generated from the hard samples of both

classes which is followed by re-balancing the total weights

of different classes to alleviate the bias toward the majority

class [35]. RUSBoost which is based on random under-

sampling of the majority until desired number of samples

are obtained is another AdaBoost-based iterative scheme

where, it is recently shown that, RUSBoost surpasses

SMOTEBoost about twice the cases when SMOTEBoost

outperforms RUSBoost [36]. In these schemes, C4.5, naive

Bayes and RIPPER are generally considered as the weak

learners [37]. The joint decision is formed by averaging the

outputs of the member classifiers or weighted voting on the

individual decisions [32, 38]. It is generally argued that an

ensemble of undersampling-based classifiers outperforms a

single classifier [15, 38]. However, due to its impressive

performance on sparse and very high dimensional feature

vectors, SVM is more widely used compared to boosting

weak learners in the field of text categorization.

Improved F1 scores are achieved by balancing tech-

niques mainly due to the gain in recall compared to the

case when resampling is not used. However, precision may

be the major consideration in some text categorization

applications. For instance, it may be required to have small

number of false positives at the top results of web search

applications which correspond to high precision [39, 40].

Similarly, a spam filter that can detect all spam messages

which form the positive class (i.e., perfect recall) but

classifies many legitimate mails as spam (i.e., low preci-

sion) cannot be accepted [39, 41]. Improved F1 score with

a poor precision value is not advantageous for such
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implementations. Hence, for SVMs which generally pro-

vide high precision, improving F1 score without dropping

precision is an important problem. In other words,

achieving a good trade-off between precision and recall is

important [42].

Although majority voting is more popular in the pattern

classification literature, unanimity rule which requires the

agreement of all members on the positive class for a

positive decision is known to provide better precision

values compared to majority voting but worse recall in

general [42–44]. In this study, we mainly focused on

clarifying the characteristics of unanimity and majority

voting rules. An analytical investigation of these rules is

firstly presented. To the best of our knowledge, this is the

first study to prove that unanimity rule can provide better

F1 scores compared to majority voting when an ensemble

of high recall but low precision classifiers is considered. In

other words, the relative performance of unanimity and

majority voting rules is shown to depend on the ensemble

under concern. In order to generate high recall members for

text categorization, category-based undersampling is pro-

posed where the number of subsets from the negative class

is selected as the number of categories it includes. More

specifically, each undersampled set consists of documents

from a different category. This type of undersampling is

shown to provide members having higher individual recall

values compared to random partitioning. Then, fusion of

classifiers generated using category-based undersampling

by unanimity rule is studied. Experiments conducted on

three datasets have shown that better trade-off between

precision and recall can be achieved compared to the SVM-

based baseline system and voting using a random under-

sampling-based ensemble.

Section 2 presents a review about differences between

unanimity and majority voting rules which are explained

using an artificial example. In Sect. 3, the F1 scores pro-

vided by unanimity and majority voting rules are studied

by expressing them as functions of precision and recall of

the ensemble members. The category-based undersampling

scheme for text categorization is also presented in that

section. In order to evaluate the proposed approach,

experiments are conducted on Reuters-21578 ModApte

Top10, WebKB and 7-Sectors datasets that are presented in

Sect. 4. The last part, Sect. 5 summarizes the conclusions

drawn from this study.

2 Undersampling-based ensembles: a brief review

The superiority of SVM in text categorization compared to

the other well known machine learning schemes is the

trade-off it provides in precision and recall which is gen-

erally expressed in terms of F1 score. However, it is known

that recall has room for improvement. This can simply be

achieved using a resampled subset of the majority class.

The cost of this improvement might be the deterioration of

precision since the decision boundary moves to the

majority class due to the reduced bias on that class [23, 33].

For further clarification of this well known fact, consider

Fig. 1 where the decision boundaries computed when all or

a randomly undersampled set of majority samples shown

by ‘•’s is used in an artificial dataset. As seen in the figure,

the decision boundary is moved toward the majority class

when an undersampled training set is used. The new

boundary corresponds to a reduction in the number of false

negatives and hence an improvement in recall. However,

this also corresponds to an increase in the number of false

positives which causes a decrease in precision. Conse-

quently, if precision is of main interest, an improved F1

score due to a major gain in recall may not be considered as

valuable.

Using an ensemble of classifiers for the solution of a

binary classification problem, each of which is trained

using an undersampled set of the majority class, generally

produces a low precision system as mentioned in Sect. 1.

For a better understanding of this fact, assume that M

different subsets, r1; r2; . . .; rM from the majority class

denoted by c2 are formed and a binary classifier is trained

for each subset where all samples from the positive class,

c1 are used in each member. This corresponds to M binary

classifiers, one for each of the sample set pairs fc1; r1g;
fc1; r2g; . . .; fc1; rMg: It is plausible that there are similar-

ities between some rm’s and c1. In other words, ri may be

more similar to c1 compared to rj. In such a case, a negative

sample may be classified as positive by the corresponding

classifiers. Since each wrong vote is assigned to the same

(positive) class, they can reach the majority, leading to a

false positive joint decision when majority voting is used.

The practical consequences of this observation can be

easily understood when the members trained on subsets of

the majority samples are investigated using an artificial

x1

x 2

Decision boundary
for the undersampled
dataset

Decision boundary
for the original
dataset

Fig. 1 The decision boundaries computed using SVM when an

undersampled set or all samples from the majority class are used
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dataset as depicted in Fig. 2. The samples in the negative

class are partitioned into three sets r1, r2 and r3 which are

shown using the markers ‘�’, ‘^’ and ‘h’, respectively. The

samples of the positive class (c1) are marked using the

symbol ‘?’. D1, D2, and D3, respectively, denote the

boundaries computed using an SVM classifier for

{c1, r1}, {c1,r2} and {c1,r3}. It can be easily seen in the

figure that these decision boundaries correspond to classi-

fiers which individually have poor precision values due to

large number of false positives. Assume that voting is

applied on the outputs of these binary classifiers. For this

combination scheme, the samples in the regions labeled as

R1, R2, R6 and R7 that are bounded by the nearest decision

boundaries and axes are classified as positive. The reason

for this is that some samples in r1 (lying in R2) are more

similar to those in c1 compared to r2 and they are on the

same side of the decision boundary, D2. Similarly, some

samples in r3 (lying in R6) are more similar to those in c1

than r2 and they are again on the same side of D2. These

similarities lead to false positives in R2 and R6. In the

figure, five sets of samples belonging to the negative class

that are wrongly classified as positive (i.e., false positive)

are shown using circles. This explains the reason for poor

precision generally achieved when voting is applied on

undersampling-based classifiers. The gain in recall can be

explained by the reduced number of false negatives due to

these decision regions. On the other hand, it can be easily

seen that only the samples that are in R1 are labeled as

positive with unanimity rule where samples in R2, R6 and

R7 are labeled as negative. As a matter of fact, the number

of false positives is reduced at the cost of increased number

of false negatives which are located in R2, R6 and R7. This

corresponds to a smaller recall value compared to the

voting-based scheme which is tolerable in applications

where high precision is essential, provided that a better F1

score is achieved.

The review presented above can be summarized as

follows:

– Undersampling the majority class increases recall at the

expense of precision.

– Combination of undersampled classifiers using una-

nimity rule provides better precision than majority

voting at the expense of recall.

– Combination of undersampled classifiers using major-

ity voting rule provides better recall than unanimity at

the expense of precision.

Although the relative performance of unanimity and

majority voting rules in terms of precision and recall is well

established, their relative performance in terms of F1 scores

depends on the selected ensemble. In order to clarify this

relationship, an analytical investigation is presented in the

following section.

3 Analytical investigation of unanimity and majority

voting rules

In the proposed analysis, the F1 score of the combined

system is firstly formulated in terms of the classification

x
1
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False Positives D
1 D

2
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3

R
1

R
2

R
3

R
4

R
5

R
6

R
7

Fig. 2 Three decision boundaries computed using SVM classifier. For each binary classifier, all positive samples are considered but a subset of

the negatives marked by either ‘�’, ‘^’ or ‘h’ are used
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behaviors of the individual members for both majority

voting and unanimity rules. For each rule, the best com-

bined score that can be achieved is then defined as an

optimization problem. The formulation of the optimization

problem is given in ‘‘Formulation of the optimization

problem’’ of the ‘‘Appendix’’. In the analysis, it is assumed

that there are M ensemble members, each providing the

same precision (p) and recall (r) values. The findings of this

analysis is presented in the following propositions.

Proposition 1 The F1 score of the unanimity rule-based

combined system will be 1, if r = 1 and p� 2M
3Mþ1

:

Proof The proof is given in ‘‘Proof of proposition 1’’ of

the ‘‘Appendix’’. h

Proposition 2 The F1 score of the majority voting rule-

based combined system will be 1, if r = 1 and p� 2M
3M�1

:

Proof The proof is given in ‘‘Proof of proposition 2’’ of

the ‘‘Appendix’’. h

The special case considered in Propositions 1 and 2

clearly show that, for high values of individual recall,

unanimity rule is able to achieve F1 = 1 (perfect combined

system) for smaller precision values compared to majority

voting. In other words, for small precision values, the

performance of the unanimity rule can be better provided

that the individual recall is large. In fact, this is the case

when ensemble members are generated using undersam-

pling. The members generally have small precision but

high recall values as mentioned in Sect. 2.

The solutions presented in the ‘‘Appendix’’ for proving

Propositions 1 and 2 put restrictions to the joint distribu-

tions of the member outputs. However, the solutions for the

optimization problems (defined in Eqs. 11, 13) are not

unique. Because of this, other forms of solutions might

provide different limits. Although different solutions can

be computed, the solutions found in the proofs clearly

verify the fact that better combined scores can be obtained

using unanimity rule. In order to compare these rules by

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Individual precision, p

C
o

m
b

in
ed

 F
1 S

co
re

Majority voting
Unanimity

(a) 

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Individual precision, p

C
o

m
b

in
ed

 F
1 S

co
re

Majority voting
Unanimity

(b) 

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Individual precision, p

C
o

m
b

in
ed

 F
1 S

co
re Majority voting

Unanimity

(c) 

Fig. 3 The best combined F1 scores that can be computed using three ensemble members as a function of individual precision, p where

a r = 1.0, b r = 0.95, c r = 0.90
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considering all feasible solutions and more general cases

than the special one considered in the propositions, the

optimization toolbox of Matlab is used to study the best

combined F1 scores that can be achieved for p 2 ½0:5; 1:0�:
Fig. 3 presents the results for three ensemble members and

three recall values, 1.0, 0.95, and 0.90, respectively, in

parts (a), (b) and (c). The superiority of unanimity for low

precision values is evident in the figures. In particular,

when r = 1.0, it can be seen in the figure that perfect

combined system can be achieved using classifiers having

p� 2M
3Mþ1

¼ 3
5
¼ 0:6 whereas p should be greater than

2M
3M�1

¼ 3
4
¼ 0:75 as found in the proofs of Propositions 1

and 2, respectively. It should be noted that, as seen in

Fig. 3, majority voting rule provides superior performance

than unanimity when both precision and recall values are

large. The experimental results presented in [45] are con-

sistent with this observation.

For a better visualization of the relative performance of

the two rules, Fig. 4 presents the contour lines where each

line represents the values of p and r which provide the

same difference between the best F1 scores that can be

computed using unanimity and majority voting rules, i.e

(F1
una - F1

mv). As seen in the figure, for small values of

p and large values of r, unanimity performs better.

The method of undersampling is an important factor that

may affect the performance of unanimity-based systems

since, as shown above, high recall is an important param-

eter. It should also be noted that, we agree with the argu-

ment of Chang et al. [46] that using random undersampling

for generating negative sample subsets will generate geo-

metrically inconsistent sample sets. Clustering-based un-

dersampling may be a better approach. However, the

effectiveness of a clustering algorithm in partitioning the

given data into homogenous clusters depends on various

parameters such as the clustering algorithm, number of

clusters and distance measure. In text categorization where

thousands of features are used, it is difficult to justify a

particular choice of these design parameters by any tech-

nique different from empirical evaluation. Moreover, it is

argued that the geometric relations between majority and

minority sub-populations may be lost if resampling is not

done appropriately [29]. Because of these, we followed a

different path for the determination of clusters for the

negative documents.

In text categorization, the documents in the negative

class belong to one or more (multi-labeled case) pre-defined

categories. These categories naturally constitute sub-popu-

lations in the negative class. Instead of applying a clustering

algorithm to estimate the clusters, we propose to define the

set of documents that belong to a different category as a

separate cluster. The implementation of this rule is illus-

trated in Fig. 5. If the documents are multi-labeled, then

they will exist in more than one cluster. The present form of

this approach does not require any design parameter to be

tuned. The number of clusters considered and correspond-

ingly the number of ensemble members depend on the

number of categories involved in the negative class. This is

reasonable since, as the number of categories increases,

the negative class becomes more heterogenous and it is

advantageous to use increased number of clusters. As it will

be shown in the following section, this form of undersam-

pling leads to ensemble members having higher recall when

compared to random partitioning which is advantageous for

unanimity rule of combination.

4 Experiments

In this study, three widely used datasets are considered.

The ModApte split of top ten classes of Reuters-21578 is

the first where the negative classes are defined to include

documents which belong to one or more of the remaining

nine categories [47]. The highly imbalanced category dis-

tribution of Reuters-21578 ModApte Top10 makes it sig-

nificant among other datasets. WebKB is a collection of

web pages which belong to either of seven categories [48].

They were collected by the Carnegie Mellon University

Text Learning Group from several universities in 1997.

Four of the categories namely, ‘‘Student’’, ‘‘Faculty’’,

‘‘Course’’ and ‘‘Project’’ which contain totally 4,199 doc-

uments are generally used in text categorization experi-

ments [49]. The 7-Sectors dataset contains 4,581 web

pages. Each page belongs to one parent category and one

subcategory in hierarchical order. Following the previous

experiments in the literature [50], seven parent categories

are considered in the simulations. The training and test sets

of Reuters-21578 dataset are defined. However, this is not

−0.15

−0.1

−0.05

0

0.05

0.1
0.15

Precision, p

R
ec

al
l, 

r

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Fig. 4 The contour plot of the difference of the best F1 scores

(F1
una - F1

mv) for p; r 2 ½0:5; 1:0�

S88 Neural Comput & Applic (2013) 22 (Suppl 1):S83–S100

123



the case for WebKB and 7-Sectors. Because of this, fol-

lowing the work of Bekkerman et al. [51] and Xue et al.

[49], four-fold cross-validation is performed on these

datasets. For this purpose, the available data is initially

partitioned into four folds. Four experiments are then

performed where, in each experiment, one fold’s data are

used for testing while data in the remaining folds are used

for training. The average scores are reported.

Before training the classifiers, preprocessing is applied

on the datasets. Firstly, stopwords such as prepositions (in,

on, down, etc.), conjunctions (and, but, while, etc.) and

articles (a, an, the, etc.) are removed using SMART stoplist

[52]. Subsequently, Porter stemming algorithm is applied

to group the words with the same stems together [53].

Porter stem produced does not need to be meaningful or

identical to the original root of the words. For instance, the

words ‘‘comparing’’, ‘‘compared’’ and ‘‘comparable’’ are

stemmed as ‘‘compar’’. Term frequencies in each document

are cosine-normalized to eliminate the effect of varying

document lengths. By exploiting different kernel functions,

it is possible to generate linear and nonlinear SVMs [54].

Previous experiments have shown that linear SVMs per-

form better than nonlinear ones in text categorization [55].

Hence, linear SVM is adopted in our experiments. The

SVM-based classification toolbox, SVMlight with default

parameters (C ¼ 1=avgðxT xÞ which is the inverse of the

average of the inner product values of the training data) and

linear kernel is employed as the classification scheme

[8, 56]. The overall performances of the schemes consid-

ered are firstly evaluated using precision, recall and F1

scores where both macro and micro scores are presented

[1]. More specifically, macro-precision, macro-recall and

macro-F1 are computed as the averages of the corre-

sponding scores obtained for each individual category.

Micro-F1 scores obtained by assigning equal weights to all

documents are also reported. Although F1 score is the most

commonly used performance measure in text categoriza-

tion studies, the area under the precision-recall curve

(AUP) is also considered as a powerful metric, especially

for evaluating the decision surface of the generated clas-

sifier [16]. AUP is also employed as an alternative metric

for the evaluation of the proposed scheme.

The bag of words approach used for document repre-

sentation generally leads to a very high-dimensional fea-

ture space consisting of tens of thousands of words even for

medium-sized datasets. Although the computational power

is elevating rapidly in today’s world, there is a need for a

decrease in the number of original features due to the fact

that all terms may not be useful for discriminating different

categories and the curse of dimensionality problem is

encountered in many classification algorithms. In a recent

study, it is observed that the F1 scores of most weighting

schemes plateau after 5000 features for SVM [55]. Because

of this, top 5,000 features ranked by the term selection

measure, chi-square (v2) are considered in the experiments

[57].

After the feature set is specified, term weighting is

generally applied as the following step [58]. The main idea

is to quantify the relative importance of the selected terms

where discriminative terms are assigned larger weights

[55]. Term weighting has been traditionally formulated as

the product of the term frequency and inverse document

frequency, tf 9 idf [59]. In this study, relevance frequency

(RF)-based weighting (tf 9 RF) which is recently pro-

posed and shown to deliver the best results on several

benchmark datasets is used [55]. RF is defined as [55]

RF ¼ log 2þ A

C

� �
ð1Þ

where A and C, respectively, represent the number of

documents which contain the term under concern in the

positive and negative classes.
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Fig. 5 Block diagram for the

implementation of the

unanimity rule in an ensemble

of classifiers that are trained

using category-based

undersampling of the negative

class
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The proposed approach referred as CATEGORY-

UNANIMITY in the following context is compared with

other well known approaches. Firstly, we studied the per-

formance of a single random undersampling-based cate-

gorization system. This system which is referred as

UNDERSAMPLING in the following context is trained

and tested for ten times and the average scores are reported.

The scheme is tested for eight undersampling rates, s in the

interval [2, 9]. For instance, for s = 3, all training samples

from the positive category and a random set made of one-

third of the negative class training documents are used

where the rest are not considered during training.

Secondly, random partitioning of the negative class is

implemented where the negative class is split into s parti-

tions. For instance, for s = 3, the negative class is ran-

domly partitioned into three non-overlapping subsets. Each

subset is used separately together with all positive docu-

ments to construct M = 3 different classifiers. For small

categories, if s is small, the data may still be imbalanced. It

may be argued that the number of samples in the negative

class should depend on the number of samples in the

minority (positive) class. For instance, the number of

majority (negative) samples can be equal to that of the

minority class. In fact, it is shown that this is not a trivial

task since the best-fitting number of the majority class

samples depends on the classification scheme and the

problem under concern [60]. In order to investigate this,

UNDERSAMPLING system is tested for equal number of

positive and negative samples. The macro-F1 and micro-F1

scores obtained are presented in the last column of Table 1.

The scores obtained for s = 2, 3, 4 and 5 are also pre-

sented. It can be seen in the table that choosing equal

number of negative samples as the positive samples pro-

vides remarkably worse scores compared to using larger

number of negatives.

In text categorization, it is shown that weighted voting

performs better compared to plain voting [61]. In our

simulations, we used the SVM scores as weights where a

higher positive score is considered as a more confident

positive decision and similarly a lower negative score is

considered as a more confident negative decision. In binary

text categorization, this weighted combination rule can be

implemented simply by averaging the SVM scores. Hence,

weighted voting (referred as PARTITION-W_VOTING)

and unanimity rule (referred as PARTITION-UNANIM-

ITY) are used for the aggregation of the outputs provided

by the individual classifiers trained on disjoint partitions. In

weighted voting-based fusion, the joint decision is positive

if the average score is greater than zero.

In the implementation of the proposed system, M is

dataset dependent since the number of categories included

in the negative class varies in different datasets. In the case

of Reuters-21578, since there are ten categories three of

which are ‘‘Earn’’, ‘‘Acquisition’’ and ‘‘Money-fx’’,

M = 9. For instance, in studying the binary problem of

categorizing the test documents as belonging to ‘‘Earn’’ or

not, nine classifiers are generated using the training data.

The positive training samples of the first classifier are those

having ‘‘Earn’’ as one of their labels whereas the negative

class involves the samples which have ‘‘Acquisition’’ as

one of their labels but not ‘‘Earn’’. Similarly, the positive

class is comprised of samples that have ‘‘Earn’’ as one of

their labels for the second member classifier whereas the

negative class involves the samples which have ‘‘Money-

fx’’ as one of their labels. Other member classifiers are

built in the same manner. The values of M are three and

six, respectively, for WebKB and 7-Sectors datasets.

The macro-F1 and micro-F1 scores achieved on three

different datasets are presented in Figs. 6 and 7, respec-

tively, as functions of the sampling rate, s. The system that

exploits all negative documents in model training denoted

by SVM is also provided as a reference. The results clearly

show that the highest macro-F1 and micro-F1 scores are

achieved by the proposed approach on all three datasets.

The results achieved should be evaluated for both the type

of resampling and output aggregation method used. When

CATEGORY-UNANIMITY and PARTITION-UNANIM-

ITY are compared, it can easily be seen that the proposed

approach provides higher macro-F1 and micro-F1 scores

for all values of s. On WebKB dataset, PARTITION-

UNANIMITY cannot provide a higher macro-F1 or micro-

F1 score than the baseline system (SVM) for any value of

s. On 7-Sectors, its macro-F1 and micro-F1 scores drop

below that of SVM for large values of s. It can be con-

cluded that, when unanimity rule is used, the proposed

resampling approach provides better scores. This is in fact

reasonable since, for deciding on the positive class, una-

nimity rule necessitates the use of individual classifiers

having high recall. In other words, the number of mis-

classified positive documents (false negatives) should be

Table 1 The macro-F1 and micro-F1 scores obtained on three data-

sets when the number of negative samples is selected as the number of

samples in the positive class and for s = 2, 3, 4 and 5

Score Dataset s = 2 s = 3 s = 4 s = 5 Equal

no. of

documents

Macro-

F1

Reuters-

21578

90.64 90.60 90.34 89.90 82.08

WebKB 85.97 84.92 83.73 82.22 70.21

7-Sectors 86.95 87.16 86.37 84.88 73.13

Micro-

F1

Reuters-

21578

94.83 94.62 94.41 94.12 90.60

WebKB 87.51 86.01 84.48 82.69 68.70

7-Sectors 87.02 87.24 85.96 83.30 75.35
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very small. In the ideal case, unanimity rule requires all

positive documents to be correctly classified by all member

classifiers. On the other hand, it has very high tolerance to

large number of false positives since it is adequate for one

member classifier to provide correct decision for avoiding

misclassification of a negative document as positive.

In order to investigate the recall values of the individual

members, consider Fig. 8 which presents the average pre-

cision and recall values of nine individual members of

category-based and random partitioning-based resampling

schemes on Reuters-21578 dataset. As seen in the figure,

the proposed category-based partitioning provides higher

recall but lower precision values on all categories. Lower

precision values of the individual members mean that the

number of false positives is larger which is a consequence

of having larger recall. This is mainly due to the fact that

the data used to train the ensemble members of the cate-

gory-based partitioning approach do not cover the whole

feature space. However, as stated above, unanimity rule has

high tolerance to larger number of false positives since a

decision on the positive class is made only if all members

agree on that class.

As it can be seen in Fig. 8, the recall values obtained

using category-based partitioning are smaller on categories

where the number of training samples is small such

as ‘‘Wheat’’, ‘‘Ship’’ and ‘‘Corn’’. For the corresponding

binary categorization problems, if the training data from the

negative documents belong to a category involving large

number of training samples, there may still be a bias toward

the negative samples which explains the corresponding

comparatively smaller recall values. On the other hand, if

the tested category is large, the comparatively smaller

number of samples in the negative class corresponding to a

small category cannot form a bias.

As it can be seen in Fig. 6, the macro-F1 scores provided

by PARTITION-W_VOTING and PARTITION-UNA-

NIMITY generally degrade when four or more members

are considered. However, PARTITION-UNANIMITY is
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Fig. 6 The macro-F1 scores computed on three datasets for eight different sampling ratios
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more robust compared to PARTITION-W_VOTING. For a

better understanding of this behavior, consider the macro-

precision and macro-recall values presented in Fig. 9 which

are computed as the averages of the corresponding scores

obtained from the independent binary categorization tasks of

each dataset. As it can be seen in the figure, the recall values

obtained by using PARTITION-W_VOTING are higher

than those of PARTITION-UNANIMITY for all values of

s. The robustness of F1 is achieved as a consequence of the

robustness of precision to the increasing values of s which is

the main characteristic of unanimity rule.

In order to get further insights about the differences

among the schemes, consider the F1 scores computed for

each category as given in Table 2. The categories at the top

ten rows are from Reuters-21578 dataset. The following four

categories are from WebKB dataset. On fourteen categories

out of twenty one, unanimity-based systems (PARTITION-

UNANIMITY or CATEGORY-UNANIMITY) provide the

best F1 scores where, on eleven of these, the proposed

approach (CATEGORY-UNANIMITY) provides the best

F1. On eighteen categories, PARTITION-W_VOTING

performs better than UNDERSAMPLING. Nevertheless, the

performance improvements are not significant.

PARTITION-W_VOTING achieves its best F1 scores

when s is equal to 2 or 3 on seventeen categories. As the

number of partitions is increased, the performance gener-

ally degrades. However, PARTITION-UNANIMITY pro-

vides its best F1 score using a larger number of splits

compared to PARTITION-W_VOTING on eleven cate-

gories. This can be explained by considering the fact that,

as mentioned above, unanimity rule requires classifiers

having high recall which can be generated by using a

smaller number of negative documents in their training.

For a further comparison of unanimity- and voting-

based schemes, we investigated their performances on

category-based undersampling. The conventionally used

maximum-voting scheme is employed where the total

number of the positive and negative predictions are con-

sidered in making the decision. This scheme is named as

CATEGORY-MAX_VOTING. It should be noted that, as

illustrated in Fig. 4, maximum-voting performs better

compared to unanimity rule when the member classifiers
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achieve high precision values. Since category-based un-

dersampling provides smaller precision values compared to

random partitioning as shown in Fig. 8, the unanimity rule

is expected to surpass maximum-voting rule. The macro-F1

and micro-F1 scores achieved on three datasets are pre-

sented in Table 3. As expected, the scores achieved by the

unanimity rule are significantly superior to those provided

by the maximum-voting-based scheme.

In order to assess the statistical significance of the

improvements in the F1 scores provided by the proposed

approach, hypothesis tests are performed using the t-test

approach. The null hypothesis is defined as ‘‘H0 = mean of

the improvement is equal to zero’’ and the alternative

hypothesis is defined as ‘‘H1 = mean of the improvement

is greater than zero’’. The tests are performed between

CATEGORY-UNANIMITY and baseline SVM-based

system. The null hypothesis is rejected at significance level

of a = 0.05, with p values 0.0118 and 0.0057 for Reuters-

21578 and 7-Sectors, respectively. On the other hand,

PARTITION-W_VOTING provides statistically significant

improvements only on Reuters-21578 only for s = 2

whereas UNDERSAMPLING does not achieve significant

improvements on any of the datasets under concern for any

s value. Significance tests are similarly performed between

CATEGORY-UNANIMITY and PARTITION-UNANIM-

ITY for which the s values providing the highest macro-F1

scores are considered for each dataset. More specifically,

the values of s are 7, 2, and 4, respectively, for Reuters-

21578, WebKB and 7-Sectors for PARTITION-UNA-

NIMITY system as seen in Fig. 6. The null hypothesis is

rejected at significance level of a = 0.05, with p values

0.0291 and 0.0273 for WebKB and 7-Sectors, respectively.

In a recent study, it is observed that the relative per-

formances of different schemes may not be consistent

when different performance measures are used [16]. In

particular, when AUP is considered, SVM trained by the

whole training set which is considered as the baseline

provided the best scores on two of the three datasets when

compared to various undersampling, oversampling or

instance weighting-based schemes. On the other hand, its

performance came out to be the worst on all three datasets

in terms of macro-F1 which is also consistent with the

results of our work. This observation was explained by the

fact that the precision-recall curve characterizes the per-

formance of the classifier for different thresholds on the

prediction values whereas the F1 score employs the pre-

cision and recall obtained at the default threshold that is

zero. By tuning the threshold on the test data, they have

shown that the baseline SVM becomes the best in terms of

the macro-F1 score, concluding that threshold setting is still

an open problem. In this study, the proposed scheme is also

evaluated in terms of AUP score and the scores achieved

are compared with the baseline SVM which is recently

found to provide the best scores by Sun et al. [16]. Table 4
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presents the average AUP scores for each dataset where the

best scores are typed in boldface. As it can be seen in the

table, the proposed scheme provided the best scores on two

of the three datasets utilized in this study.

It should be noted that Kumar and Gopal have recently

shown that one-versus-rest approach provides better scores

compared to one-versus-one approach in multi-class text

categorization [62]. The one-versus-rest approach solves

the multi-class problem by defining multiple binary clas-

sification problems where the negative class of each

problem is defined as the union of the documents from all

other categories. Instead of using the union of the docu-

ments from all other categories as the negative class, the

proposed scheme generates a different binary classifier for

each negative category whose outputs are then combined.

As a matter of fact, the proposed scheme is also a potential

candidate to solve each binary classification problem in

multi-class text categorization.

5 Conclusions and future work

In this study, an analytical investigation of unanimity and

majority voting rules is presented. It is shown that una-

nimity rule can provide better F1 scores compared to

majority voting when an ensemble of high recall but low

precision classifiers is considered. On the other hand, it is

shown that majority voting provides better F1 score if both

precision and recall are high. Then, in order to generate

high recall members, category-based undersampling is

proposed where the number of subsets from the negative

Table 2 The F1 scores

obtained for the individual

categories of Reuters-21578,

WebKB and 7-Sectors datasets

The best score of each category

is presented in boldface

Category SVM UNDER-

SAMPLING

PARTITION-

W_VOTING

PARTITION-

UNANIMITY

CATEGORY-

UNANIMITY

Earn 98.58 98.07(s=2) 98.00(s=2) 98.17(s=2) 98.72

Acquisition 97.47 97.68(s=2) 97.70(s=2) 97.69(s=2,3) 97.76

Money-fx 86.81 87.01(s=2) 87.86(s=3) 86.02(s=8) 89.89

Grain 96.58 96.05(s=2) 96.62(s=2,3) 96.95(s=2) 96.22

Crude 92.35 90.73(s=2) 90.59(s=3) 91.79(s=3) 92.35

Trade 87.11 86.83(s=3) 87.14(s=3) 86.67(s=9) 88.51

Interest 81.97 86.98(s=3) 87.82(s=3) 87.55(s=6) 86.51

Wheat 84.67 87.73(s=4) 88.44(s=3) 88.11(s=5) 85.51

Ship 82.28 88.36(s=4) 89.02(s=4) 89.41(s=7,9) 88.62

Corn 86.79 89.24(s=2) 89.66(s=3) 91.89(s=7) 89.72

Student 91.24 88.15(s=2) 88.13(s=2) 88.62(s=2) 89.75

Faculty 84.52 84.52(s=2) 84.56(s=2) 84.63(s=2) 86.93

Course 95.45 95.81(s=2) 95.91(s=2) 95.87(s=2) 96.07

Project 73.58 75.41(s=2) 75.90(s=3) 75.54(s=7) 76.83

Technology 83.76 86.13(s=3) 86.54(s=3) 86.15(s=3) 87.43

Financial 86.37 88.00(s=3) 88.29(s=2,3) 88.70(s=4) 90.57

Basic materials 81.14 86.07(s=3) 86.45(s=3) 85.97(s=4) 85.48

Transportation 91.50 92.12(s=4) 92.31(s=5) 92.02(s=8) 91.72

Healthcare 87.35 87.77(s=2) 87.83(s=2) 87.52(s=2) 87.08

Energy 86.23 88.49(s=3) 89.20(s=7) 88.43(s=9) 88.69

Utilities 80.59 82.22(s=6) 83.15(s=9) 82.31(s=8) 83.78

Table 3 The macro-F1 and micro-F1 scores obtained on three data-

sets using unanimity and maximum-voting-based schemes to combine

classifiers obtained using category-based undersampled sets

Score Dataset CATEGORY-

MAX_VOTING

CATEGORY-

UNANIMITY

Macro-F1 Reuters-21578 62.74 91.38

WebKB 71.99 87.39

7-Sectors 73.03 87.82

Micro-F1 Reuters-21578 62.54 95.51

WebKB 70.33 89.04

7-Sectors 66.70 88.02

Table 4 The average AUP scores obtained on three datasets

Dataset SVM CATEGORY-

UNANIMITY

Reuters-21578 0.9563 0.9626

WebKB 0.9436 0.9464

7-Sectors 0.9673 0.9601

The best score of each category is presented in boldface
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class is selected as the number of categories it includes.

Combination of the classifiers generated using category-

based undersampling by unanimity rule is studied next.

Experiments conducted on three datasets have shown that

random undersampling method provides individual mem-

bers having higher precision than members obtained using

category-based undersampling whereas the latter approach

provides members having higher recall. When applied on

the members trained using category-based subsets of the

negative documents, unanimity rule is shown to attain a

better precision-recall trade-off compared to the baseline

SVM-based system, random undersampling approach and

weighted voting on the outputs of the ensemble members

generated using randomly partitioned negative data and,

improves F1 score at satisfactory levels.

Hereafter, there are several tasks awaiting us. Firstly, in

order to achieve better F1 scores, the proposed undersampling

scheme can be modified for small target categories. The

category selected from the negative class might include many

more documents compared to the target category. Splitting

the category-based negative sample sets into smaller groups

may be considered as a solution for such cases. Therefore,

studying the effect of the number of samples in the subsets of

the negative class will be considered for future work. The

class imbalance problem is extensively studied in the litera-

ture where numerous resampling schemes are proposed.

Secondly, the relative performance of unanimity and majority

voting should be studied for these alternative schemes to

obtain a comprehensive experimental evaluation.
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Appendix

Formulation of the optimization problem

The notation used for the analytical evaluation in similar

to the one that was used in one of the co-author’s previous

studies [63]. Let the positive and negative classes be

labeled as ‘1’ and ‘0’, respectively. Assume that each

classifier is trained using a different subset of the negative

documents. Given a test document, the output of a clas-

sifier is 1 when the decision is on the positive class and 0

when the decision is on the negative class. Assume that X

is the ordered set of M-dimensional joint output vectors, xi

where the elements of the vectors are the decisions of the

individual classifiers where |X| = 2M, |.| denoting the

cardinality of the set. As an example, for the case of three

classifiers, X ¼ f½0 0 0�; ½0 0 1�; . . .; ½1 1 1�g: The second

element of X, x2 = [0 0 1] corresponds the case when

the first two classifiers decide on the negative class and

the third classifier decides on the positive class. The

conventional way of computing the joint decision is to

apply majority voting on the outputs of the individual

classifiers.

Consider a simple example of three classifiers as given

in Table 5 which summarizes the probabilities and the

decisions corresponding to all possible classifier outputs for

a 3-classifier system for both majority voting and una-

nimity rule. As seen in the table, the joint decision of

unanimity rule is 1 only when the individual decisions of

all classifiers are 1. On the other hand, majority voting

provides 1 for four different combinations of the classifier

outputs. pi denotes the probability that xi is the joint clas-

sifier output when the tested document is from the positive

class. Similarly, qi denotes the probability that xi is the joint

classifier output when the tested document is from the

negative class.

Assume that three classifiers, each having the precision

value, p and the recall value, r are considered where, using

various resampling schemes, different joint distributions

can be obtained. In order to identify the major character-

istics and relative performances of the two combination

schemes under concern, let us compute the highest F1

scores that can be achieved by each scheme when the

classifiers used have the same precision and recall values.

This is equivalent to computing the set of pi and qi values

that provide the highest combined F1 score. This can be

formulated as an optimization problem with some con-

straints. The first constraint is the recall values of the

individual classifiers. It should be noted that the recall of a

Table 5 All possible outcomes of a 3-classifier ensemble and its probability distribution

[0 0 0] [0 0 1] [0 1 0] [0 1 1] [1 0 0] [1 0 1] [1 1 0] [1 1 1]

Majority voting 0 0 0 1 0 1 1 1

Unanimity 0 0 0 0 0 0 0 1

Class 1 p1 p2 p3 p4 p5 p6 p7 p8

Class 0 q1 q2 q3 q4 q5 q6 q7 q8
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classifier is defined as the percentage of correctly classified

positive documents TP/(TP ? FN) where TP denotes the

number of true positives and FN denotes the number of

false negatives. Assuming the same individual recall values

for all classifiers, we obtain

p5 þ p6 þ p7 þ p8 ¼ r

p3 þ p4 þ p7 þ p8 ¼ r

p2 þ p4 þ p6 þ p8 ¼ r

ð2Þ

respectively, for the first, second and the third classifier.

The individual precision values are assumed to be p. The

precision which is defined as the percentage of documents

that are correctly labeled as positive can be computed as

TP/(TP ? FP), where FP denotes the number of false

positives. Without any loss of generality, assume that the

number of test documents in the positive class, Npos and in

the negative class, Nneg are the same. Then, for the first

classifier, TP = Npos 9 (p5 ? p6 ? p7 ? p8) and FP =

Nneg 9 (q5 ? q6 ? q7 ? q8). Hence,

Npos � ðp5 þ p6 þ p7 þ p8Þ
Npos � ðp5 þ p6 þ p7 þ p8Þ þ Nneg � ðq5 þ q6 þ q7 þ q8Þ
¼ p

ð3Þ

Since Npos = Nneg, the following three constraints are

obtained for three classifiers.

ðp5 þ p6 þ p7 þ p8Þ
ðp5 þ p6 þ p7 þ p8Þ þ ðq5 þ q6 þ q7 þ q8Þ

¼ p

ðp3 þ p4 þ p7 þ p8Þ
ðp3 þ p4 þ p7 þ p8Þ þ ðq3 þ q4 þ q7 þ q8Þ

¼ p

ðp2 þ p4 þ p6 þ p8Þ
ðp2 þ p4 þ p6 þ p8Þ þ ðq2 þ q4 þ q6 þ q8Þ

¼ p

ð4Þ

Since the numerators of the three equations given above in

Eq. 4 are equal to r as given in Eq. 2, they can be re-written as,

q5 þ q6 þ q7 þ q8 ¼
rð1� pÞ

p

q3 þ q4 þ q7 þ q8 ¼
rð1� pÞ

p

q2 þ q4 þ q6 þ q8 ¼
rð1� pÞ

p

ð5Þ

In the text categorization problem, F1 score which is the

harmonic mean of precision and recall is generally used as

the objective function since either precision or recall can be

maximized at the expense of the other. The F1 score is

defined as

F1 ¼
2� precision� recall

precisionþ rrecall
: ð6Þ

For the system presented in Table 5, the precision, recall

and the F1 score of the combined system using unanimity

rule can be computed as

precision ¼ p8

p8 þ q8

recall ¼ p8

Funa
1 ¼ 2� p8

p8 þ q8 þ 1

ð7Þ

This can be generalized to M classifiers case as follows:

precision ¼
pð2MÞ

pð2MÞ þ qð2MÞ

recall ¼ pð2MÞ

Funa
1 ¼

2� pð2MÞ
pð2MÞ þ qð2MÞ þ 1

ð8Þ

The precision, recall and the F1 score of the combined

system using majority voting rule can be computed as

precision ¼ p4 þ p6 þ p7 þ p8

p4 þ p6 þ p7 þ p8 þ q4 þ q6 þ q7 þ q8

recall ¼ p4 þ p6 þ p7 þ p8

Fmv
1 ¼

2� ðp4 þ p6 þ p7 þ p8Þ
p4 þ p6 þ p7 þ p8 þ q4 þ q6 þ q7 þ q8 þ 1

ð9Þ

The maximum F1
una which can be obtained using the

member having individual precision and recall constraints

can be obtained as the solution of the following

optimization problem:

Max Funa
1 ¼ 2� p8

p8 þ q8 þ 1

Subject to;

p5 þ p6 þ p7 þ p8 ¼ r q5 þ q6 þ q7 þ q8 ¼ rð1�pÞ
p

p3 þ p4 þ p7 þ p8 ¼ r q3 þ q4 þ q7 þ q8 ¼ rð1�pÞ
p

p2 þ p4 þ p6 þ p8 ¼ r q2 þ q4 þ q6 þ q8 ¼ rð1�pÞ
p

P8
i¼1

pi ¼ 1
P8
i¼1

qi ¼ 1

pi; qi� 0; i ¼ 1; . . .; 8:

ð10Þ

The problem can be expressed in a more compact form

as follows:

Max Funa
1 ¼ 2� p8

p8 þ q8 þ 1

Subject to;

As ¼ b

s� 0;
ð11Þ
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where s ¼ ½p1p2. . .p8q1q2. . .q8�T is the solution vector and

A¼

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1

0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

2
66666666664

3
77777777775

b¼

r
r
r

rð1�pÞ
p

rð1�pÞ
p

rð1�pÞ
p
1

1

2
666666666664

3
777777777775

ð12Þ

The last two rows of the matrix A correspond to the con-

straints
P

i=1
8 pi = 1 and

P
i=1
8 qi = 1, respectively.

The maximum F1
mv which can be obtained using the

member having individual precision and recall constraints

can be similarly obtained as the solution of the following

optimization problem:

Max Fmv
1 ¼

2� ðp4 þ p6 þ p7 þ p8Þ
p4 þ p6 þ p7 þ p8 þ q4 þ q6 þ q7 þ q8 þ 1

Subject to;

As ¼ b

s� 0;

ð13Þ

where A and b are as defined in Eq. 12.

Proof of Proposition 1

The matrix A can be written as

A ¼

A1 A2

A3 A4

1 1 . . . 1½ � 0 0 . . . 0½ �
0 0 . . . 0½ � 1 1 . . . 1½ �

2
664

3
775: ð14Þ

A1 and A4 are M 9 2M matrices where ith columns are xi
T.

On the other hand, A2 and A3 are also M 9 2M matrices

where all entries are zero. Since r = 1, a feasible solution

should be in the form ½0; . . .; 0; 1; q1; q2; . . .; qð2MÞ�T : The

solution should satisfy the constraint A4 � ½q1; q2; . . .;

qð2MÞ�T ¼ ½ð1�pÞ
p ; . . .; ð1�pÞ

p �: For F1
una = 1, a feasible

solution should have qð2MÞ ¼ 0 and qi C 0 V i = 2M as it

can be seen in Eq. 7. For simplicity, the feasible solution is

constructed by following the steps applied in proving

Theorem 1 in [63] where only some of qi’s are assumed to

have a nonzero value. More specifically, let k denote the

number of columns in A4 which have exactly (M ? 1)/2

number of ones which can be computed as

k ¼ M!
Mþ1

2

� �
! M�1

2

� �
!
: ð15Þ

Assume that these columns are numbered as i1; i2; . . .; ik: In

the case of M = 3, k = 3 and i1 = 4, i2 = 6 and i3 = 7.

Let us put these columns into a matrix named as ~A4: The

total number of ones in the matrix ~A4 is l = k 9 (M ? 1)/

2. Due to its uniform structure, the number of ones in each

row of ~A4 that is the same for all rows can be computed as

m ¼ l

M
¼ k � ðM þ 1Þ

2M
ð16Þ

since there are M rows. Using Eq. 15 we can compute m as

m ¼ ðM � 1Þ!
ðM�1

2
Þ!ðM�1

2
Þ!
: ð17Þ

A feasible solution can be obtained as q1 = b and

qi1 ; qi2 ; . . .; qik ¼ a where a and b should satisfy the

equations

ma ¼ 1� p

p

kaþ b ¼ 1

ð18Þ

where the second equation is obtained by considering the

fact that the sum of all probabilities should be equal to one.

Simultaneous solution of these equations for b gives

b ¼ pðmþ kÞ � k

mp
ð19Þ

Since b C 0, we should have p� k
mþk to achieve perfect

combined system (i.e., F1 = 1). Using Eq. 16 to replace

m, p� 2M
3Mþ1

is obtained.

Proof of Proposition 2

Consider the decomposition of matrix A into sub-matrices

in Eq. 14. Since r = 1, a feasible solution is of the

form ½0; . . .; 0; 1; q1; q2; . . .; qð2MÞ�T : This means that

p4 = p6 = p7 = 0. The solution should satisfy the con-

straint A4 � ½q1; q2; . . .; qð2MÞ�T ¼ ½ð1�pÞ
p ; . . .; ð1�pÞ

p �: Note

that, for F1
mv = 1, we need to have q4 = q6 = q7 = q8 = 0

as seen in Eq. 13. Let k denote the number of columns in

A4 which have exactly (M - 1)/2 number of ones which

can be computed as
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k ¼ M!

ðMþ1
2
Þ!ðM�1

2
Þ!
: ð20Þ

Assume that these columns are numbered as i1; i2; . . .; ik: In

the case of M = 3, k = 3 and i1 = 2, i2 = 3 and i3 = 5.

Let us put these columns into a matrix named as ~A4: The

total number of ones in the matrix ~A4 is l = k 9 (M - 1)/

2. Due to its uniform structure, the number of ones in each

row of ~A4 that is same for all rows can be computed as

m ¼ l

M
¼ k � ðM � 1Þ

2M
ð21Þ

or, similarly

m ¼ ðM � 1Þ!
ðMþ1

2
Þ!ðM�3

2
Þ!
: ð22Þ

A feasible solution can be obtained as q1 = b and

qi1 ; qi2 ; . . .; qik ¼ a where a and b should satisfy the

equations

ma ¼ 1� p

p

kaþ b ¼ 1

ð23Þ

where the second equation is obtained by considering the

fact that the sum of all probabilities should be equal to one.

Simultaneous solution of these equations for b gives

b ¼ pðmþ kÞ � k

mp
ð24Þ

Since b C 0, we should have p� k
mþk to achieve perfect

combined system (i.e., F1 = 1). Using Eq. 21 to replace

m; p� 2M
3M�1

is obtained.
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