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Abstract A novel method, namely ensemble support

vector machine with segmentation (SeEn–SVM), for the

classification of imbalanced datasets is proposed in this

paper. In particular, vector quantization algorithm is used

to segment the majority class and hence generates some

small datasets that are of less imbalance than original one,

and two different weighted functions are proposed to

integrate all the results of basic classifiers. The goal of the

SeEn–SVM algorithm is to improve the prediction accu-

racy of the minority class, which is more interesting for

people. The SeEn–SVM is applied to six UCI datasets, and

the results confirmed its better performance than previously

proposed methods for imbalance problem.

Keywords Imbalance dataset � Classification � Support

vector machine � Vector quantization � Ensemble learning

1 Introduction

Many real-world datasets are imbalanced, in which most of

the instances belong to one class and far fewer instances

belong to another one, yet usually more interesting class,

such as fraud detection, risk management, medical diag-

nosis, bioinformatic, text classification and information

retrieval [1]. In the case of binary classification, imbalanced

dataset means that the number of negative samples is much

larger than that of positive ones. The classification for

imbalanced datasets is a quite pervasive and ubiquitous

problem, so it has received a lot of attentions in the machine

learning community. This interest gave rise to two impor-

tant workshops held in 2000 and 2003 at the AAAI [2] and

ICML [3] conferences, respectively. A follow-up work-

shop, PAKDD, was conducted in 2009 [4]. Despite the fact

that many workshops have already been held to discuss

about the topic, a large number of practitioners plagued by

the problem are still working in isolation [5, 6].

One of the main challenges of imbalance problem is that

the small classes are often more useful, but standard classi-

fiers tend to be overwhelmed by the large classes and ignore

the small ones. To handle the problem, the main idea is to

rebalance the data distribution and deflect the decision

boundary; so far, a number of approaches have been pro-

posed. Generally, the common methods can be divided into

two main directions: at the data level, resampling approaches

such as undersampling and oversampling; at the algorithms

level, algorithm-based approaches such as cost-sensitive

learning, one-class learning and ensemble learning [6].

Undersampling [7] is the simplest way to rebalance a

dataset by under-sampling the majority class to match the

size of the minority class. Obviously, this method can

potentially remove certain important samples and results in

information loss for the majority class. In contrast, over-

sampling duplicates minority instances in the hope of

reducing class imbalance, but it can easily lead to over-

fitting and introduce an additional computational task if the

dataset is already large. SMOTE algorithm [8], as one of

the successful oversampling methods, is expected to alle-

viate the over-fitting problem by adding the ‘‘new’’

minority instances. However, just because of this, it may

introduce excessive noise.
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Algorithm-based approaches are designed to modify the

classifiers based on their inherent characteristics in order to

adapt them to the datasets. Cost-sensitive learning seems to

be the best approach of this kind by assigning distinct costs

to the training instances. Usually, this strategy gives higher

learning cost to the samples in the minority class and this

scheme is generally merged into the common formulation

of classification algorithms. Consequently, various experi-

mental studies of this type have been performed using

different kinds of classifiers [9–11]. One-class learning is

another strategy for imbalance problem, the advantage of

which is that discarding the distractive majorities, the

‘‘space’’ where minority data resides could be better

determined [12, 13]. But there is a disadvantage of one-

class learning: the classifier may over-fit the training

minority class.

On the basis of statistical learning theory, support vector

machine (SVM) was proposed as computationally powerful

tools for supervised learning including both classification

and regression [14, 15]. SVM have established themselves

as a successful approach for various machine learning

tasks. But as for the extremely imbalanced datasets, the

decision boundary of SVM obtained from the training data

is largely biased toward the minority class. Many

researchers have studied and proposed plenty of effective

techniques to adjust the decision boundary [16, 17].

Ensemble learning strategies are also employed to con-

struct new algorithms to improve SVM’s performance for

the imbalance learning problem [18].

In this paper, we propose a new algorithm, namely

ensemble support vector machine with segmentation (SeEn–

SVM), for the classification of imbalanced datasets. In par-

ticular, vector quantization (VQ) algorithm is used to seg-

ment the majority class and hence generate some small

datasets that are of less imbalance than original one, and two

different weighted functions are proposed to integrate all the

results of basic classifiers. The goal of the SeEn–SVM

algorithm is to improve prediction accuracy of the minority

class, which is more interesting for people. Of course, it will

be void if the algorithm decrease specificity too much.

The rest of the paper is organized as follows. In Sect. 2,

we provide the background of SVM, ensemble learning as

well as VQ principle. The proposed ensemble framework is

presented in Sect. 3. In Sect. 4, we report the experiment

results, and Conclusion is given in Sect. 5.

2 Background

2.1 Support vector machine (SVM)

Generally, support vector machine is used for classifica-

tion. The essential idea of SVM is to search a linear

separating hyperplane that maximizes the distance between

two classes of data to create a classifier.

For a binary classification problem, the training dataset

consists of samples xi 2 <n; i ¼ 1; . . .; l with corre-

sponding class values yi 2 f�1; 1g; i ¼ 1; . . .; l. The

formulation is a linear soft margin algorithm, which is used

to solve the following optimization problem:

min
w;b

1
2

wk k2þC
Pl

i¼1

ni

s:t: yi w � xið Þ þ bð Þ� 1� ni; i ¼ 1; . . .; l
ni� 0; i ¼ 1; . . .; l

ð1Þ

where the predefined parameter C is a trade-off between

training accuracy and generalization, ni is the slack variable,

w 2 <n is a weight vector that defines a direction

perpendicular to the hyperplane of the decision function,

while b is a bias that moves the hyperplane parallel to itself.

The decision function is presented as follows:

f ðxÞ ¼ sgnððw � xÞ þ bÞ ð2Þ

The solution of this optimization problem is given by

solving the corresponding dual problem with introduced

Lagrange multiplier a

min
a

1
2

Pl

i¼1

Pl

j¼1

yiyj xi � xj

� �
aiaj �

Pl

j¼1

aj

s:t:
Pl

i¼1

yiai ¼ 0

0� ai�C; i ¼ 1; . . .; l

ð3Þ

Generally, the solution a* of the dual problem is sparse,

and the corresponding decision hyperplane depends only

on few ‘‘support vectors.’’

f xð Þ ¼ sgn w� � xð Þ þ b�ð Þ ¼ sgn
Xl

i¼1

a�i yi xi � xð Þ þ b�

 !

ð4Þ

Actually, not every problem is classified linearly; SVM

firstly maps n dimensional input data into a higher

dimensional feature space via a nonlinear function Uð�Þ.
Using the ‘‘kernel trick,’’ a kernel function Kðxi; xjÞ is used

to substitute the dot product of mapping function

ðUðxiÞ; UðxjÞÞ. Thus, the explicit computing of Uð�Þ can be

avoided, and the decision function is obtained as follows:

f xð Þ ¼ sgn
Xl

i¼1

a�i yiK xi � xð Þ þ b�

 !

ð5Þ

2.2 Ensemble learning

Ensemble learning is a machine learning paradigm where

multiple learners are trained to solve the same problem. In

contrast to individual classifier, ensemble methods try to
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construct a set of base classifiers and then classify new

samples by combining their outputs in some way. It has

been accepted widely that ensemble classification has

promising capabilities in improving classification accuracy.

Obviously, there exist two steps in constructing ensemble

scheme: the first step is to generate a number of base

classifiers and the second is to aggregate the base classifiers

by weighted or unweighted voting typically.

To obtain a good ensemble, the base learners should be

as more accurate as possible, and as more diverse as pos-

sible [19]. In other words, the generalization performance

of ensemble classifiers depends on the accuracy and

diversity trade-off of the base classifiers. In practice, the

diversity of the base learners can be introduced from dif-

ferent channels, such as subsampling the training samples,

manipulating the attributes, manipulating the outputs,

injecting randomness into learning algorithms or even

using multiple mechanisms simultaneously. The employ-

ment of different base learner generation processes and/or

different combination schemes leads to different ensemble

methods [20].

2.3 Vector quantization (VQ)

Vector quantization, also called ‘‘block quantization’’ or

‘‘pattern matching quantization,’’ is often used in lossy data

compression [21]. Given a training dataset consisting of l

vectors, T ¼ x1; x2; . . .; xlf g, the vector quantizer maps

T into a finite set of vectors Code ¼ c1; c2; . . .; cMf g,
each vector ci; i ¼ 1; 2; . . .; Mð Þ is called a codevector,

and the set of all the codevectors is called a codebook.

Then the whole region is partitioned by the codevectors

into a set of subregions, so-called ‘‘Voronoi Region,’’

V ¼ V1; V2; . . .; VMf g, and it is defined by:

Vi ¼ x 2 T : x� cik k� x� cj

�
�

�
�; 8j 6¼ i

� �
;

i ¼ 1; . . .; M
ð6Þ

[
M

i¼1
Vi ¼ T; \

M

i¼1
Vi ¼ U ð7Þ

Vectors within a region Vi are represented by their

codevector u xkð Þ ¼ ci; if xk 2 Vi. Figure 1 shows the

division of VQ.

To find Code and V is to minimize the average distortion

which can be given by:

D ¼ 1

Mn

Xl

i¼1

xi � u xið Þk k2 ð8Þ

where n is the dimension of training vectors [22].

3 Proposed algorithm: SeEn–SVM

In this paper, we present a new method that focuses on

improving classification performance for imbalanced

datasets by using an ensemble of SVM integrated with VQ

technique. The detailed procedure of the proposed method

is given in the following subsections.

3.1 The basic idea of SeEn–SVM

There are three main steps in our proposed algorithm,

which includes segmentation, training and aggregation. An

overview of the procedure is given in Fig. 2.

(1) First, as mentioned in introduction, undersampling

and oversampling have their drawbacks and might

result in information loss and over-fitting, respec-

tively. So we start rebalancing the datasets by

Fig. 1 Division of vector quantization

Fig. 2 Procedure of SeEn–

SVM
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segmenting the majority (negative) class; similar to

clustering, the idea of VQ technique is applied to

divide the majority class into K small data subsets,

and the similarity of the data in same subset is

much higher than that in two different subsets.

Meanwhile, the size of each dataset is allowed to

be different and is not necessary to be the same

with the size of minority class. What needs us to

determine is the number of small data subsets. In

SeEn–SVM algorithm, a detailed strategy is con-

structed for this.

(2) Then, by combining minority class with each seg-

mented small subset, K less imbalanced training

datasets are generated. Subsequently, SVM is used as

base learner to train every modified version of the

data and K base classifiers can be obtained. Owing to

the negative classes in every new training data are

distinct completely, the major differences exist

among diverse classifiers. This plays an important

role in improving generalization ability of an

ensemble.

(3) Finally, after training, we need to aggregate all

independent base classifiers into an appropriate

combination manner. Instead of majority voting and

other combining methods generally used, we formu-

late two types of functions to determine the weight for

every base classifier according to the distance

between negative dataset and positive dataset in each

training process. For a new test sample, the final

prediction is produced by all of the base classifiers.

3.2 Algorithm of SeEn–SVM

Given the minority (positive) training set P and the

majority (negative) training set N, there will be two related

important problems when implementing our proposed

SeEn–SVM: the first is how many small negative subsets

should be generated from N; the second is how to formulate

the weighting functions that aggregate all independent base

classifiers into an appropriate combination manner. The

algorithm of SeEn–SVM is shown in Table 1.

Step 2 of learning process displays a concrete strategy

for choosing an appropriate M, which consists of two

aspects:

(1) It is known that SVM may perform well while the

imbalance ratio is moderate and some observations

have demonstrated that SVM could be robust and

self-adjusting, so when m1=m2 [ 1 : 5, that means the

ratio between the number of positive samples and

negative samples could not be too large to influence

their performance. Hence, let M = 1, which is

equivalent to do nothing for negative training data,

and only SVM is utilized to train the original dataset

D.

(2) However, due to extremely skewed data distribution,

SVM modeled on the original training dataset is

prone to classify most of the samples to be negative.

When m1=m2� 1 : 5, that means the imbalance ratio

is larger than the first case, and this may lead to a high

false negative rate, so we let M ¼ 2n0 , where n0 can

Table 1 SeEn–SVM algorithm

Input: training set D ¼ x1; y1ð Þ; x2; y2ð Þ; . . .; xl; ylð Þf g;
Positive training data P; negative training data N; (the size of P: m1; the size of N: m2; m1 B m2 and m1 ? m2 = l)

The number of codevectors M in VQ algorithm, M is also the number of negative subsets;

Parameters: C in SVM classifier

Learning Process:

1. Given M = 1, compute the codevector c0 of data P with VQ algorithm;

2. Calculate q ¼ m2= 5 � m1ð Þ
If q\1, that is m1=m2 [ 1 : 5, let M = 1;

If q� 1, solve min
n

q� 2nj j; ðn ¼ 1; 2; . . .Þ, and get the optimal solution n0, let M ¼ 2n0 ;

3. Data N is divided into M subsets with VQ algorithm; they are Vi, (i = 1, …, M), meanwhile, the codevector Ci of each negative subset can

be obtained (i = 1, …, M);

4. for i = 1, …, M

5. Combine minority class P with each segmented small subset Vi, let Di = [Vi, P]

6. Obtain decision hyperplane gi (x) by solving SVM optimization problem (3) on the dataset Di = [Vi, P].

7. di = distance (ci, c0);

8. end

9. vi ¼ exp �di=dmð Þ; i ¼ 1; � � � ;M (dm is the median of all distances)

Output: F xð Þ ¼ sgn
PM

i¼1 vigi xð Þ
� �
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be equal to any positive integer, which is subjected to

min
n

q� 2nj j; ðn ¼ 1; 2. . .Þ. In this situation, at least

one division should be done to the negative class.

Of course, M is not only the number of negative subsets

but also the number of component members used in

ensemble process to achieve a good performance. In order

to be more reasonable and feasible, after n0 is computed, M

can be chosen among 2n0�1, 2n0 and 2n0þ1. Because n0 is

only related to imbalance ratio, but except for this, the size

and distribution of data may also influence the performance

of classifiers, the capability of SeEn–SVM algorithm

would be limited if only M ¼ 2n0 is considered.

SVM assumes that only SVs are informative to classi-

fication and other samples can be considered redundant.

For imbalanced classification, SVM would be less affected

by the negative instances that lie far away from the learned

boundary even if there are many of them. In addition, some

of the negative SVs may not be the most informative or

even noisy. The goal of SeEn–SVM algorithm manages to

cope with this problem. Step 9 of the learning process in

Table 1 shows the formulation of the weighted function,

which decides the importance of the i-th (i ¼ 1; . . .; M)

base classifier. It is clear that the closer the distance

between the codevector of the i-th negative dataset and the

codevector of positive dataset, the lager the weight value of

the i-th classifier is. And this does not satisfy the linear

relationship but the exponential relationship. This strategy

can increase the number of SVs especially the negative

SVs that are far away from the real decision boundary and

hence alleviate the boundary skewness.

3.3 Improvement of SeEn–SVM

For a large and imbalanced dataset, there may be many

redundant or noisy negative samples, even there are some

positive samples in the negative class and we do not know

which ones are false. This phenomenon is common in

bioinformatics problems, such as gene function prediction

[23], alternative splicing sites identification [24] and hori-

zontal gene transfer detection [25] and so on. It is a well-

known fact that the false negative samples may distribute

closed to true positive data samples. In this sense, step 9 of

learning process in algorithm might be reformulated as

follows:

v�i ¼ exp � di � dmj j= dmax þ dm � dið Þ½ �; i ¼ 1; . . .; M

ð9Þ

where dm and dmax are the median and maximum of M

values di; ði ¼ 1; 2; . . .; MÞ that represent the distances

between the codevectors of negative subsets and the

codevector of positive dataset, respectively. v�i is different

form vi by putting the highest weight to the classifier giðxÞ
whose negative dataset is in the ‘‘middle’’ of original

negative dataset not to the closest one from the positive

dataset. For the rest classifiers, the farther the distance from

the positive dataset, the smaller weight the value is.

Because negative subset closer to the positive dataset is

more useful than farther ones in classification despite some

noisy points, the closer subsets’ weights would be larger

than the farther ones’. Thus, it is hoped to improve the

generalization performance of SeEn–SVM algorithm.

4 Experiments and results

In this section, six UCI imbalanced datasets are used in our

experimental study to test our proposed method, namely

Glass (7), Segment (1), Abalone (7), Satalog (4), Letter (4)

and letter (1). The numbers in the parentheses indicate

which classes are selected as minority (positive) class, and

all others are used as majority (negative) class.

These datasets are often appeared in related works about

imbalanced research. The basic information about these

datasets is summarized in Table 2 including the size of

every dataset, the number of features, and the number of

positive samples and negative samples in each dataset.

These datasets are seriously selected to vary in data size

(from several hundreds to tens of thousands) and imbalance

ratio, the first two datasets are mildly imbalanced, while the

rest ones are highly imbalanced as less than 10 % samples

are positive.

In order to evaluate the classifiers on imbalanced data-

sets, we use G-mean instead of prediction accuracy to

measure the performance of algorithm since it combines

the values of both sensitivity and specificity. Because

Table 2 Characteristics of

datasets used in this paper

# of samples, the total number

of instances; # of features, the

number of attributes of

instances; # pos, the number of

positive instances; # neg, the

number of negative instances

Dataset # of samples # of features # pos/# neg Ratio of pos (%)

Glass7 214 9 29/185 13.55

Segment1 2,310 19 330/2,280 14.28

Abalone7 4,177 7 391/3,786 9.37

Satalog4 6,435 36 626/5,809 9.73

Letter4 20,000 16 805/19,185 4.03

Letter1 20,000 16 789/19,211 3.95
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overall accuracy is not sufficient any more in evaluating the

classifier with highly skewed dataset, sensitivity and

specificity are then usually adopted to monitor classifica-

tion performance on two classes separately and they are

defined as

sensitivity ¼ #true positive

#true positiveþ#false negative
ð10Þ

specificity ¼ #true negative

#true negativeþ#false positive
ð11Þ

Based on these two metrics, G-mean metric suggested

by Kubat et al. [26] is defined as follows:

G-mean ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sensitivity � specificity

p
ð12Þ

G-mean metric indicates balanced classification ability

between positive class accuracy and negative class accuracy

by taking the geometric mean of sensitivity and specificity,

and obviously, if a classifier is highly biased toward one

class, the G-mean value would be low. Hence, G-mean

metric is used to compare the classification performance of

models with imbalanced datasets in our experiments.

In the following, SeEn–SVM algorithm is compared

with four other popular methods, which are SVM, under-

sampling, SMOTE and cost-sensitive learning. In our

experiments, we use 10-fold cross-validation to train our

classifier since it provides more realistic results. Each

dataset in Table 2 is trained respectively by all methods,

while finding the optimal parameters the final 10-fold

cross-validation results can be obtained. SVM is imple-

mented in LIBSVM [27], and SeEn–SVM is implemented

by writing procedure in Matlab, but the results of other

three methods on different datasets are referred to different

literatures as shown in Table 3. Our G-mean measure is

gained by running the experiment 10 times with different

training and test datasets; besides the measurement of G-

mean, the standard error of the G-mean is also given to our

classifier. Table 3 also illustrates the comparison of the G-

mean value by our method and the rest ones.

In executing SeEn–SVM algorithm, for every dataset,

radial basis functions (RBF) are used as kernel functions,

and we choose the same cost parameter C in every com-

ponent SVM. But for SeEn–SVM algorithm, the segmen-

tation number M and weighted function should be

determined. In last column of Table 3, the results of

selected M and weighted function are given in brackets; m
or v�i represents which weighted function is used in deci-

sion-making process.

Table 3 shows obviously that the performance of SeEn–

SVM algorithm is better than the previously proposed

methods, and the G-mean value of SeEn–SVM is higher

than that of other methods on most of the experiment

datasets. There are only two datasets on which SeEn–SVM

does not perform best, but the G-mean value of SeEn–SVM

is much close to the best result. The last line of Table 3

displays the average G-mean values over all datasets of

each methods, the result of SeEn–SVM is higher over-

whelmingly than other methods, and the standard errors

show that SeEn–SVM is stabile too. Figure 3 gives the bar

graph of compared methods’ results, which shows the

results gained by all of the methods more visually, and the

relative improvements can be gotten from the bar graph.

Table 4 displays the sensitivity and specificity of SVM

and SeEn–SVM algorithm on all datasets. Note that SVM

has almost perfect specificity, but poor sensitivity because

it tends to classify all samples as negative. Any proposed

Table 3 G-mean values of five methods on six datasets

Dataset SVM Under-sampling SMOTE Cost-sensitive learning SeEn–SVM (parameters)

Glass [16] 0.8666 0.8801 0.8771 0.9199 0.9465 – 0.016 (M = 2, m)

Segment [16] 0.9792 0.9918 0.9765 0.9950 0.9943 ± 0.005 (M = 2, m*)

Abalone [28] 0 0.765 0.742 0.412 0.7755 – 0.017 (M = 4, m)

Statlog [28] 0.7678 0.871 0.862 0.761 0.8648 ± 0.004 (M = 2, m*)

Letter1 [28] 0.9712 0.994 0.995 0.988 0.9951 ± 0.001 (M = 4, m*)

Letter4 [18] 0.8876 0.5354 0.7078 0.8890 0.9660 – 0.006 (M = 4, m*)

Mean 0.7454 0.8396 0.86 0.8247 0.9292

For each dataset, the best result is shown in boldface
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Fig. 3 Bar graph of compared methods’ results
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algorithm for imbalanced datasets sacrifices inevitably

some specificity in order to improve the sensitivity and

SeEn–SVM has no exception. But SeEn–SVM decreases

specificity in a less extent and simultaneously increases

sensitivity greatly.

5 Conclusions

This paper introduces a novel approach for learning from

imbalanced datasets through making an ensemble of SVM

classifiers with VQ techniques. Although SVM has shown

an outstanding performance in many research areas and it

can adjust itself well to some degree of data imbalance, the

performance of SVM can still be influenced by data

imbalance.

To cope with the problem associated with imbalanced

datasets, SeEn–SVM segments the original negative data

into some small subsets firstly and then trains M new small

training datasets to learn base classifiers by SVM, and

finally makes decision by aggregating all the base learners

with appropriate weighted function. Through theoretical

analysis and empirical studies, we demonstrate this algo-

rithm effective and applicable. In the experiment studies,

the new algorithm was applied to six UCI datasets, and the

results confirmed its better performance than previously

proposed methods for imbalance problem.
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