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Abstract This paper considers existence, uniqueness, and
the global asymptotic stability for a class of High-order
Hopfield neural networks with mixed delays and impulses.
The mixed delays include constant delay in the leakage
term (i.e., “leakage delay”) and time-varying delays.
Based on the Lyapunov stability theory, together with the
linear matrix inequality approach and free-weighting
matrix method, some less conservative delay-dependent
sufficient conditions are presented for the global asymp-
totic stability of the equilibrium point of the considered
neural networks. These conditions are expressed in terms
of LMI and can be easily checked by MATLAB LMI
toolbox. In addition, two numerical examples are given to
illustrate the applicability of the result.
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1 Introduction

Due to the fact that the high-order neural networks have
stronger approximation property, faster convergence rate,
greater storage capacity, and higher fault tolerance than
lower-order neural networks, high-order neural networks
have been the object of intensive analysis by numerous
authors in recent years. In particular, there have been
extensive results on the problem of the existence and sta-
bility of equilibrium points of high-order neural networks in
the literature [1, 2, 3]. By using M-matrix and linear matrix
inequality (LMI) techniques, the authors in [4] and [5]
investigated the problems of the global exponential stability
and robust stability of the equilibrium point of high-order
Hopfield-type neural networks without the delays. For high-
order Hopfield neural networks with constant time delays,
the existence and global asymptotic stability conditions
were obtained in [2] which were based on the LMI approach
and with the assumption that the activation functions are
monotonic nondecreasing. There are numerous articles have
been published for the study of dynamic behaviors of high-
order neural networks with different time delays, see for
example [6] and references therein.

Although the convergence dynamics of impulsive neural
networks have been considered, see for example [7, 8, 9] and
references therein. The problem of the exponential stability
analysis for impulsive high-order Hopfield-type neural net-
works with time-varying delays was studied in [10], where the
delays are not required to be differentiable. We note that the
conditions in [10] were obtained based on simple Lyapunov
functionals, which may lead to conservatism to some extent
when using them to study the exponential stability of delayed
high-order neural networks without an impulse. To the best of
authors’ knowledge, few authors have considered high-order
Hopfield neural networks with impulses. For instance, [10, 11]
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investigated impulsive high-order Hopfield neural networks
with time delays. However, so far, there has been very little
existing work on neural networks with time delay in the
leakage (or ”forgetting”) term [14, 15, 16, 17]. This is due to
some theoretical and technical difficulties [12]. In fact, time
delay in the leakage term also has great impact on the
dynamics of neural networks. As pointed out by Gopalsamy
[13], time delay in the stabilizing negative feedback term has
a tendency to destabilize a system.

Motivated by the above discussions, the global asymptotic
stability of a class of impulsive high-order Hopfield-type
neural networks with time-varying delays and time delay in
the leakage term is discussed. Based on the Lyapunov stability
theory, together with the LMI approach and free-weighting
matrix method, some less conservative delay-dependent suf-
ficient conditions are presented for the global asymptotic
stability of the equilibrium point of the considered neural
networks. Two numerical examples are provided to demon-
strate the effectiveness of the proposed stability criteria.

Notations Throughout this paper, the superscript
T denotes the transposition and the notation X > Y
(respectively, X > Y), where X and Y are symmetric
matrices, means that X — Y is positive semi-definite
(respectively, positive definite). / is the identity matrix with
appropriate dimension; || - || is the Euclidean vector norm
and ® = {1,2,...,n}. For any interval J C R, set V C
RF(1<k<n),C(J,V)={¢p:J — V is continuous} and
PC'(J,V)={¢@:J — V is continuously differentiable
everywhere except at finite number of points #, at which
@(r),0(17),¢)(1") and ¢(17) exist and (1) = (1),
@(t%) = ¢(t), where ¢ denotes the derivative of ¢}. [e]
denotes the integer function. The notation * always denotes
the symmetric block in one symmetric matrix. Matrices, if
not explicitly stated, are assumed to have compatible
dimensions.

2 Model description and preliminaries
Consider a continuous-time high-order Hopfield-type neu-

ral networks with time-varying delays and impulsive
perturbations:

() = —em(r = 0) + Y anfs ()
33 did (s (NFiCa()
=1 1=

303 et — 50l — (o) +
=1 =1

+ i b;igi(x;(t — (1))

), t€[-1,0],
(5(6), keZ. (1)

x(:

it
(1) = I
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where x,(f) is the neural state, n denotes the number of
neurons, ¢;(¢) is the initial condition which is continuous on
[—7,0] and 7,(r) > Orepresents the transmission delay which
satisfies 71 < 7j(r) < 15,7 = max{t,,¢}. The first term on
the right-hand side of system (1) denotes the leakage term in
the neural network. ¢ > 0O denotes the leakage delay or
forgetting delay. fi(x;(r)) and g(x;(r)) are the neuron
activation functions, ¢; > 0 is a positive constant, which
denote the rate with which the ith cell resets its potential to
the resting state when isolated from the other cells and
inputs, a;; and b;; are the first-order synaptic weights of the
neural network, and d;;; and e;; are the second-order synaptic
weights of the networks. J; denotes the ith component of an
external input source introduced from the outside the
network to the ith cell. The activation functions in (1) are
assumed to satisfy the following assumptions:

Assumption 1 There exist constants u; > 0, v; >0, y;
and ;; (i = 1,2 and j = 1,2,...,n) such that y; < g;

m |<:uja V1j <fu3,fj< <0—1ja
|gj ’S"p “/zjﬁig’%_f’(t) <0y,

for anys,u,v € R,u#v,

for anys,u,v € R,u #v.

2)

For simplicity, we give the following model
transformation, and we give the next assumption.

Assumption 2 For any i,j,[=1,2,...
and eiﬂ —+ eilj ?é 0

7n7dijl+dilj 7&0

Assumption 3 The transmission delay t(f) is time-vary-
ing and satisfies 0 < h; < 7(¢f) < h; and 7(¢) < u, where hy,
h, and p are some positive constants.

Assumption 4 The leakage delay o > 0 is a constant.

Assumption 5 J;(-) : R" X R" - R" k € Z,, are some
continuous functions.

Assumption 6 The impulse times f, satisfy 0=
<t <--- <ty — oo and infk€Z+{tk — tkfl} > 0.

3 Existence and uniqueness theorems
One denotes an equilibrium point of the impulsive network

(1) by the constant vector x* = [x},x3, .. .,xZ]T € R", where
the components x; are governed by the algebraic system

0= —cix} +Z ,173 —&—Zbug]
+szwzﬁ X))
+Zzelﬂgl

)&i(x)) + Ji,i € ©. (3)
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As usual, the impulsive operator in this paper is viewed as
a perturbation of the equilibrium point of system (1)
without impulse effects, that is, it satisfies Ji(-) satisfy
Ju(xf)=0,i€ ke Z,.

Theorem 3.1 Under assumption 1, the network (1) has a
unique equilibrium point if the following inequality holds:

S S i (St )+ (St
= L j= — —
|byj| + (Z |eijl|>"j

=1

+ (Zn:|ei1j|vz>] max{|y2j|7|02j|}} <L (4)

X maX{|V1j|a li;l} +

|D; ()

Za[j[fjuj JSVJ "’Z U
ell

+ ij

S

uj gl(ul) g/ V/ gl Vl

Ci

diji 3

+ZZ . \fi (uj)fi (s
S
2

8i(ur) —

i

n
a
— | max{[yyl; o[} —vil + Z
1 ‘7

—&(vj) —|—ZZ lﬂ[}? (u)fy ()

&i(vj)&i(w) + & (v;)&i(ur) —

pymax{[yyl, [y Hu; — vi| + ZZ

vaax{|yzj| || Huj — V/H‘ZZ s

Proof Consider a mapping ®(u) =
®,(u))" € R" as follows

((Dl(u), <I)2(u), ooy

n n

() = Z“”Js (1) +Z Liy)+ >0 L)
j=1 1=1 "t
+zzﬁ%w&w+i

l

where u = (uy,uz,...,u,) € R". Let v= (v,vy,..
R", then by assumption 1 we get

V) €

— [fi(w)]

_!
Ci

—i(

Z

=1

gJ(VJ)‘

) — i (w) +F00)fi () — F(v)fi(v1)|
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=1 I=1
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n n
1
+> Z; (Il max{|yy;, [ol} + leglvy max{[yyl. [o2]}) [ — vj|
=1 =1 G

n n 1
+22 !

||y max{ |y, loul} + lega|v max{[yy], |oul })|ur — vil

——Z{Iaulmax{lvl,l o1} + [by| max{[yy], o[} + (Z |dul|> y max{|yyl, oy}

=1
n
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j=1 =1 "

+ (Z |eijl|>"j max{[yy], |sz|}}|uj —vjl

|dujl 1y maX{|V1;|7 1|} + lea|vi maX{sz\» |02j|})|uj =l
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Z—Z{Iaulmax{m, o} + byl max{[yy], o[} + <Z |dul|> ymax{ [yl o}

(Z Ieuzl> vy max{[yy|, [oxl} + (Z Idzzjluz> max{|yyl, o[} + <Z Iezzllvl> max{|yy], Iﬂzjl}}uj =il

=1 =1 =1

|a;| + (Z |dijl|>“j + (Z |di/j|:“1>] max{[y;|, lo1;[}
= =
|byi| + <Z|eijl|>vj + (Z Ieujlwﬂ max{|yy|, |Uzj|}}|uj —vil;
=1

=1

o3|

j=1

which implies that

|| + <Z Iduz|> w+ <Z |dilj,“1>] max{|yyl, |oy[}
=1

2
n n
eijl|>"j + (Z Ieizjvlﬂ max{|[yy], IUZjI}}IMj - Vj|>
=1 =1

jay| + (Z |dul|> W+ (Z Idujluzﬂ max{[yy;l, o[}

=1

2
n n
2
eiﬂ|>"j + <Z |eiUVl>] max{[yy], Iazjl}} > luy— vyl
1 =1 =

n

where

-%

e

{ || + (Z Idzyz|>uj+ (Zldﬂﬂuzﬂ max{|yyl, |o1;|}
i =1 =1 =1
n n 2
|by| + <Z|€tﬂ|>vj+ (ZMUW/N max{[yy], 02j|}} <1
=1

=1
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in view of condition (4).
Thus, we obtain

10(u) — ©)|| < Villu —v]|.

It means that the mapping @ : R" — R" is a contraction on
R" endowed with the Euclidean vector norm || e ||. and
thus, there exists a unique fixed point u* € R" such that
®(u*) = u* which defines the unique solution of the system
(3). The proof is complete. O

4 Global asymptotic stability results

Under Assumption 2, system (1) is transformed into the
following form:

i) = —eault — o) + i aafi (1)) + Z"jb,-,-gjw,»(t ()

+il§d,ﬂ[(ﬁ (1) - >)
X filxi (1)) 4+ fi( x; (fz x(t) —fi xl))]

et [(gj(xj(f —5(1)) - g.f(xj*))

=1 I=1

(= w0) + 8x) (g1t = (1)) - &1(x) |
+ Zbijgi(”j([ —7(1)))

£33 g )i (0) + 5 o)

2
j=1
X gl(xz

= —cu(t — o) + Z af; (u;(1))

j=1 I=1
* Z Z e[ (ui(t — ())& (ult — (7))
=1 =
+ () gi (it — rl(t)))}
= —cu(t— o)

3

+ 8(u;(r —
= —cu(t — o)

* Z @+ IZ::(dz:ﬂ + dilj)éijl(“l(t)):| £w(2)

+ 2": b+ i:(eijl + eiyp) Oy (uy (t — Tl(t))):|
j=1 =1
&(u;(t — (1))

a1]+z ljlfl X[ +dll}fl(xl)>:|f}(u7(t))

b+ Z(eiﬂgl(xz(f —n()) + eizjgl(x}‘))]
=1
7(1))),

where &(u(1)) = (dyf(6(1)) + difi(37))/ (dy + diy) i it
lies between fi(x;(r)) and fi(x;) and Oy (u(t — ©(1))) =
(eu8i(xi(t — (1)) + ej&i(xy))/(ei + eyy) if it lies
between & (x,(t — 7,(1))) and g (x7).

If we denote u(t) = [ui(t),us(1),. ..,
(), fle@), - fulu)]
[g1(u1(t=11(1))), 82(u2(t = 72(1))), -
C=diag{ci,c2,....cn}, A = @)nsns B= 0)pxn D
[D1,Ds,...,D,)", where D;=diag{d,dup,....dy},dj=
[dij1 +dyj, dipp +digjy ..., dijn+dij])", E=[E1,En,....E, }Ty

wn(1)]" f(u(t))
g(u(t=1(1)))
-+ 8n(n (1 = Ta(1)))]

([ |

where E; =diag{e;,ep,...,ei} €= [eul+e,|,,e,]2+e,2j,
et e] s E(u(r)) =diag{¢] (u(r)), & (u(r)), -
()} where  &i(u(r)) =& (u(0)), E (u(1)), -,
()", &(u(t) =&, (i (1)), ,,z(uz(t)), - T,(un(t))]
and O (u(t — (1)) = diag{0] (u(t — (1)), 0 (u(t — (1)),
o Oy (u(t=(1)))}n where 0;(u(t — (1)) = [0 (u(t —
(1), Op(u(t—<()), ..oy O (u(t—7®)))]", Oy(u(t—

t0)= [0 (t—11(1)), 050t —w2(1),.... 0,
(un(t—74(2)))]", then the above system can be written
in the following vector-matrix form with impulsive
perturbation:
i(t) = —Cu(t — a) + (A + E(u()) D)f (u(1))

+ (B +O(u(t — (1)) €)g (u(t — (1)) (5)
Au(ty) = Ji(u(ty)), k € Zy,

or in equivalent form:

= —Cu(t) + (A + E(u(1))D)f (u(1))
+ (B+O(u(t —1(1)€)g(u(t — (1))
Au(te) = Ji(u(ty)), k€ Zy. (6)

Remark 4.1 System (4) can be rewritten in the following
vector-matrix form:

%[ (1)—C / u(s)ds] — —Cu(t) + (A+ ETD) ()

t—o

+(B+O"E)g(u(t — (1))

Au(ty) = T (e )) = Dk{u(tk_) _c / u(s)ds}, keZ,

tk—o
(7)
where é = dlag{éa 57 B ﬁ}nxna ¢ ~: (517 625 SRS 5n)Ta ’b =
(D, +DT,D,+D},....D,+DI" 0 = diag{0,0,...,0},.,,
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0=1(0,,0,...,0,)", and E=(E,+ET E,+EL,..., E,+
E,{ )T. In fact, & and 0; in the aforementioned equality
should be &;,(u(1)) and 0;(u(t — t(¢))) in (5), respectively.
Obviously, they are generally relevant to weights d;;, dy;
and ey, e,i,j,1=1,2,...,n; therefore, the aforementioned
form is identical to system (5) only if &;(u(f)) and 0.
(u(t — (1)) are independent of the weights d;;, d;;; and
6,:]'1,6,‘1]‘,1',].,121,2,...,1’!.

In order to obtain the main results, we need the fol-
lowing lemmas.

Lemma 4.2 [18] Let X, Y and P be real matrices
of appropriate dimensions with P > 0. Then, for any
positive scalar e, the following matrix inequality holds:

X'y + Y xX<e'XTP X + e¥Y'PY.

Lemma 4.3 [19] Given any real matrix M = M* > 0 of
appropriate dimension and a vector function () :

[a,b] — R", such that the integrations concerned are
well defined, then

b r b

/w(s)ds M/

a a

b
w(s)ds| <(b-— a)/wT(s)Mw(s)ds.

5 Main results

In this section, we present a delay-dependent criterion for
the asymptotic stability of system (7) with Assumptions 1
to 6.

Theorem 5.1 For given scalars 1, > 1, > 0, 0 and 1, the

equilibrium point of (7) is globally asymptotically stable if
Py Py Py

there exist symmetric matrix P = | P1, Py Py | >0,
Pl; Pl P3y

positive diagonal matrices Q;,l=1,2,...,5 R{,51,5>,

T\, T,,Ts, positive scalars €;,j = 1,2,. .., 14, real matrix X
such that the following LMIs hold:
P (I-D
[* ( Pk)]zo, kez, s)
Q v

where Q = [Qil1510, ¥ = [Pl i4x1p, Y = diag{eil, e, .. .,
eial},

@ Springer

4
Q= -2P;;C+ P+ P}, + ZQ;‘ +0’Ry
p
1
——8 - 4T%T1 — 4(‘[2 — T[)sz — 40'2T3
T2

1
—2IN2Z) = 21027, Qi =—35i,
T2

Qi3 =Pz, Qi4=—-Pprn— P,

Qs =PC—-PC, Qe=2(Z+1I)
+PA, Qi1=2(3,+T1,), Q3="PB,

Qi 10 = C'P11C — P11C + 40T3,

Q11 = —C'Pyy + P, + 40,11,

Q12 =—C'Pi3+ Py +4(1s — 1)) Ty,

1
Qo =—(1-1n0s——5 — (1281 + $2)
T2 Ty — T1
1
- Sy = 2102073, Q3 = S2,
T2 — T ' T2 — T
Q4= (1281 4+ 82), Qo g = Z3(2n + I'),
Ty — T1
1
Q3 =—-0; — Sz, Q310 = —P13C,
T — T1
Q311 =Py, Q30 =P,
Qa=-0r— F— (1281 + 82), Qa0 = P1aC + P13C,
Q4711 = _P2TZ - P;, Q4,12 = —Py — P§3,Qs,5 = —0;s,
Qs6=C"A1, Qs7=C"Ay, Qs9=-C"X,

Qo6 = —2Z — AMA—ATA| +€D'D, Qg7 = —ATA,,
Qss = —A1B, Qg9 =A"X, Qg10=—-A"P)C,
Q11 =—A"Pa, Qe1o=—-A"P;3, Q77=0s5—22,
Q5 = —AB, Qgg=—(1—1n)Q0s — 275 + €EE,
Qg9 =B'X, Qg10=—-B'P;,C, Qgi1 =—B'Pp,
Qg1o=—B"Pi3, Qoo=15(12—11)S1 + 15T}

+ (B =T+ 0Ty + (1 — 1), — X — X7,

Qio,10 = éRl — 4T3, Quu = —4T1, Qupn=—4T,
Wi =uP, Wer=uAi, W¥73=phs,

LI1114 = MP7 LIIG,S - VAI, lI"7,6 = VA2,

Yo7 = uC'Py, Wios =vC Py, Wi =P,
W0 =VP,, Wi =upP;, Wi =P,

Wous = uX, Wous=1X, P =Py +ZiA + DA,

=€ +€ + €+ €+ €+ €1+ €3,

€
€=¢4+ €5+ €+ €3+ €10+ €12 + €qa.
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Proof Construct a Lyapunov—Krasovskii functional in the D (Va(t,u(t)) = [(uT(t)Zl —f (u(t))) A+ (uT ()Zs
orm - & () AcJi(), (12)
V(t,u(t)) = Vi(t,u(t)) + Va(t,u(r)) + Vs (1, u(r)

+ Va(t,u(t)) + Vs(t,u(1)) (10)

where

u(r) szla ds]" Py Py P |u) Cﬁo ds
Vi(t,u(r) = Ji, u(s)ds P, Pn Py i uls )ds ;
., u(s)d

T pT
Py Py Py f:_:z' u(s)ds

u;(t) u; (1)
V2 ,u =2 /11,‘ g1;8 — Jils ds ﬂzi 02;8S — &ilS ds ,
(1, ulr)) { /< £i(s))ds + 2 0/( 4i(s)) }

0
Vat,u() = / T OQusds+ [ Qi)+ [ ol ()0l

1

b [ woouwdst [ ¢ us)ossus)ds

t—1(1) t—1(1)

0 0o ¢
4 (¢, u(t :o/ /uT )Riu(s dsd@—i—rz(fz—rl)/ /L'tT(s)Slzl(s)dsdH
-0 t+0 -T2 t+0
T1 t

+(fzfr1)// T (5)S,ii(s)dsdO

-T2 40

(¢, u(t —212/// $)Tyu(s dsd@d)—I—Z _71 /// $)Tu(s)dsdOd A

1

+ 202 /// $)T3u(s)dsdOd .

Calculating the upper right derivative of V along the DY (Vs(t,u())) <u” (1)01u(t) — u” (t — 1) Qyu(t — T
solution of (7) at the continuous interval [t;_1,%),k € Z, (Va(t,u(1))) S w (1) Qau(r) ( V@il 1)

we get ( )Qzu(l‘) (l — ‘L'Q)Q]Lt(t — ‘Ez)
DT (Vi(t,u(1))) +u" (1) Qsu(t) — u (t — 0)Qsu(t — o)

u(t) = C [\ u(s)ds]" + (1) Qsu(t)
- ffﬂz u(s)ds

N 5)ds — (1= n)u" (t — 7(2)) Qau(r — (1))
Py P Pis M(I) — Cu(t) + Cu(t — O') + gT(u(l‘))QSg(u(t))
[P?z Px Pm} [ u(t) — u(t — o) } (1) — (1 = n)g" (u(t — (1)) Qsg(ut — (1))
P, PI, Py u(t — 1) —u(t — 1) (13)
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1

2ul (HRu(t) — o / u” (s)Ryu(s)ds

t—o

JONTIO

t

— (1 —11) / i (5)Syi(s)ds

-T2

DT (Va(t, u(1))) =

+ ‘E%(TQ — ‘El)ﬂ

+ (’CQ — Tl)zuT(I)Sgﬂ(t)

-1

— (12— 71) uT(s)Szu(s)ds (14)

-1y

D (Vs(t,u(t))) = i (1) [T;‘T, (2 -2 T + a4T3} ()

72‘1:2 // $)T1u(s)dsd0
—12

—22- 1) / / i (5)Ti(s)dsd0

202 // §)Tsii(s

By Lemma 4.3, we have

- / " (5)Ryu(s)ds < —é[/ u(s

)dsdd.  (15)

—0 —0 -0 (16)
- / i’ (5)S11i(s)ds
t—1(1)
< - ;12 [u(r) — (e = <(0))]"Si [u(t) — u(t —<(1))]  (17)
t—1(r)
- / i (5) (128 + S)ii(s)ds
<t e) a8+ 5
X [u(t —1(1)) — u(t — 12)] (18)
- / i’ (5)S,i(s)ds
t—1(1)
1 T
- - ) e <(0)
X Solu(t — 1) —u(t — (1)) (19)
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< —% [‘Egu(l) —t/ u(s)ds} T,

|:‘1:2u(t) — / u(s)ds] (20)
_ / / i (5) Toti(s)dsd0

=1 0

< - -2 [(rz —11)u(t) — r_/ u(s)d% T,

[(m(t)— / u(s)ds]. (22)

Furthermore, one can infer from inequality (2) that the
following matrix inequalities hold for any positive diagonal
matrices Z;, (k = 1, 2, 3) with compatible dimensions

0< —2u" (OT1Z1Zy — 2T (u(2))Z1f (u(t))

+ 20" (1)Z1 (24 + T1)f (u(2) (23)
0< — 2u" (NT2%22, — 28" (u(t))Zag(ul(1))

+2u" (1)Za(Zn + To)g(u(r)) (24)
0< — 2u!'Ty2oZ3u, — 28" (u)Z38(u.)

+ 2ul Z3(Z5 + T2) g (uz) (25)

The following equation holds for any real matrix X with a
compatible dimension

0= 20" () X[—i(t) — Cu(t — o) + (A + E(u(t)) D)f (u(t))

+ (B+O(u(r — (1)) €)g(u(t — 7(1)))]- (26)
By Lemma 4.2, the following inequalities hold for any
positive scalars €;, (i = 1,2,...,14)
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2" (1)PE(u(t))Df (u(1)) < & 'u” (1) PE(u(1)) E(u (1)) Pu2) / ' ,
raf @)D D) () ‘2(,[ ”(S)ds> POl
— 2 (u(2)) A E(u(1)) Df (u(1)) ‘ T
<& T (u() Ay E(u()Z(u(t)" Arf (u(r)) Sflol</ u(s)ds) P1,O(u:)O" (ur)
+ eof " (u(t)) D" Df (u(1)) (28) =72
= 28" () M E(u(0)) S (u(1)) . Plz(/ ()ds) + e108” (u:) € Eg(uz) (36)
<e3'g" (1) AaE(u(1)Z(u(r))" Aag(u(?)) 1,
+ e3f" (u(t)) D" Df (u(1)) (29) - T
2u” (1)PO(u;)Eg(ur) < e ul (1) PO (ur) O (u,) P u(r) 2( / u(s)ds) P3E(u(1))Df (u(1))
+esg’ (u )5 Eg(uy) (30) =7 i .,
~ A WO)MOw:)Eglu) <e;1'< / u(s)ds) PLE(u()E" (1)
<es f (u(t))Ar1O(u)O" () Af (u(t)) e
+ esg” (u,)E Eg(uy) (31) 1=,
2" (1)) As® () Ex ) P (/ ( )ds) +enf (W) D D) 7
<eg'g" (u() MO (u)O (u) Arg ur) )
68’ (i e Us 32 o
* a0 el (32) _2(/ u(s)ds) P oe(n
_2(/ ”(S)dS> CTPHE(u(t))Df (u(1)) o - r
t“a t . geul(/ u(s)ds) PLL.Ou,)0" (u,)
<e! (/ M(S)ds) CTPyE(u(r)E" (u(1)) P o
t’*“ Pis /u(s)ds —&—elng(uT)gTSg(ur) (38)
PHC(/ ”(s)ds) + eaf " (u(t)) D" Df (u(1)) (33) e
o — 2i" (1)XE(u(1))Df (u(1))
‘ T <eyi (H)XE(u ())E(u(t)) ")
_2( / u(s)ds> CTPy1O(u,)Eg(us) + eraf” (u(t)) D" Df (u(r)) (39)
o r —2i" (1)XO (ue)Eg(ue) < €4t (1) XO(u) O (u) X (1)
Segl (/ u(s)ds) CTP“@(MT)@T(MT) + €148 (ur)c‘f Eg(uy). (40)
o Since
P11C( / u(s)ds| + esg” (u:)ETEg(uz) (34) E(u(1))E" (u(r))
e —diag{z;lléu(u(t))IZ,ZI:Iézj(u(t))llzw--,lefnj(u(t))|2}
®(”f)®T(”1)

—2( / u(s)ds) PLE(u(t))Df (u(1))
sa‘( / u<s>ds> PLE(u()E (1))

—15

Py ( / M<S)d5) + eof " (u(t)) D" Df (u(1)) (35)

—1

=diag{2 104 () 1%, 10 (u) |, ||0,,,-(u1)||2}
=1 =1 =1

and Y00 1€ () 1” < S0 g, 0 105 (@) 1P < S0,

v,z it follows that

E(u()E (u(r)) <121, O(uy)O7 (1) < 1. (41)
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Substituting  (11-41)
manipulations, we have

DHV(tu(1)) < T (0QL0 +u” (1) [ 2+ PPutr)
+fT(u(t)) [e{',uz + e;' vz} A?f(u(t))
8" ()65 1 + e V] Ag(u(r))

p T
+ (/ u(s)ds) [ 1 +e5'v?]CTP C
r

—a

X (/ u(s)ds) + ( / u(s)ds)T

1
X [551H2+5;()1 VZ}PIZPTZ ( / M(S)dé)

—12

-1 T
+ (/ u(s)ds) [t 12 + € v P13 P,
r

—15

into (10) and making some

X (/ u(s)ds) +a” () [er3 12 + e v ] XX a(t),

—15

(=) d(—0) fTul) g w()
' T
¢ (ult — (1)) (1) / u(s)ds

From Lemma 4.2 and the well-known Schur complements,
DY (V(tu(?))) <0 holds if the LMI (9) is true for
t€[tr_1,tk), kEZ,.

It follows from (9) that
DY (V(t,u(t)) < — ()T {(0),

where IT" = —I1I. Suppose that ¢t € [t,_1,t,),n € Z,. Then,
integrating inequality (42) at each interval [f,_1, #),
1 <k <n—1, we derive that

keZ,, (42)

@ Springer

Vi) =v(0) - [ O L)
0

V(i) = V() - / ()T L(s)ds,

V(e ) = Vit ) — / (T () T (s)ds,

2

V() = V(i) / T ()TTC (s)ds,

which implies that
Vi) =v(0) - [T

0
+ ) V(R) = V)], =0,

O<y <t

(43)

In order to analyze inequality (43), we need to consider the
change of V at impulse times. First, it follows from (8) that

R N

in which the last equivalent relation is obtained by the
well-known Schur complements. Secondly, from model
(7), it can be obtained that

u(t) — C / u(s)ds = u(.) — Dy [u(lk_)C / u(s)d%|

k—0o

e / u(s)ds = (I — Dy) {u(tk_)c / u(s)ds],
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which together with (44) yields

Vi) = |u(t) — € / u(s)a’s] P{u(tk)—c / u(s)d

|

= |u(t;)-C / u(s)ds}
(1-D)'PU D@[( ¢ [ u(s)ds}

< [u(tk_) -C / u(s)ds] P {y(tk_) -C / u(s)ds:|

ty—o

:Vl(lk_).

Thus, we can deduce that
V() <V(t; ),k € Zy.

Substituting above inequality to (43), it yields
1
+ / ()T (u)ds < V(0), 1>0.
0

Applying Lemma 4.3 and (45), we have

2: [C/u(s)ds]T[C/u(s)ds]

—0

Simax(cz) [/ u(v)dv]

t—a

t

Cc / u(s)ds

t—o

4
T

i (@) | ] S,
= Jamin (Q3) t/a u(S)ds] e [t/a M(S)ds]
Jimax (C?) T
_Uimin(Q3)l_/a u' (s)Qszu(s)ds
j-max(Cz) )ma"(cz)
= J/lmin(Q;) Valt) < O-)min(Q:i) ve)
j-max(c
= O-/lmin(Q3) V(O)JZO
Similarly,
u(s) — C / u(s)ds
= [u(s) -C / u(s)ds] {u(s) -C / u(s)ds:|
no _ v v
S Gon®) = o (P) = Aoy 2

Hence, it can be obtained that

C / u(s)d{

1—a

j-max (CZ)
S \/6 )vmin (Q3)

1

u(s) —C / u(s)ds

t—a

o)+ 20 i,

lu(n)] < +

where

00
—l—a//uT(s)Rlu(s)dsdH
0

0 0
+12(t2 — 11) //MT )S1u(s)dsd0
0

-7

—T
1'2 - ‘L'l /
5

0 0 0

+21§///MT VT (s)dsdOd .

- 0 i
-1 0 0

1

0
/uT )S,u(s)dsd0
0

0 0

] [

>~ [ZAmax( ) + 2ﬂvmax(Al + AZ))vmax(zl - 22)‘[1
><j-max(Ql)772/1max(Q2) + a;max(Q3)

5)Tsu(s)dsd0d).

+ TZ/Imax(Qét) + TZ;max (QS) max(zz) +a /Lmax(R )

+ TZ(T2 - Tl)imax(sl)
+ (‘CZ - Tl)3)~max(S2) + ZTS/lmax(Tl)
+ [‘L’% - T%](TZ - 11)3/1max(T2)

+265;Lmax(T3)] ”(pHi <oo.
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So the solution u(f) of model (7) is uniformly bounded
on [0,00). Thus, considering the continuity of activation
function f{i.e.,(A1)), it can be deduced from system (6) that
there exists some constant M > 0 such that ||u(7)|| < M, €
[tr—1,tk),k € Z. Tt implies that |u;(¢)| <M, 1 € [tr_1, 1),
k€ Z,,i € O, where u denotes the right-hand derivative
of u at impulsive times.

In the following, we shall prove [|u(t)|| — 0 as r — co.
We first show that

||u(lk)|| —0 as t — oo. (46)

Obviously, it is equal to prove |u;(#)| — 0 as t — o00,i €
©. First, note that |i;(r)] <M,t € [ty_1,%),k € Z, then

for any € > 0, there exists a = 55; > 0 such that for any

7.1 € tiei, ),k € Zy and If — 11 < & implies
lui(f) — wi(")| < M| — 1) = %,i €0. (47)

By (As), we define 6 =min{4,10}, where 0 = infjcz,
{tc — tx—1} > 0. From (45), it can be obtained that

/wmﬁ&</ﬂ@mwm</@bx@@
0 0 0

1
<— (I (s)ds < o0, t > 0,
i [ O
0
which implies
Tk+5
ui(s)[*ds — 0 as 1 — oo.

Ik

Applying Lemma 4.3, we get

l‘k+5 tk+5

/|u,~(s)|ds§ 3/ |ui(s)|*ds — Oas 1, — co.  (48)

So for above given e, there exists a T = T(e) > 0 such that
t, > T implies
fx+0
(s)ds < <.
[ uolas<§

173

From the continuity of lu(f)l on [t,# + J] and using
integral Mean value theorem, there exists some constant
& € [t tr + 0] such that

i +0

uelo= |

I

€ —
|u;(s)|ds < 5(3,

which leads to

lui (Ex)| < (49)

N

@ Springer

Together (47) with (49), one may deduce that for any
€ > 0, there exists a T = T'(e) > 0 such that 7, > T implies

(1) < 1) = (&) + ()| < 5+ 5 = €.

This completes the proof of (46).

Now we are in a position to prove that |u;(7)] — O as
t— o0,i € 0.

In fact, it follows from (47) that for any € > 0O, there
exists a 51: 2—;{! > 0 such that for any ¢, ¢’ € [f_1,1), k €
Z, and It — t] < 0 implies

() — ui(1")] < %,i €o. (50)
Since (46) holds, there exists a constant 77 = Tj(¢) > 0
such that

&
|Mi(tk)|<§7 e >Ti. (51)
In addition, applying the same argument as (48), we can

deduce that
49

/ |u;(s)|ds — O as

t

t — o0,

where 6 = min{5,10},0 = infiez, {tx — ti1} > 0. So for
above given e, there exists a constant 7, = T>(¢) > 0 such
that

t
/ lui(s)|ds < gg,t > (52)
=8
Set T* = min{#|t; > max{Ty, T»},! € Z, }. Now, we claim
that |u;(¢)| <e€,t > T*. In fact, for any ¢t > T* and without

loss of generality assume that ¢ € [t,,, t,11), m > 1. Now, we
consider the following two cases:

Case . € [ty,tm + 0]
In this case, it is obvious from (50) and (51) that

|ui(t)| < |ui(t) - ui(tm>| + |ul(tm)| < §+E = €.

Case 2. 1€ [ty + 0,tmi1)-
In this case, we know that u;(s) is continuous on
[t —06,1] C [tw,tmi1). By integral Mean value
theorem, there exists at least one point 1, €
[t — 6,1] such that

/t |ui(s)|ds = |ui(1,)|9,
t—0

which together with (52) yields |u;(t,)|<5.
Then, in view of 1, € [t — d, ], we obtain

O] < (1) = 2] + (x)] < 5 +5 = e
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So in either case we have proved that |u;(7)| <e, 7 > T*.
Therefore, the zero solution of system (7) is globally
asymptotically stable, which implies that model (1) has a
unique equilibrium point which is globally asymptotically
stable. This completes the proof.

For system (1), when a; =dy; =0,i,j,l=1,2,...,n, it
reduces to the following high-order Hopfield neural net-
works with time-varying delays and impulsive perturbations:

k(1) = =it — o) + Y bygi((t — (1))
—1

+ i ieif’gf(xf(t — ()& (it — (1)) + J;
= =
Axi(ti) = Ju(xi(ty)), keZy, (53)

where i = 1,2,...,n. Before proceeding, we assume the
following assumption which will be used in the following
Theorem.

Assumption 7 There exist constants v; >0 and ¢, j =
1,2,...,n such that y; < g;
&) —&(v)

|gi(s)| <vi, 7 < E— <oj,

for anys, u,v € R,u # v. (54)
System (5) can be rewritten in the following form:
u(t) = —Cu(t — ) + (B + O(u(t — (1)) ) g(u(r — (1))
Au(ty) = Ji(u(ty)), k€ Zy, (55)

or in equivalent form:

t

d
3 u(t) — C / u(s)ds
= —Cu(1) + (B+ O(u(r — ©(1)))€)g(u(t — 1(2)))
Au(te) = Je(u(t)), k€ Zs. (56)

Now, we present a global asymptotic stability result for the
delayed high-order neural networks with time delay in the
leakage term and impulsive perturbations.

Theorem 5.2 For given scalars 1, > 11 > 0, g and 1, the

equilibrium point of (4) is globally asymptotically stable if
Py Py Pi3

there exist symmetric matrix P = PIT2 Py Px»| >0,
p 1T3 P 2T3 P33

positive diagonal matrices Qi1 =1,2,...,5,Ry,51,%2,T1,

T,, T3, positive scalars €;,j = 4,6,8,10,12, 14, real matrix

X such that the following LMIs hold:

{P (u —PDk)] >0, keZ, (57)

*

; } <0 (58)

where Q = [Qily 11, ¥ = [WPlexi, ¥ = diag{esl, e6l, €sl,
eiol, €121, €141},
. 4 1
Ql,l = 2P C+ Py, +P{2 +ZQ, +(72R1 —?Sl
i=1 2
— 4‘C§T1 — 4(‘[2 — Tl)sz — 40'2T3 — 2F12121 — ZFQZZZz,
) 1 . .
Qi :asl, Qi3 =Pz, Q4=—Pp— Py,

Qs = 25AC, Q=22+ 1),

Q7 = P B+ ZAB, Q9= CTP;,C — P,C + 40T3,
Q10 = —CTPpy + P, + 40,1,

Ql,ll = —C"Pi3 + Py + 4(t2 — 1) T,

A 1
Qo =—(1-n)Q0s——5 — (1281 + 52)
T2 T2 —T
A 1
- Sy — 210273, 3= $2,
Ty — T} T2 — 7
. 1 .
Dy = — (1281 + 82), Qo7 = Z3(X, + Tz),
Qsﬁ =-01— $2, Q3,9 = —P;C,
Ty — T
Q10=Py, Qa1 =Py,
Qs=-0r— Pa— (2281 +82),  Quo = P1aC + Pi3C,
f24,10 =-P), - Pg3,f24,11 = —Py — P§37Q5,5 = —Qs,

Qs6=CTAy, Qsg=—CT'X, Q56 = 05 — 225,
Q57 = —MB, Q7 =—(1—-1)Qs —27; + €,
Q5 = B'X, Qw = —B'P;,C, Q5,0=—B"Pp,
f27,11 = *BTP13,Qs,s = T%(Tz —11)8) + 13T,

+ (‘L’% — ‘E%)Tz +0*Ts + (ta — 11)282 -X-XT,

. 1 .
Qoo = ERI — 4T3, Q10 = —4T),
Qi = —4Ts, Wi = (P + M),

Yoo =vAy, Wo3 =vCTPy, Wiga =PI,
‘i'n,s:vplTy ‘i’x,s:\’x»

€=¢€4 + 6+ €g + €10 + €12 + €14.

Remark 5.3 The new augumented Lyapunov—Krasovskii
functional with triple integral and leakage delay terms in
this paper is completely new and efficient than [6].

Remark 5.4 Recently, few authors have discussed the
triple integral terms added in the Lyapunov—Krasovskii
functional, see for example [20]. There are few papers
having triple integral terms deriving stability results of
neural networks, see for example [20]. The leakage delays
were not taken in these triple integral terms. Motivating
this reason, we have included the leakage delay in the triple
integrals, which is also one of the reason of reducing
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conservatism. The free-weighting matrix method has also
been applied to reduce less conservative stability condi-
tions. In [6], the authors used the few free-weighting
matrices and found some conservative stability results than
the published papers in the literature. However, there still
exists room for further improvement than the results dis-
cussed in [6]. Motivating this reason, we introduce some
triple integral terms for interval time-varying delays in the
Lyapunov—Krasovskii functional and derived some less
conservative stability results. This plays an important role
in the further reduction of conservatism and we find the
better upper bound than the result reported in [6].

When there is no leakage delay, that is, model (7)
becomes

W) _ _cu(t) + (A + ETDY ()

d
+(B+O"E)g(u(r — (1)) (59)

For model (59), we have the following result by Theorem
5.5.

Theorem 5.5 For given scalars 1, > 1, > 0, 0 and 1, the
equilibrium point of (4) is globally asymptotically stable if

Py P Pp3
there exist symmetric matrix P = PlT2 Py, Py

Ply Pl Py
positive diagonal matrices Q;, 1 =1,2,4, 81, S, T, T,
positive scalars €;,j = 1,2,...,12, real matrix X such that
the following LMI holds:

n- |9 5] <o

> 0,

o5 (60)

where Q = [Qil 10100 P = [Pl1an10; ¥ = diag{eil, &2, . ..,
enl},

4
1
Q1=-PC—CP+Pp+P,+» Q——3S
1,1 12 12 ; T 1
— 4T%T| — 4(’[2 — ’C])ZTZ
~ 1
—2IN2\Z) = 210207, Qi =—35i,
T

Q3 =Py, Qua=—Ppn—Ppy,

Qs =Zi(Zi+ 1) +PA, Qie=2(%+ 1),
Q17 =PB, Qg = —CT'P;, + PL, + 40,11,

Quo = —CT"Pi3 + Pys +4(12 — 11)7T>,

~ 1
Qo =—1-n)0s——51 — (1251 + 52)
T2 T — T
1
- Sy — 212075,

T2—7
. 1 ~
Q3 = Sy, Q4= (1281 + $2),

Ty — T1 T2— T

@ Springer

1
T2— T

Q=22+ T), Q3=-0)— Sa,

~ T T
Q39 =P,;, 310=Ps;,

Qy=—-0)— (1281 +82), Quo=—Ph, — P,

T, — 1

Qui0=—Py—PL, Qss=-27—ANA—ATA,
+eD'D, Qsg=-ATA;, Qs7=-AB,

Qss =ATX, Qso=—-ATP;, Qs10=—-ATPy,

Qs =05 27, Qo7=—AsB,

Q77 =—(1-n)Qs — 273+ ¢EE, Qz3=B'X,

S~)-7,9 =-B"P), Q7,10 =-B"Py;,

Qs =13(12 — 11)S) + T4T) + (22 — )Ty
+(n—1)8$-X—XT,

Qoo = —4Ty, Qio10=—4Ts, W1, =uP,

Pso=ph, Vo3 =uhs, Pia=vP, Wss=VA,

Yoo =vAy, Wo7=uPl,, Wog=vPl,

W9 = 1P, ¥10.10 = VP, Wy 11 = pX,

P50 =X,

P=Pu+ZiA+ A, =€ +ea+e+e+e+e,

€ =¢€4+ €5+ €6+ €5 + €10 + €12.

When there is no leakage delay, that is, model (56)
becomes

du(t)
d

For model (61), we have the following result by Theorem
5.6.

= —Cu(t) + (B+ O"E)g(u(r — t(1))). (61)

Theorem 5.6 For given scalars t, > 11 > 0, o and y, the
equilibrium point of (61) is globally asymptotically stable if
Py P Pis
P, Py Px
Py Pl Py
positive diagonal matrices Q, 1 =1,2,4, 8, S, Ty, T,
positive scalars ¢;,j = 4,6,10,12,14, real matrix X such
that the following LMIs hold:

IT [‘{% LI;} <0

there exist symmetric matrix P = >0,

(62)

where Q = [Qij]nxn,‘i’ = [‘i’]ﬁxll,Y = diag{eql, €6, €51,
erol, €l €14l },



Neural Comput & Applic (2013) 22 (Suppl 1):S55-S73

S69

Q) =-PC—CP+Pu+PL+01+0+04

1
— 7S1 — 4‘E%T1 — 4(1’2 — ‘Cl)sz — 2F222Zz,

Ql,s = P13, Q174 = —Pjp — Py3,

Qs =2(2+1,), Qi =PuB+ Z2A;B,
QI,S = —C"'Piy + P}, + 41,1y,
Qw = —CTPi;3+ Pys + 4(1y — 1)) T,

~ 1
Qo =—(1-1n0s——5 — (1281 + S2)
(%) Ty — T1
A 1
- So — 2102073, 3= S,
Ty — T1 Ty — T
Oy = (0281 +82), og=7Z3(Z2 4+ T),
Ty — T
. 1 .
Q33 =—-01 — Sy, Qg =Ph, Q30=P,
Ty — T1
Qus=—-0 — (281 +82), Qug=—Ph, — PL,
Ty — T1
Qo =Py —PL,, Qss=05—27Z, Qs¢=—NAB,

Qs = —(1 —n)Qs — 273 + €€, Q47 =B'X,
QG,S = —B"Py,, Q6,9 = —B"Py3,
Q777 =(t— )8 + 5T + (15 — )T

+ (1o — ‘51)252 —-Xx-XxT
Q&s = —4Ty, ﬁ9,9 = —4T>,
‘i’5‘2 = vA,, @873 =Pl

€=¢€4+ €+ €10 + €12 + €14

P11 = v(P1 + DoAy),
Pou =Py, W75 =X,

6 Numerical examples

Example. 4.1 Consider the delayed impulsive neural
networks (5) with

C = diag{1.3232,1.1122, 1.6091},

0.0113 —0.0412  0.0062
D; = 10.0177 0.0083 —0.0134

0.0216  0.0093 0.0041

[ 0.1290 0.0129 —0.0258]
E, = | —0.0258 0.0516 0.0387

| 0.0129 0.0258 0.0516 |

[ 0.1300 0.0520 —0.0546]
E, = 0.0260 0.1820 0.0260

| —0.0260 0.0520  0.2080 |

[—0.1248  0.0208 —0.0416
E; = | 0.0208 —0.0624 —0.0208

—0.0416 —0.0208 0.1872

Dy = 0.8, fi(x)=0.88tanh(0.2159x),

f2(x) = 0.88tanh(0.4318x), f3(x) = 0.88 tanh(0.1477x),
g1(x) = 0.88tanh(0.3523x),  g»(x) = 0.88 tanh(0.4205x),
23(x) = 0.88 tanh(0.2614x).

Obviously, Assumptions 1 and 2 are satisfied with

p=v=088 X ={0.19,0.38,0.13},
%, = {0.31,0.37,0.23}, T, =T, = 0.

Let us take 6 =0.1,A; =0,n=1 and A, =0.7, by
resorting to the Matlab LMI Control Toolbox to solve the
LMIs in Theorem 5.1, we obtain the following feasible
solutions

[ 0.8698
A= |—0.0688
| 0.1106
[—1.9429
B= | -0.4597
| —0.1670
[ 0.0134
Dy = | 0.0227
| —0.0319
[—0.0034
D> = | —0.0221
| —0.0321

—0.4190
0.5440
0.2315
0.7346

—0.6754
1.5342
0.0247
0.0062
0.0268

0.0138
—0.0340
0.0510

0.0390 T
0.1518
—0.4615 |
—1.19347
~0.3736

—0.8716 |
—0.0052
0.0185
0.0196
0.0187
—0.0243

—0.0136

[17.2403 —0.8533 —-2.4016
Py = | —0.8533 353785 0.3160
| —2.4016 0.3160 23.3963
[ 1.1276  0.6467 —1.11547
P, = | —0.8119 24727 —-0.5851
| —0.2719 0.7354  2.9255 |
[ 1.6135 0.3439  0.0918 7
Pi3 = | —0.5430 5.0347 —0.1657
| 0.4043 1.0088 2.3753 |
[ 2.3520 0.0169 —1.17967
Py =] 0.0169 44274 0.2448
| —1.1796 0.2448  4.2203 |
[—1.4931 0.0348 0.0171
Py; = | —0.0689 —3.6227 —0.1245
L 0.0542 —0.0461 —2.1508
[ 3.4573 0.0783 —0.1084
P33 = | 00783 7.8873 0.1241
| —0.1084 0.1241 5.3331
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Ly
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03

Q4

Os

Ry

S

\Y)

T,

Ip)

T3

Z

0
0

0
. 0
[1.4616
0
0

0
0

10.0896

0
0
[7.3462
0
L 0
70.8033
0
L 0
[1.9413
0
L0
[2.7176
0
0
[16.1764
0
0
[34.2672
0
0
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[15.8514

[19.8221

0 0
50875 0
0 22756
0 0
24936 0
0  2.6118]
0 0
83122 0
0 65979
0 0 7
35844 0
0  5.6033 ]
0 0
212684 0
0 250580
0 0
23302 0
0 29593
0 0
19.5376 0
0  33.6038
0 0
17.1444 0
0 167234
0 0
142564 0
0 6.0977
0 0
30533 0
0  1.2883]
0 0
51983 0
0  2.8887)
0 0
64714 0
0 3.9232]
0 0
125327 0
0  15.4581 |
0 0
37.6956 0
0  44.9374 ]

(263512 0 0
Z = 0 270018 0

0 0  38.6477

[126.9633 0 0
Zy = 0 109.7197 0

0 0 125.5990

47477  —0.2724 —0.8058

X=1 00334 97679 —0.0469 |,

~0.7055 0.3084  5.4820
e = 1141212, & =429172, ¢ = 42.1433,
€= 1112413, 5 =41.1892, e = 40.4159,
€= 529226, e =51.1170, ey =42.7997,
10 =41.0721, e, =42.9904, €, = 41.2624,
€13 = 72.2590, 14 = 70.1599.

We are ready to discuss the same example for nominal
system (i.e., removing the impulse term in the reported
Theorems). The following Table 1 shows that the maxi-
mum allowable upper bound of the time delay 1, for the
different fixed delays 7; and o.

In addition, the time-varying delay has been chosen as
7(t) = 0.0335sint + 2 of Theorem 1 in [6] for = 0.0335.
However, if we set 7(¢) =0.1131sinf¢+ 2310, from
Theorem 5.5, we can verify that this system (59) has a
unique equilibrium point, which is globally asymptotically
stable for the same #. Hence, the results presented in this
paper are less conservative than those studied in [6].

Example 4.2 Consider the delayed impulsive neural net-
works (18) with

C = diag{1.5,1.8,1.2},

1.63 003 —0.13
B=|-002 098 0.2 |,
001 —0.08 0.79
r0.09 0.01 —0.01]
E = | 002 004 003 |,
| —0.01 0.02 0.04 |
r0.05 0.02 —0.02]
E»=| 001 007 001 |,
—0.01 0.02 0.08 |
[0.06 —0.01 0.02]
E;=|-001 003 001],
| 002 001 0.09]

&1(x) = 0.32 tanh(2.1875x),
&;(x) = 0.32 tanh(2.5x).

&(x) = 0.32 tanh(1.875x),
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Table 1 Maximum all.owable 0.1 02 03 0.4 05
upper bound 1, for various
Va&“’ls of o with fixed 7, and =0 1.3053 1.1241 0.9470 0.8850 0.8246
= 71=1 2.3046 2.0337 1.5724 11.3571 1.3106
7, =10 11.2968 11.0334 10.5724 10.3344 10.2493
7, = 100 101.2866 101.0322 100.5724 100.3340 100.2493
7; = 1000 1,001.2575 1,001.0275 1,000.5714 1,000.0333 1,000.2487
Obviously, Assumptions 2 and 3 are satisfied with [0.1117 0 0
v=096, 3,=diag{0.7,0.6,0.8}, T, =0. Q= 0 65120 0
. O 0 3.6061
Let us take 0 =0.1,A; =0,n=1 and A, =04, by [6.1709 0 0
resorting to the Matlab LMI Control Toolbox to solve the 03 = 0 19.7847 0
LMIs in Theorem 5.2, we obtain the following feasible ) 0 11.2085
solutions r0.0724 0 0
r9.9922 0.1362  0.2353 Oy = 0 4.8340 0
Py = ]0.1362 24.1624 0.0452 - 0 0 2.2166
0.3394 0 0
L0.2353 0.0452 33.5189 0s = 0 16.4172 0
r 3.0881 0.1002  —0.15997 . 0 0 6.3795
Pi= | —00387 72257 03217 43.4857 0 0
R, = 0 19.9572 0
L 0.7965 —0.4158 7.0316 0 0 13.8792
r 4.6915 0.0303 —0.196517 [11.5391 0 0
Pi3= | —00116 62722  0.4893 S1 = 0 121150 0
L O 0 13.1566
L 0.3055 —0.0066 7.6997 | 0.3816 0 0
r6.5362 0.3236 0.2186 S, = 0 7.8574 0
Py = | 03236 14.0224 —0.1517 L O 0 11.0949
0.2186 0.1517 14.2731 81451 0 0
- e ' Ty=1| 0 147522 0
Py; = | —0.2006 —5.5219 0.0946 12,5145 0 0
L 0.2506 —0.1626 —7.6842 T, = 0 16.5321 0
r7.8346  —0.1926  0.4265 L 0 0 18.6317
141.7516 0 0
P33 = | —0.1926 17.0687 0.0545 Ty = 0 13.6979 0
L 0.4265 0.0545 17.7939 L 0 0 12.0782
38,8900 0 0 [0.6482 0 0
89 Z=| 0 243500 0
L = 0 38.8900 0 0 0 11.2151
. O 0 38.8900 [25.5316 0 0
[0.0360 0 0 73 = 0 32.1935 0
fo=1 0 28687 0 1 35917 0 0185 31'182&,35 ’
L 0 0 1.2729 X = 10.0048 3.8938 —0.1546 |,
51989 0 0 00322 —0.1306  4.3937
0= 0 11.3801 0 €4 = 934792, €5 = 14.6164, e =25.8435,
0 0 13.9093 €10 = 16.1415, ¢, = 16.8014, €14 = 38.3909.
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We are ready to discuss the same example for nominal
system (i.e., removing the impulse term in the reported
Theorems). The following Table 2 shows that the
maximum allowable upper bound of the time delay t, for
the different fixed delays 7, and o.

In addition, the time-varying delay have been chosen as
7(¢) = 0.1023 sin ¢ 4 2 of Theorem 1 in [6] for # = 0.1023.
However, if we set () =0.1023sinz + 2795, from
Theorem 5.6, we can verify that this system (61) has a
unique equilibrium point, which is globally asymptotically

Table 2 Maximum allowable upper bound 7, for various values of ¢
with fixed t; and n = 1

o 0.1 0.2 0.3
71=0 0.9557 0.7383 0.3978
=1 1.9484 1.6993 1.2305
7, =10 10.9483 10.6993 10.2305
7, = 100 100.9481 100.6992 100.2305

Fig.1
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Figs. 1-4 State trajectories of tyhe system
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stable for the same 7. Hence, the results presented in this
paper is less conservative than those studied in [6].

Remark 4.3 In the simulations, one may find that high-
order Hopfield neural networks (5) with ¢ = 0 are globally
asymptotically stable (see Fig. 1). If we take ¢ = 1.5, it is
easy to check that the LMIs (8-9) have not any feasible
solutions via MATLAB LMI toolbox, which implies that
our results cannot guarantee the stability of high-order
Hopfield neural networks (5) for the example 4.1. In this case,
from simulations, it is interesting to find that high-order
Hopfield neural networks (5) is not stable (see Fig. 2). This
greatly shows the advantage of our development results.
Similarly, for example 4.2, Figs. 3 and 4.

7 Conclusion

In this paper, we have investigated a class of high-order
Hopfield neural networks with time delay in the leakage
term under impulsive perturbations. Sufficient condition to
ensure the global existence and uniqueness of the solution

Fig.2
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for the high-order Hopfield neural networks by using the
contraction mapping theorem have been derived. Next,
some sufficient conditions on the global asymptotic sta-
bility results have been derived for a class of high-order
Hopfield-type neural networks with mixed delays and
impulsive perturbations. A new method has been proposed
to obtain the delay-dependent stability criteria by intro-
ducing an appropriate Lyapunov—Krasovskii functionals
including triple integral terms. Less conservative results
have been derived by applying the free-weighting matrix
method and LMI techniques. Finally, the effectiveness
of the proposed results has been demonstrated by two
numerical examples.
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