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Abstract In this paper, a simple and linearly convergent

Lagrangian support vector machine algorithm for the dual

of the twin support vector regression (TSVR) is proposed.

Though at the outset the algorithm requires inverse of

matrices, it has been shown that they would be obtained by

performing matrix subtraction of the identity matrix by a

scalar multiple of inverse of a positive semi-definite matrix

that arises in the original formulation of TSVR. The

algorithm can be easily implemented and does not need any

optimization packages. To demonstrate its effectiveness,

experiments were performed on well-known synthetic and

real-world datasets. Similar or better generalization per-

formance of the proposed method in less training time in

comparison with the standard and twin support vector

regression methods clearly exhibits its suitability and

applicability.

Keywords Machine learning � Nonparallel planes �
Lagrangian support vector machines � Support vector

regression � Twin support vector regression

1 Introduction

Support vector machines (SVMs) developed by Vapnik

[24] are a class of kernel-based supervised learning

machines for binary classification and regression. They

have shown excellent performance on wide variety of

problems [4, 9, 19] due to its method of constructing a

hyperplane that partitions the inputs from different classes

with maximum margin [6, 24]. Unlike other machine

learning methods such as artificial neural networks

(ANNs), training of SVMs leads to solving a linearly

constrained quadratic programming problem (QPP) having

unique optimal solution. Combined with the advantage of

having unique optimal solution and better generalization

performance, SVM becomes one of the most popular

methods for solving classification and regression problems.

Although SVM provides better generalization results in

comparison to other machine learning approaches, its

training cost is expensive, that is O(m3) where m is the size

of the total training samples [8]. To reduce its time com-

plexity, a family of non-parallel planes learning algorithms

has been proposed in the literature [8, 10, 15]. In the sprit

of the generalized eigenvalue proximal support vector

machine (GEPSVM) proposed in [15], Jayadeva et al. [8]

introduced twin support vector machine (TWSVM)

wherein two non-parallel planes are constructed by solving

two related SVM-type problems of smaller size than the

standard SVM. For an improved version named twin

bounded support vector machines (TBSVM) based on

TWSVM, see [22].

Recently, Peng [20] proposed twin support vector

regression (TSVR) similar in sprit to TWSVM wherein

a pair of non-parallel functions corresponding to the

e-insensitive down- and up- bounds of the unknown

regressor is determined. As in TWSVM, this formulation

leads to the solution of a pair of dual QPPs of smaller size

rather than a single large one as in the standard support

vector regression (SVR). This strategy makes TSVR works

faster than SVR with the added advantage of better gen-

eralization performance over SVR [20]. However, TSVR

formulation requires, like TWSVM, the inverse of a
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positive semi-definite matrix. By reformulating TSVR to

become a pair of strongly convex unconstrained minimization

problems in primal and employing smooth technique, smooth

twin support vector regression (STSVR) has been proposed in

[5]. Finally, for the work on the formulation of TSVR as a pair

of linear programming problems, we refer the reader to [25].

Motivated by the work of [1, 2, 13], we propose in this

paper Lagrangian twin support vector regression (LTSVR)

formulation whose solution will be obtained by applying a

simple iterative algorithm that converges for any starting

point given. In fact, the Karush–Kuhn–Tucker (KKT)

necessary and sufficient optimal conditions for the pair

of dual QPPs of TSVR are considered and solved using

linearly convergent proposed iterative algorithm. Our for-

mulation has the advantage that the e-insensitive down- or

up- bound regressor will be determined using an extremely

simple iterative method rather than solving a QPP as in

SVR and TSVR.

In this work, all vectors are taken as column vectors.

The inner product of two vectors x, y in the n-dimensional

real space Rn will be denoted by: xty, where xt is the

transpose of x. Whenever x is orthogonal to y, we write

x?y. For x ¼ ðx1; . . .; xnÞt 2 Rn, the plus function x? is

defined as: (x?)i = max{0, xi}, where i = 1,…, n. The

2-norm of a vector x and a matrix Q will be denoted by jjxjj
and jjQjj, respectively. We denote the vector of ones of

dimension m by e and the identity matrix of appropriate

size by I.

The paper is organized as follows. In Sect. 2, the stan-

dard SVR and TSVR are reviewed. The proposed LTSVR

algorithm for solving the dual QPPs is derived in Sect. 3.

Numerical experiments have been performed on a number

of interesting synthetic and real-world datasets, and the

results obtained are compared with that of SVR and TSVR

in Sect. 4 and finally, we conclude our work in Sect. 5.

2 Related work

In this section, we briefly describe the standard SVR and

TSVR formulations.

Let a set of input samples fðxi; yiÞgi¼1;2;...;m be given

where for each training example xi 2 Rn its corresponding

observed value being yi 2 R. Further, let the training

examples be represented by a matrix A 2 Rm�n whose ith

row is defined to be the row vector xt
i and the vector of

observed values be denoted by y ¼ ðy1; . . .; ymÞt.

2.1 Support vector regression (SVR) formulation

In SVM for regression, the estimation function is obtained

by mapping the input examples into a higher dimensional

feature space via a non-linear mapping uð:Þ and learning a

linear regressor in the feature space. Assuming that the

non-linear regression estimating function f : Rn ! R is

taken to be of the form:

f ðxÞ ¼ wtuðxÞ þ b;

where w is a vector in the feature space and b is a scalar

threshold, the e -insensitive SVR formulation aims at

determining w and b as the solution of the following

constrained minimization problem [6, 24]:

min
w;b;n1;n2

1

2
wtwþ Cðetn1 þ etn2Þ

subject to

yi � wtuðxiÞ � b� eþ n1i;

wtuðxiÞ þ b� yi� eþ n2i

and

n1i; n2i� 0 for i ¼ 1; 2; . . .;m;

where n1 ¼ ðn11; . . .; n1mÞt, n2 ¼ ðn21; . . .; n2mÞt are vectors

of slack variables, and C [ 0, e[ 0 are input parameters.

In practice, rather than solving the primal problem,

we solve its dual problem, which can be written in the

following form:

min
u1;u2

1

2

Xm

i;j¼1

ðu1i � u2iÞðu1j � u2jÞuðxiÞtuðxjÞ

þ e
Xm

i¼1

ðu1i þ u2iÞ�
Xm

i¼1

yiðu1i � u2iÞ

subject to

Xm

i¼1

ðu1i � u2iÞ ¼ 0 and 0� u1; u2�Ce;

where u1 ¼ ðu11; . . .; u1mÞt and u2 ¼ ðu21; . . .; u2mÞt in Rm

are Lagrange multipliers.

Applying the kernel trick [6, 24], that is taking:

kðxi; xjÞ ¼ uðxiÞtuðxjÞ;

where kð:; :Þ is a kernel function, the above dual problem

can be rewritten and solved. In this case, the decision

function f ð:Þ will become [6, 24]: for any input example

x 2 Rn, its prediction is given by

f ðxÞ ¼
Xm

i¼1

ðu1i � u2iÞkðx; xiÞ þ b:

2.2 Twin support vector regression (TSVR)

formulation

Motivated by the work of TWSVM [8], a new regressor

called twin support vector regression (TSVR) was
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proposed in [20] wherein two non-parallel functions are

determined as estimators for the e-insensitive down- and

up-bounds of the unknown regression function. However,

as opposed to solving a single QPP with 2m number of

constraints where m is the number of input examples,

TSVR formulation leads to solving a pair of QPPs each

having m number of linear constraints.

Assume that the down- and up-bound regressors of

TSVR in the input space are expressed as: for any x 2 Rn;

f1ðxÞ ¼ wt
1xþ b1 and f2ðxÞ ¼ wt

2xþ b2 ð1Þ

respectively, where w1;w2 2 Rn and b1; b2 2 R are

unknowns. The linear TSVR formulation leads to

determining the regressors (1) as the solutions of the

following pair of QPPs defined by [20]:

min
ðw1;b1;n1Þ2Rnþ1þm

1

2
jjy� e1e� ðAw1 þ b1eÞjj2 þ C1etn1

subject to

y� ðAw1 þ b1eÞ� e1e� n1; n1� 0 ð2Þ

and

min
ðw2;b2;n2Þ2Rnþ1þm

1

2
jjyþ e2e� ðAw2 þ b2eÞjj2 þ C2etn2

subject to

ðAw2 þ b2eÞ � y� e2e� n2; n2� 0 ð3Þ

respectively, where C1, C2 [ 0; e1, e2 [ 0 are input

parameters and n1; n2 are vectors of slack variables in

Rm. Now using the down- and up-bound regressors, the end

regression function f: Rn ? R is taken as

f ðxÞ ¼ 1

2
ðf1ðxÞ þ f2ðxÞÞ for all x 2 Rn: ð4Þ

By considering the Lagrangian functions for the

problems (2), (3) and using the KKT necessary and

sufficient optimal conditions, one can obtain the pair of

dual QPPs of TSVR as given below [20]:

min
u12Rm

1

2
ut

1GðGtGÞ�1Gtu1 � ðy� e1eÞtðGðGtGÞ�1Gt � IÞu1

subject to

0� u1�C1e ð5Þ

and

min
u22Rm

1

2
ut

2GðGtGÞ�1Gtu2 � ðyþ e2eÞtðI � GðGtGÞ�1GtÞu2

subject to

0� u2�C2e ð6Þ

respectively, satisfying

w1

b1

� �
¼ ðGtGÞ�1Gtðy� e1e� u1Þ and

w2

b2

� �
¼ ðGtGÞ�1Gtðyþ e2eþ u2Þ; ð7Þ

where u1, u2 are Lagrange multipliers and G ¼ A e½ � is

an augmented matrix.

Following the approach of [13], the TSVR discussed

above can be easily extended to kernel TSVR. In fact, for

the input matrix A 2 Rm�n define the kernel matrix

K = K(A, At) of order m whose (i, j)th element is given by

KðA;AtÞij ¼ kðxi; xjÞ 2 R;

where kð:; :Þ is a non-linear kernel function. Also for a

given vector x 2 Rn, we define

Kðxt;AtÞ ¼ ðkðx; x1Þ; . . .; kðx; xmÞÞ;

a row vector in Rm. Then, assuming that the down- and up-

bound regressors are of the form: for any vector x 2 Rn,

f1 xð Þ ¼ K xt;Atð Þw1 þ b1 and f2ðxÞ ¼ Kðxt;AtÞw2 þ b2

ð8Þ

respectively, the non-linear TSVR determines the

unknowns w1;w2 2 Rm and b1; b2 2 R as the solutions of

the following pair of minimization problems:

min
ðw1;b1;n1Þ2Rmþ1þm

1

2
jjy� e1e� ðKðA;AtÞw1 þ b1eÞjj2 þ C1etn1

subject to

y� ðKðA;AtÞw1 þ b1eÞ� e1e� n1; n1� 0

and

min
ðw2;b2;n2Þ2Rmþ1þm

1

2
jjyþ e2e� ðKðA;AtÞw2 þ b2eÞjj2 þ C2etn2

subject to

ðKðA;AtÞw2 þ b2eÞ � y� e2e� n2; n2� 0:

Now proceeding as in the linear case, the pair of dual QPPs

for the kernel TSVR can be obtained. In fact, they are found to

be exactly of the same form as (5), (6) satisfying (7) where

u1; u2 2 Rm are Lagrange multipliers, but the augmented

matrix G is defined by: G ¼ K A;Atð Þ e½ �. Finally, the end

regressor given by (4) is obtained using (7) and (8).

For a detailed discussion on the problem formulation of

TSVR and its method of solution, see [20].

3 Lagrangian twin support vector regression (LTSVR)

Since the matrix GtG appearing in the dual object functions

of (5), (6) is positive semi-definite, it is possible that its
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inverse may not exist. Assuming that it is invertible, the

objective functions of (5), (6) become merely convex, and

therefore, more than one optimal solution to the minimi-

zation problems may exist. To make the objective func-

tions become strongly convex, following the approach of

Mangasarian et al. [13], we consider the square of the

2-norm of the vector of slack variables instead of the usual

1-norm and propose in this section Lagrangian twin support

vector regression (LTSVR) formulation whose solution

will be obtained by an extremely simple iterative algo-

rithm. The computational results, given in Sect. 4, clearly

show that our proposed 2-norm formulation does not

compromise on generalization performance.

The linear TSVR in 2-norm determines the down- and

up- bound regressors f1ð:Þ and f2ð:Þ of the form (1) as the

solutions of the pair of QPPs:

min
ðw1;b1;n1Þ2Rnþ1þm

1

2
jjy� e1e� ðAw1 þ b1eÞjj2 þ C1

2
nt

1n1

subject to

y� ðAw1 þ b1eÞ� e1e� n1 ð9Þ

and

min
ðw2;b2;n2Þ2Rnþ1þm

1

2
jjyþ e2e� ðAw2 þ b2eÞjj2 þ C2

2
nt

2n2

subject to

ðAw2 þ b2eÞ � y� e2e� n2 ð10Þ

respectively, where C1, C2 [ 0; e1, e2 [ 0 are input

parameters and n1, n2 are vectors of slack variables. Note

that the non-negativity constraints of the slack variables are

dropped in this formulation since they will be satisfied

automatically at optimality.

By considering the Lagrangian functions corresponding

to (9) and (10) and using the condition that their partial

derivatives with respect to the primal variables will be zero

at optimality, the dual QPPs of (9) and (10) can be obtained

as a pair of minimization problems of the following form:

min
0� u12Rm

1

2
ðy� e1eÞtGðGtGÞ�1Gtðy� e1eÞ � 1

2
jjy� e1ejj2

þ 1

2
ut

1

I

C1

þ GðGtGÞ�1Gt

� �
u1

� ðy� e1eÞtðGðGtGÞ�1Gt � IÞu1 ð11Þ

and

min
0� u22Rm

1

2
ðyþ e2eÞtGðGtGÞ�1Gtðyþ e2eÞ � 1

2
jjyþ e2ejj2

þ 1

2
ut

2

I

C2

þ GðGtGÞ�1Gt

� �
u2

� ðyþ e2eÞtðI � GðGtGÞ�1GtÞu2; ð12Þ

respectively, where G ¼ A e½ � is an augmented matrix

and the Lagrange multipliers u1, u2 2 Rm satisfy the

conditions: u1; u2� 0 and (7).

Define the matrix

H ¼ GðGtGÞ�1Gt: ð13Þ

Then, dropping the terms that are independent of the dual

variables, the above minimization problems (11) and (12)

can be rewritten in the following simpler form:

min
0� u12Rm

L1ðu1Þ ¼
1

2
ut

1Q1u1 � rt
1u1 and

min
0� u22Rm

L2ðu2Þ ¼
1

2
ut

2Q2u2 � rt
2u2 ð14Þ

respectively, where

Q1 ¼
I

C1

þ H; Q2 ¼
I

C2

þ H; r1 ¼ ðH � IÞðy� e1eÞ and

r2 ¼ ðI � HÞðyþ e2eÞ: ð15Þ

Finally, using the solutions of (14) and equations (1),

(7), the end regressor (4) will be obtained.

In Sect. 2.2, we briefly described the kernel TSVR in

1-norm initially proposed in [20]. Now we discuss the

TSVR for the non-linear case, but in 2-norm.

The non-linear TSVR in 2-norm determines the

e-insensitive down- and up-bound regressors in the feature

space by solving the following pair of QPPs:

min
ðw1;b1;n1Þ2Rmþ1þm

1

2
y� e1e� ðKðA;AtÞw1 þ b1eÞk k2þC1

2
nt

1n1

subject to

y� ðKðA;AtÞw1 þ b1eÞ� e1e� n1 ð16Þ

and

min
ðw2;b2;n2Þ2Rmþ1þm

1

2
yþ e2e� ðKðA;AtÞw2 þ b2eÞk k2þC2

2
nt

2n2

subject to

ðKðA;AtÞw2 þ b2eÞ � y� e2e� n2: ð17Þ

Proceeding as in the linear TSVR, the dual QPPs of (16)

and (17) can be constructed as a pair of minimization

problems of the form (14) where u1; u2 2 Rm are Lagrange

multipliers and Q1, Q2, r1, r2 are determined using (13)

and (15) in which the augmented matrix G is defined by:

G ¼ ½KðA;AtÞ e �. In this case, the kernel regression

estimation f: Rn ? R will be determined using (4) and the

down- and up- bound regressors (8), obtained to be: for any

vector x 2 Rn,
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f1ðxÞ ¼ ½Kðxt;AtÞ 1 �ðGtGÞ�1Gtðy� e1e� u1Þ

and

f2ðxÞ ¼ ½Kðxt;AtÞ 1 �ðGtGÞ�1Gtðyþ e2eþ u2Þ:

When linear kernel is used, the above down- and up-bound

functions will degenerate into linear functions (1) [20].

Now we discuss our iterative LTSVR algorithm for

solving the dual QPPs given by (14).

The KKT necessary and sufficient optimal conditions

for the pair of dual QPPs (14) will become determining

solutions for the classical complementarity problems [12]:

0� u1?ðQ1u1 � r1Þ� 0 and 0� u2?ðQ2u2 � r2Þ� 0;

ð18Þ

respectively. However, the optimality conditions (18) are

satisfied if and only if for any a1; a2 [ 0, the relations

ðQ1u1 � r1Þ ¼ ðQ1u1 � a1u1 � r1Þþ and

ðQ2u2 � r2Þ ¼ ðQ2u2 � a2u2 � r2Þþ ð19Þ

respectively, must hold [13].

For solving the above pair of problems (19), it is pro-

posed to apply the following simple iterative scheme that

constitutes our LTSVR algorithm: i = 0, 1, 2…

uiþ1
1 ¼ Q�1

1 ðr1 þ ðQ1ui
1 � a1ui

1 � r1ÞþÞ and

uiþ1
2 ¼ Q�1

2 ðr2 þ ðQ2ui
2 � a2ui

2 � r2ÞþÞ ð20Þ

whose global convergence will follow from the result of [13].

Theorem 1 [13] Assume that the matrix ðGtGÞ�1 exists

and let the conditions:

0\a1\
2

C1

and 0\a2\
2

C2

be satisfied. Then,

(i) The matrices Q1;Q2 defined by (15) are symmetric

and positive-definite;

(ii) Starting with any initial vector u0
k 2 Rm where k = 1, 2,

the iterate ui
k 2 Rm of (20) will converge linearly to the

unique solution �uk 2 Rm satisfying the condition

jjQkuiþ1
k � Qk �ukjj � jjI � akQ�1

k jj jjQkui
k � Qk �ukjj:

From (20), we immediately notice that our LTSVR

algorithm requires at its very beginning the inverse of the

matrices Q1 and Q2. However, we will show in the next

theorem that they need not be computed explicitly since

they can be easily obtained once the matrix (GtG)-1 that

appears in the original TSVR formulation is known.

Theorem 2 Assume that the matrix (GtG)-1 exists. Then,

(i) H = H2 will be satisfied;

(ii) for k = 1, 2,

Q�1
k ¼ Ck I � Ck

1þ Ck
H

� �
; ð21Þ

where the matrices H and Q1, Q2 are given by (13) and

(15) respectively.

Proof

(i) The result will follow from the definition of the matrix

H.

(ii) Using the result (i) and (15), we have: for k = 1, 2,

QkCk I� Ck

1þCk
H

� �
¼Ck

I

Ck
þH

� �
I� Ck

1þCk
H

� �

¼IþCk H� H

1þCk
� Ck

1þCk
H2

� �

¼IþCk H� H

1þCk
� CkH

1þCk

� �
¼I:

Note that the matrix GtG is positive semi-definite, and

therefore, it may not be invertible. However, if GtG is

invertible then the dual objective functions of the

minimization problems (14) are strongly convex and

therefore will have unique solutions since Q1 and Q2 are

positive-definite. In all our numerical experiments, by

introducing a regularization term dI, the inverse of the

matrix GtG is computed to be ðdIþGtGÞ�1
where d is a

very small positive number. Finally, we observe, by

Theorem 2, that for the implementation of LTSVR

algorithm only the inverse of GtG needs to be known.

4 Numerical experiments and comparison of results

In order to evaluate the efficiency of LTSVR, numerical

experiments were performed on eight synthetic and several

well-known, publicly available, real-world benchmark

datasets, and their results were compared with SVR and

TSVR. All the regression methods were implemented in

MATLAB R2010a environment on a PC running on

Windows XP OS with 2.27 GHz Intel(R) Xeon(R) pro-

cessor having 3 GB of RAM. The standard SVR

was solved by MOSEK optimization toolbox [23] for

MATLAB. For TSVR, however, we used the optimization

toolbox of MATLAB. In all the examples considered, the

Gaussian kernel function with parameter r[ 0, defined by:

for x1; x2 2 Rm

kðx1; x2Þ ¼ exp � jjx1 � x2jj2

2r2

 !
;

is used. The 2-norm root mean square error (RMSE), given

by the following formula:
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RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

ðyi � ~yiÞ2
vuut ;

is chosen to measure the accuracy of the results obtained,

where yi and ~yi are the observed and its corresponding

predicted values, respectively, and N is the number of test

samples.

Since more parameters need to be selected in both TSVR

and LTSVR, this will lead to, however, a slower model

selection speed in comparison to SVR, and therefore, in all

experiments e1 = e2 = 0.01, C1 = C2 and d ¼ 10�5 were

assumed. For SVR, we set e = 0.01. The optimal values of

the parameters were determined by performing 10-fold

cross-validation on the training dataset, where the regular-

ization parameter values C1 = C2 = C and the kernel

parameter value r were allowed to vary from the sets

{10-5, 10-4,…, 105} and {2-10, 2-9, …, 210}, respec-

tively. Finally, choosing these optimal values, the RMSE on

the test dataset was calculated.

4.1 Synthetic datasets

As the first example, we considered the function [11]

defined as below:

y ¼ f ðxÞ ¼ 4

jxj þ 2
þ cosð2xÞ þ sinð3xÞ; x 2 ½�10; 10�:

Using the function definition, 200 examples for training

and 1,000 examples for testing were chosen randomly from

the interval [-10, 10]. The observed values were polluted by

adding two different kinds of noises: uniform noises over the

interval [-0.2, 0.2] and Gaussian noises with mean zero and

standard deviation 0.2, that is we have taken:

y ¼ f ðxÞ þ n;

so that n is an additive noise. Test data were taken to be

free of noises. The plots of the original function and its

approximations using SVR, TSVR and LTSVR for uniform

and Gaussian noises were shown in Fig. 1a, b, respectively

along with the noisy training samples marked by the

symbol ‘o’. The optimal values of the parameters were

determined by the tuning procedure explained earlier. The

10-fold numerical results of non-linear SVR, TSVR and

LTSVR were summarized in Table 2.

We performed numerical experiments on another seven

synthetic datasets generated by functions listed in Table 1.

As in the previous case, 200 examples were generated for

training whose observed values were polluted by uniform

and Gaussian noises, and a test set consisting of 1,000

examples, free of noises, was considered. By performing

10-fold cross-validation, the numerical results obtained

were summarized in Table 2.

4.2 Real-world benchmark datasets

In this sub-section, numerical tests and comparisons were

carried out on real-world datasets.

We considered the Box and Jenkins gas furnace example

[3] as the first real-world dataset. It consists of 296 input–

output pairs of values of the form: ðuðtÞ; yðtÞÞ where u(t) is

input gas flow rate whose output y(t) is the CO2 concentration

from the gas furnace. We predict y(t) based on 10 attributes

taken to be of the form: xðtÞ ¼ ðyðt � 1Þ; yðt � 2Þ; yðt �
3Þ; yðt � 4Þ; uðt � 1Þ; uðt � 2Þ; uðt � 3Þ; uðt � 4Þ; uðt �
5Þ; uðt � 6ÞÞ [21]. Thus, we get 290 samples in total where

each sample is of the form (x(t), y(t)). The first 100 samples

for training and the rest for testing were assumed. The per-

formances of SVR, TSVR and LTSVR on the training and

test sets were shown in Fig. 2a, b, respectively.

We performed numerical experiments non-linearly on

several real-world datasets: Boston housing, Auto-Mpg,

Machine CPU, Servo, Auto price, Wisconsin B.C, Con-

crete CS, Abalone, Kin-fh, Bodyfat, Google, IBM, Intel,

Redhat, Microsoft, S&P500, Sunspots, SantaFeA and the

data generated by Lorenz and Mackey–glass differential

equations.

The Boston housing, Auto-Mpg, Machine CPU, Servo,

Auto price, Wisconsin B.C and Concrete CS are popular

regression benchmark dataset available at: http://archive.

ics.uci.edu/ml/datasets. The details on the number of training

and test samples considered for our experiment along with

the number of attributes are listed in Table 3.

We conducted our experiment on Abalone dataset [18]

using 1,000 samples for training and the remaining 3,177

samples for testing. The predicted value is the age of an

abalone using 8 physical measurements as their features.

The Kin-fh dataset [7] represents a realistic simulation of

the forward dynamics of eight links all revolute robot arm.

The observed value is the prediction of the end-effector

from a target with 32 features. The first 1,000 samples were

taken for training and the remaining 7,192 samples for

testing.

In all the previous real-world examples considered, each

attribute of the original data is normalized as follows:

�xij ¼
xij � xmin

j

xmax
j � xmin

j

where xij is the (i, j)th element of the input matrix A, �xij is

its corresponding normalized value and xmin
j ¼ minm

i¼1ðxijÞ
and xmax

j ¼ maxm
i¼1ðxijÞ denote the minimum and maximum

values, respectively, of the jth column of A. However, in

the following examples, the original data are normalized

with mean zero and standard deviation equals to 1.

Bodyfat is another benchmark dataset and is taken from

the Statlib collection: http://lib.stat.cmu.edu/datasets, where
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Fig. 1 Results of

approximation of 4
xj jþ2
þ

cosð2xÞ þ sinð3xÞ with LTSVR,

SVR and TSVR when different

kinds of additive noises were

used. Gaussian kernel was

employed. a Uniform noises

over the interval [-0.2, 0.2].

b Gaussian noises with mean

zero and standard deviation 0.2

Table 1 Functions used for generating synthetic datasets

Name Function definition Domain of definition

Function 1 4
xj jþ2
þ cosð2xÞ þ sinð3xÞ x [ [-10, 10]

Function 2 4
xj jþ2
þ cosð2xÞ x [ [-10, 10]

Function 3 1þsinð2x1þ3x2Þ
3:5þsinðx1�x2Þ

x1, x2 [ [-2, 2]

Function 4 sin
ffiffiffiffiffiffiffiffiffi
x2

1
þx2

2

p
ffiffiffiffiffiffiffiffiffi
x2

1
þx2

2

p x1; x2 2 ½�4p; 4p�

Function 5
tan�1

x2x3� 1
x2x4

x1

x1 2 ½0; 100�; x2 2 ½40p; 560p�;
x3 2 ½0; 1�; x4 2 ½1; 11�

Function 6 0:79þ 1:27x1x2þ1:56x1x4 þ 3:42x2x5 þ 2:06x3x4x5 x1; x2; x3; x4; x5 2 ½0; 1�
Function 7 1:3356ðe3ðx2�0:5Þ sinð4pðx2 � 0:9Þ2Þ

þ 1:5ð1� x1Þ þ eð2x1�1Þ sinð3pðx1 � 0:6Þ2ÞÞ

x1; x2 2 ½�0:5; 0:5�

Function 8 40e8fðx1�0:5Þ2þðx2�0:5Þ2g

e8fðx1�0:2Þ2þðx2�0:7Þ2gþe8fðx1�0:7Þ2þðx2�0:2Þ2g
x1; x2 2 ½�1; 1�
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the observed value being the estimation of the body fat from

the body density values. It consists of 252 samples with 14

attributes. The first 150 samples were taken for training and

the rest for testing.

In the following time series examples considered, five

previous values are used to predict the current value.

Google, IBM, Intel, Red Hat, Microsoft and Standard &

Poor 500 (S&P500) are financial datasets of stock index

taken from the Yahoo website: http://finance.yahoo.com.

For our experimental study, we considered 755 closing

prices starting from 01–01–2006 to 31–12–2008, and using

them, we get 750 samples. For each of the above financial

time series examples considered, the first 200 samples were

taken for training and the rest 550 for testing.

The sunspots dataset is well-known and is commonly

used to compare regression algorithms. It is taken from

http://www.bme.ogi.edu/*ericwan/data.html. We consid-

ered the annual readings of sunspots from the year 1700 to

1994. With five previous values being used to predict its

current value, we get 290 samples in total and from which

the first 100 samples were taken for training and the rest for

testing. SantaFe-A is a laser time series dataset recorded

from a Far-Intrared-Laser in a chaotic state. It consists of

1,000 numbers of time series values, and therefore, we get

995 samples in total. The first 200 samples were considered

for training and the rest for testing. This dataset is available

at: http://www-psych.stanford.edu/*andreas/Time-Series/

SantaFe.html.

Taking the values of the parameters as: q = 10, r = 28

and b = 8/3, two datasets ,Lorenz0.05 and Lorenz0.20, cor-

responding to the sampling rates s = 0.05 and s = 0.20,

respectively, were generated using the time series values

associated to the variable x of the Lorenz differential

equation [16, 17]:

_x ¼ qðy� xÞ; _y ¼ rx� y� xz and _z ¼ xy� bz;

obtained by fourth-order Runge–Kutta method. They con-

sist of 30,000 number of time series values. The first 1,000

Table 2 Performance comparison of the proposed LTSVR with SVR and TSVR on synthetic datasets for Uniform and Gaussian additive noises

Datasets Uniform noises Gaussian noises

SVR

RMSE

Time

TSVR

RMSE

Time

LTSVR

RMSE

Time

SVR

RMSE

Time

TSVR

RMSE

Time

LTSVR

RMSE

Time

(Train size, test size) ðC; rÞ ðC1 ¼ C2;rÞ (C1 = C2, r) (C, r) (C1 = C2, r) (C1 = C2, r)

Function 1 0.0710

0.2133

0.0516

0.1420

0.0483

0.0147

0.1020

0.3054

0.0676

0.1521

0.0498

0.0156

(200 9 1, 1,000 9 1) (103, 20) (105, 20) (100, 20) (103, 20) (100, 20) (100, 20)

Function 2 0.0628

0.3532

0.0474

0.2812

0.0510

0.0181

0.0797

0.2824

0.0860

0.0826

0.0855

0.0146

(200 9 1, 1,000 9 1) (103, 21) (101, 20) (100, 20) (103, 21) (10-1, 20) (10-5, 20)

Function 3 0.0215

0.2563

0.0196

0.8093

0.0133

0.0197

0.0520

0.3123

0.0309

0.2621

0.0307

0.0139

(200 9 2, 1,000 9 2) (103, 20) (104, 20) (100, 20) (103, 21) (10-5, 20) (100, 20)

Function 4 0.0578

0.2438

0.0307

0.0854

0.0400

0.0219

0.1240

0.2188

0.0065

0.0802

0.0085

0.0199

(200 9 2, 1,000 9 2) (103, 22) (103, 22) (100, 22) (101, 22) (10-1, 22) (10-2, 22)

Function 5 0.0318

0.2582

0.0240

0.1308

0.0221

0.0112

0.0675

0.2160

0.0961

0.1905

0.0962

0.0108

(200 9 4, 1,000 9 4) (103, 210) (105, 29) (101, 29) (103, 26) (10-2, 29) (10-5, 29)

Function 6 0.0286

0.3128

0.0152

0.1205

0.0160

0.0147

0.0311

0.3442

0.0145

0.8027

0.0136

0.0156

(200 9 5, 1,000 9 5) (103, 21) (105, 20) (100, 21) (103, 21) (10-5, 21) (100, 21)

Function 7 0.0658

0.3578

0.0246

0.2508

0.0349

0.0145

0.0946

0.3054

0.0411

0.1030

0.0396

0.0087

(200 9 2, 1,000 9 2) (103, 2-3) (101, 2-3) (100, 2-3) (102, 2-4) (10-1, 2-2) (10-5, 2-2)

Function 8 0.0721

0.3065

0.0311

0.3023

0.0455

0.0143

0.0397

0.3823

0.0555

0.2401

0.0527

0.0144

(200 9 2, 1,000 9 2) (103, 2-1) (104, 2-1) (100, 2-1) (103, 2-1) (100, 20) (100, 20)

RMSE and training time were used for comparison. Gaussian kernel was employed. Bold type shows the best result
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values were discarded to avoid the initial transients. The

next 3,000 values were taken for our experiment. Among

them, the first 500 samples were taken for training and the

remaining 2,495 samples for testing.

Finally, for comparing the performance of LTSVR with

SVR and TSVR, two time series generated by the Mackey–

Glass time delay differential equation [16, 17], given by:

dxðtÞ
dt
¼ �0:1xðtÞ þ 0:2xðt � sÞ

1þ xðt � sÞ10
;

with respect to the parameters s = 17, 30, were considered.

Let us denote these two time series by MG17 and MG30. They

are available at: http://www.cse.ogi.edu/*ericwan. Among

the total of 1,495 samples obtained, the first 500 were con-

sidered for training and the rest for testing.

The 10-fold numerical results obtained by SVR, TSVR

and LTSVR on each dataset along with the number of

training and test samples taken, the number of attributes,

the optimal values of the parameters determined and the

training time were summarized in Table 3. Similar or

better generalization performance of the proposed method

in less execution time for training clearly demonstrates that

the proposed algorithm is a powerful method of solution

for regression problems.

5 Conclusions

A new iterative Lagrangian support vector machine algo-

rithm for the twin SVR in its dual is proposed. Our for-

mulation leads to minimization problems having their

objective functions strongly convex with non-negativity

constraints only. Though at the outset, the algorithm

requires inverse of matrices, it was shown that they could

be obtained by performing a simple matrix subtraction of

the identity matrix with a scalar multiple of the inverse of a

positive semi-definite matrix that arises in the original twin

SVR formulation. Our formulation has the advantage that

the unknown regressor is obtained using an extremely

simple linearly convergent iterative algorithm rather than

solving QPPs as in SVR and twin SVR. Also the proposed

algorithm does not need any specialized optimization

Fig. 2 Results of comparison

for Gas furnace. Gaussian

kernel was employed.

a Prediction over the training

set. b Prediction over the test set
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software. Similar or better generalization performance of

the proposed method on synthetic and real-world datasets

in less computational time than the standard and twin SVR

methods clearly illustrates its effectiveness and suitability.

Future work will include the study of implicit Lagrangian

formulation [14] for the dual twin SVR problem and its

applications.
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