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Abstract This paper proposes a new approach of syn-

chronization in complex dynamical networks. In this

method, the scalar signals are used to instead the output

variables of every node as the feedback variables and

transmitted signals between every two coupling nodes. As

a result, it not only simplifies the topological structure but

also saves channel resources at the same time. Especially,

some of the criteria are expressed in normal algebraic

inequalities instead of matrix inequalities, which means

that the original computational effort required is greatly

decreased. Finally, several simulation examples are pro-

vided to show the effectiveness of the proposed results.

Keywords Complex network � Synchronization �
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1 Introduction

A complex network is consisted of a lot of interconnected

nodes with typical dynamical character. There are so many

systems in nature which can be modeled as complex net-

works, such as the World Wide Web, food web, metabolic

networks, scientific-collaboration networks, and so on [1–6].

Initially, the cognition on complex networks was only

limited to the regular network. In 1960, Paul Erdös and

Alfréed Rényi first proposed the theory of random graphs

[1], which described a network with complex topology.

However, the random graph theory still cannot describe

most of the complex networks’ structure properties accu-

rately, though it was ever considered as a breakthrough in

the classical mathematical graph theory. Then after nearly

40 years, Watts and Strogatz introduced the small-world

network [2] that denoted a transition from regular network

to random network in 1999 [3]. At the same time, another

significant discovery introduced by Barabási and Albert

[4, 5] showed that a number of complex networks were with

the character of scale-free in 1999. The scale-free networks

are in homogeneous in nature, and it means that most nodes

have very few connections, but a small number of particular

nodes have many connections. After having understood

most of topology properties of the complex networks [7, 8],

the researchers transferred their attentions to the dynamical

behavior of the network gradually [9–12]. In the complex

networks, synchronization is a kind of typical collective

behavior and basic motion. So analysis and control of the

synchronization in dynamical networks have become a

topic of great interest [13–15]. Wang and Chen [11] studied

the robustness and fragility of the synchronization in a

scale-free dynamical networks. Chen presented some cri-

teria for synchronization based on the concept of matrix

measure in Ref. [16]. In Ref. [12], the concept of pinning

control was proposed by Wang and Chen, then Zhou pre-

sented a method of determining the number of pinning

nodes by adaptive control in Refs. [17–19]. Based on the

method of state-observer design, Jiang proposed the syn-

chronization criteria by linear matrix inequality [20], while

Wu presented a step-by-step approach to design a state

observer for synchronization [21]. Due to the complicity of

the real world, we often know little about the network, so

some effective approaches for synchronization have been

proposed based on unknown dynamics of every node or

uncertain topology [22, 23]. Moreover, some synchronization
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criterions for networks with time-delay were also reported

in Refs. [24, 25].

This paper further investigates the synchronization of

complex networks with asymmetrical coupling matrix by

using a scalar controller. In the traditional method, the

coupling configuration between every two nodes is usually

achieved by n state variables. Thus, the structure of the

whole complex networks becomes more complicated and

adds much more difficulty in researching the character of

the complex networks. Here we reduce the number of

coupling and feedback variables between every two con-

nected nodes to 1. This method not only simplifies the

topological structure of the network but also saves the

channel resources (see Figs. 1, 2) and can be considered as

an economic way, especially in the practical application.

The synchronization criteria obtained in this paper do not

need the coupling matrix to be symmetric or diagonalizable.

At the same time, some criterions for the scalar controller

design are expressed by normal algebraic inequalities

instead of the matrix inequalities, which means that the

original computational effort required is greatly decreased.

This paper is organized as follows: some mathematical

definitions and lemmas are given in Sect. 2. The main

results of this paper are given in Sect. 3. Numerical sim-

ulations are given to illustrate the results in Sect. 4. Then

we obtain the conclusions in Sect. 5.

2 Network model and preliminaries

Consider a complex dynamical network consisting of

N identical linearly and diffusively coupled nodes, and

each of which is a n-dimensional dynamical system. Based

on the approach of transforming the node’s all output

variables into a scalar signal, the proposed model is

described as:

_xiðtÞ ¼ f ðxiðtÞÞ þ
XN

j¼1

gijLyjðtÞ; i ¼ 1; 2; . . .;N ð1Þ

where,

yjðtÞ ¼ HxjðtÞ; H 2 R1�n ð2Þ

substituting (2) into (1), we have

_xiðtÞ ¼ f ðxiðtÞÞ þ
XN

j¼1

gijLHxjðtÞ; i ¼ 1; 2; . . .;N ð3Þ

where, xiðtÞ ¼ ðxi1ðtÞ; xi2ðtÞ; . . .; xinðtÞÞT is the state

variable of the ith node, yjðtÞ 2 R is the output variable

(scalar) of the jth node and f(xi(t)) is a nonlinear vector-

valued function describing the dynamics of the isolated

nodes. A 2 Rn�n denotes the inner coupling matrix between

the nodes, and G ¼ ðgijÞ 2 RN�N is the coupling matrix, in

which gij 2 R is defined as follows: if there is a coupling

from node i to node j (i = j), then the coupling strength

gij [ 0; otherwise, gij = 0, meanwhile, the diagonal

elements of G are defined as:

gii ¼ �
XN

j¼1 j 6¼i

gij; i ¼ 1; 2; . . .N ð4Þ

here, we do not need to assume that the coupling matrix G

is symmetric or irreducible. Generally, the matrix G may

have complex eigenvalues. Since the row sum of G are all

zero, zero is an eigenvalue associated with eigenvector

ð1; 1; . . .; 1ÞT . L 2 Rn�1 is the observer gain matrix. H 2
R1�n is the state-observer matrix. Here, we assume that the

matrix LH is nonnegative and the trace of (LH) is unequal

to zero.

Definition 1 [26] Let D0 denote a bounded open set in

the state apace. If from any initial point Xðt0Þ ¼
Fig. 1 The coupling structure between nodes with n state variables in

the complex network with 4 nodes

Fig. 2 The coupling structure between nodes with 1 state variable in

the complex network with 4 nodes
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ðx1ðt0Þ; x2ðt0Þ; . . .; xNðt0ÞÞT 2 D0; there is kxiðtÞ � sðtÞk !
0 as t!1; i ¼ 1; 2; . . .;N; network (1) is said to realize

synchronization locally in D0, and SðtÞ ¼ ðsðtÞ; sðtÞ; . . .;

sðtÞÞT is called the synchronous state. If D0 is the entire

state space X of network (1), then it is said to realize

synchronization globally.

From the Definition 1, we know that if the nodes of

network (1) get in synchronization, then

y1ðtÞ ¼ y2ðtÞ ¼ � � � ¼ yNðtÞ ¼ HsðtÞ ð5Þ

and the following equations could be obtained from (4) and

(1),

XN

j¼1

gijLyjðtÞ ¼ 0 ð6Þ

_sðtÞ ¼ f ðsðtÞÞ ð7Þ

which means that s(t) is a solution of system _xðtÞ ¼ f ðxðtÞÞ.
That is to say, the synchronization state of the diffusively

coupled network (1) is determined by f(x(t)). The state s(t)

may be an equilibrium point, a limit cycle, an aperiodic

orbit, or a chaotic orbit, such as the chaotic Lorenz, Chen,

or Lü attractors [30].

Lemma 1 [21, 27] Let G 2 CN�N be a given com-

plex matrix. There is a nonsingular matrix U 2 CN�N ; such

that

G¼U

Jn1
ðk1Þ 0

Jn2
ðk2Þ

. .
.

0 Jnl
ðklÞ

2

6664

3

7775U�1 ¼UJU�1 ð8Þ

here, n1þ n2þ �� �þ nl ¼N. The Jordan matrix J of G is

unique up to permutation of the diagonal Jordan blocks.

The eigenvalues kiði¼ 1; . . .; lÞ are not necessarily distinct.

If G is a real matrix with only real eigenvalues, the

similarity matrix U can be taken to be real. Jni
ðkiÞ is the

Jordan block as follows:

Jni
ðkiÞ ¼

ki 1 0

ki
. .

.

. .
.

1

0 ki

2

6664

3

7775; i ¼ 1; . . .; l: ð9Þ

Lemma 2 [24] Given P ¼ ðpijÞ 2 Rn�n is symmetric and

pii \ 0 for all i ¼ 1; . . .; n. If

pii þ
XN

j¼1 j6¼i

jpijj\� e; i ¼ 1; 2; . . .; n ð10Þ

where e is a positive number, then P � �eIn. Here, ‘‘�’’

denotes that P� eIn are negative definite matrix.

Lemma 3 [28] If the matrix A 2 Rn�n is nonnegative,

then,

1. Matrix A has a nonnegative eigenvalue r;

2. The moduli for all the eigenvalues of matrix A are less

than or equal to r;

3. There is a nonnegative eigenvector associated with the

eigenvalue r.

Lemma 4 [28] [Perron theory] If the matrix A 2 Rn�n is

positive and q(A) is the spectral radius of A;

1. The matrix A has a positive eigenvalue r which equal

to the spectral radius of A;

2. There is a positive (right) eigenvector associated with

the eigenvalue r;

3. The eigenvalue r has algebraic multiplicity 1.

3 Controllers design

In order to achieve the synchronization, we will design the

linear feedback controllers on every node of the network

(1). Here, the introduced feedback signals are the scalar

signals instead of the output variables of all the nodes in

network. Then the controlled network is described by:

_xiðtÞ ¼ f ðxiðtÞÞ þ
XN

j¼1

gijLyjðtÞ þ ui;

k [ 0; i ¼ 1; 2; . . .;N ð11Þ

where ui = -kL(yi(t) - Hs(t)). From (2) the (11) can be

rewritten as:

_xiðtÞ ¼ f ðxiðtÞÞ þ
XN

j¼1

gijLyjðtÞ � kLHðxiðtÞ � sðtÞÞ;

k [ 0; i ¼ 1; 2; . . .;N ð12Þ

Assumption 1 For any sðtÞ; yðtÞ 2 X; there is at least a

point �xðtÞ 2 X; such that

f ðxðtÞÞ � f ðyðtÞÞ ¼ Df ð�xðtÞÞðxðtÞ � yðtÞÞ ð13Þ

where Df ð�xÞ can be the Jacobian matrix of f(x(t)) at �x or

some other matrices relevant to f(x(t)) at �x.

Remark 1 The Df ð�xðtÞÞ in Assumption 1 is not neces-

sarily to be the Jacobian matrix of f(x(t)) at �xðtÞ. It can be

other matrices relevant to f(x(t)) at �xðtÞ which can be more

simpler or suitable to fit the expression of (13). This con-

clusion has been proved by Wu and Jiao [27], who extend

Pecora and Carroll’ analysis [9] on local synchronization of

network (11) to global synchronization and have also used

the Assumption 1 to obtain global synchronization criteria
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for networks with nonsymmetric time-delay coupling based

on linear state feedback controllers [24].

Theorem 1 Suppose the coupling matrix G has l different

eigenvalues. If the controllers are designed to ensure that

the zero solution of the following l–1 systems with dimen-

sions of ni are exponentially stable for any �x 2 X;

_WðtÞ ¼ ðIni
� Df ð�xðtÞÞ þ ðJni

� Kni
Þ � LHÞWðtÞ;

i ¼ 2; . . .; l ð14Þ

where 2� l�N; n2 þ n3 þ � � � þ nl ¼ N � 1;W ¼ ðw1; . . .;

wj; . . .;wni
ÞT 2 Cnni ;wj 2 Cn; Jni

ðkiÞ are the Jordan blocks

of the coupling matrix G, Kni
¼ kIni

; then, the synchronous

state s(t) of network (11) is globally exponentially stable.

Proof Let

eiðtÞ ¼ xiðtÞ � sðtÞ; i ¼ 1; 2; . . .;N: ð15Þ

eiðtÞ 2 Rn denote the error variables between xi(t) and s(t).

_eiðtÞ ¼ _xiðtÞ � _sðtÞ

¼ f ðxiðtÞÞ þ
XN

j¼1

gijLHxjðtÞ � f ðsðtÞÞ � kLHeiðtÞ ð16Þ

From Assumption (1), we choose a suitable matrix �xðtÞ that

fits the expression (13).

f ðxiðtÞÞ � f ðsðtÞÞ ¼ Df ð�xðtÞÞeiðtÞ ð17Þ

substituting (17) into (16)

_eiðtÞ ¼ Df ð�xðtÞÞeiðtÞ � kLHeiðtÞ þ
XN

j¼1

gijLHejðtÞ ð18Þ

Using the Kronecker product, (18) can be rewritten as

_EðtÞ ¼ ðIN � Df ð�xðtÞÞ � K � LH þ G� LHÞEðtÞ ð19Þ

where K = kIN, and EðtÞ ¼ ðeT
1 ðtÞ; . . .; eT

NðtÞÞ
T 2 RnN is the

error variable between X(t) and SðtÞ;XðtÞ ¼ ðxT
1 ðtÞ; xT

2 ðtÞ;
. . .; xT

NðtÞÞ
T ; SðtÞ ¼ ðsTðtÞ; sTðtÞ; . . .; sTðtÞÞT . Equation (18)

denotes the error componentwise of the single node in the

network. In Lemma 1, there is a nonsingular matrix U 2
CN�N ; such that

G ¼ UJU�1 ð20Þ

We choose

EðtÞ ¼ ðU� InÞgðtÞ ð21Þ

Take (21), (20) into (19), using some algebras, we can

rewrite (19) as follows:

_�gðtÞ ¼ ðIN � Df ð�xðtÞÞ � K � LH þ J � LHÞ�gðtÞ ð22Þ

here �gðtÞ ¼ ðgT
1 ðtÞ; gT

2 ðtÞ; . . .; gT
NðtÞ; Þ

T 2 CnN ; giðtÞ 2 Cn:

Thus, we can see that if the origin �gðtÞ ¼ 0 of (22) is

exponentially stable for any �xðtÞ 2 X; the synchronous

state s(t) of network (11) will be globally exponentially

stable. Considering the special form of J given in (8) and

(9), we can obtain (14) from (22). Thus, the proof is

completed. h

Theorem 2 Supposing the coupling matrix G has l

different eigenvalues, then, if the controllers are designed

to ensure that the zero solution of the following l–1

systems that correspond to the last node in every Jordan

block are exponentially stable for any �x 2 X; then, the

synchronous state s(t) of network (1) is globally expo-

nentially stable.

_wðtÞ ¼ ½Df ð�xðtÞÞ þ ðki � kÞLH�wðtÞ; i ¼ 2; . . .; l ð23Þ

where 2� l�N;wðtÞ 2 Cn.

Proof Supposing ni = 2, then it means that there are two

nodes corresponding to the eigenvalue of kni
; and describe

the state equations as:

_w1ðtÞ ¼ ðDf ð�xðtÞÞ þ ðki � kÞLHÞw1ðtÞ þ LHw2ðtÞ ð24Þ
_w2ðtÞ ¼ ðDf ð�xðtÞÞ þ ðki � kÞLHÞw2ðtÞ ð25Þ

From the Theorem 1, the number of nodes contained in

system (14) is ni corresponding to every Jordan block

Jni
ðkiÞ. Because of the special form of Jni

ðkiÞ in Lemma 1,

we know that (25) is the corresponding state expression of

the last nodes contained in the designate Jni
ðkiÞ. If con-

trollers in (25) are designed to ensure that the w2(t)

approaches to zero, the (24) will become the same form as

(25), which follows that the zero solution of (25) is

exponentially stable. That is, if the controllers are

designed to ensure the zero solution of the last node’s

state equation in every corresponding Jordan block is

globally exponentially stable, then, the controllers can

also ensure that the synchronous state of the other node

involved in the same Jordan block is globally exponen-

tially stable. Then from the Theory 1, the synchronous

state s(t) of network (11) is globally exponentially stable.

The case of ni [ 2 can be proved by the same way. Then,

the proof is completed. h

Theorem 3 If the controllers are designed

ðDf ð�xðtÞÞ þ ðki � kÞLHÞT Pþ PðDf ð�xðtÞÞ
þ ðki � kÞÞ 	 �eIn ð26Þ

where e [ 0;P is an positive matrix, then the one-node

systems (23) are exponentially stable for any �xðtÞ 2 X.

Proof Choose a Lyapunov function as

V ¼ wTðtÞPwðtÞ ð27Þ

then, the derivative of V(t) along the trajectory of (18) is
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_VðtÞ ¼ _wðtÞT PwðtÞ þ wTðtÞP _wðtÞ
¼ wT ½ðDf ð�xðtÞÞ þ ðki � kÞLHÞTPþ PðDf ð�xðtÞÞ
þ ðki � kÞLHÞ�wðtÞ

� � ewTðtÞwðtÞ

� �e
kPmax

VðtÞ

Here kPmax
is the largest eigenvalue of P. So the one-node

systems (23) are globally exponentially stable [29], thus the

proof is completed. h

Let P = In in Theorem 2, and one can obtain the fol-

lowing corollary. For simplicity, we denote rð�xðtÞ ¼
Df ð�xðtÞÞT þ Df ð�xðtÞÞ 2 Rn�n in the following of this paper.

Corollary 1 The synchronous state s(t) of network (11) is

globally exponentially stable, if

rþ ðki � kÞððLHÞT þ LHÞ 	 �eIn ð28Þ

Proof Here, we choose vectors L and H. As the

character of L and H, the rank of matrix (LH) is 1.

Then, from lemma 3, the matrix must have n - 1 zero

eigenvalues and a positive eigenvalue k. Hence, the

spectral radius q of matrix LH is equal to k, and we can

obtain that the nonnegative matrices LH, (LH)T and

(LH ? (LH))T are all primitive matrices. So the perron

theorem is tenable, which means that qððLHÞTþLHÞ is a

positive, simple eigenvalue of matrix (LH)T ? LH, and

it’s corresponding eigenvector is positive vector while the

other eigenvalues’ modulus are less than qððLHÞTþLHÞ [24].

In sum, we can see that the matrix (LH)T ? LH must have

a positive eigenvalue �q.

Since (LH)T ? LH is a real symmetric matrix, there

must exist a unitary matrix U satisfying

ððLHÞT þ LHÞ�UTð�qInÞU
rþ ðki � kÞððLHÞT þ LHÞ� rþ ðki � kÞ�qIn

where ki; i ¼ 2; 3; . . .l denotes the (l - 1) different eigen-

values of matrix G, and, 0 ¼ k1 [ k2 [ . . .kl; thus the

proof is completed and we can obtain the corollary 1. h

Corollary 2 If the controllers are designed

rþ ðk2 � kÞ�qIn\� eIn ð29Þ

where e [ 0; then the synchronous state s(t) of network

(11) is globally exponentially stable. From Corollary 1 and

Lemma 2, one can obtain Corollary 2.

Corollary 3 If the controllers are designed

min riiþ
Xn

j¼1 j6¼i

jrijj
 !

þ ðk2� kÞ�q� � e; i¼ 1;2; . . .;n

ð30Þ

where e [ 0; then the synchronous state s(t) of network

(11) is globally exponentially stable.

4 Example and simulations

In this section, a useful numerical example is given to

verify the effectiveness of aforementioned synchronization

criteria.

We consider a feedback loop consisting of 4 Lorenz

systems. The lorenz system is described by (31) in Ref.

[30], which has a chaotic attractor shown in Fig. 3 with

a = 10, b = 8/3, c = 28.

x1
� ¼ aðx2 � x1Þ

x2
� ¼ cx1 � x1x3 � x2

x3
� ¼ x1x2 � bx3

8
<

: ð31Þ

In order to achieve the global synchronization, we

choose the following matrix as Df ð�xðtÞÞ :

Df ð�xðtÞÞ ¼
�a a 0

c �1 ��x1

�x2 0 �b

0
@

1
A ð32Þ

For any xðtÞ; yðtÞ 2 R3; let �x1 ¼ ðx1x3 � y1y3Þ=ðx3 � y3Þ;
�x2 ¼ ðx1x2 � y1y2Þ=ðx1 � y1Þ; and �x3 ¼ 0; then the matrix

Df ð�xðtÞÞ satisfies the Assumption 1 at �xðtÞ ¼ ð�x1;�x2;�x3ÞT .

The matrix of r is

rðtÞ ¼
�20 38 �x2

38 �2 ��x1

�x2 ��x1 �16=3

0

@

1

A ð33Þ

In the following, we choose the vectors L ¼ 1 2 0½ �T ,

and H ¼ 3 0 1½ �. Consider a network consisting of

4 unified systems with global unidirectional coupling.

We choose a asymmetric coupling configuration matrix

as:

0
20

40
60

−50

0

50
−20

−10

0

10

20

x1
x2

x3

Fig. 3 State trajectories of the nodes in the complex networks
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G ¼

�3 1 1 1

0 �2 1 1

0 0 �1 1

0 0 0 0

2
664

3
775 ð34Þ

Simulation results show that the chaotic attractor

generated by the unified system is bounded (Fig. 3):

j�x1j\20; j�x2j\25.

Thus from the Corollary 3, the control matrix can be

designed as K = 5I4. Simulations show that the networks

all realized synchronization quickly under the controllers

designed in Figs. 4, 5, 6 and 7, respectively.

5 Conclusion

A strategy of controlling the complex dynamical networks

to achieve synchronization by the feedback of scalar sig-

nals has been presented. This method not only has sim-

plified the topological structure but also has saved the

channel resources of the network at the same time. Espe-

cially, the synchronous criteria have been designed through

some simple algebraic inequalities instead of matrix

inequalities, which have greatly decreased the original

computational effort. At last, the numerical simulations

have shown that the conclusions are feasible.
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Fig. 4 State trajectories of the nodes in the complex networks with 4

nodes

0 5 10 15 20
−6

−5

−4

−3

−2

−1

0

1

time t (sec)

e 11
 (

t)

Fig. 5 Synchronization errors of the first state between the second

node and the first node
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Fig. 6 Synchronization errors of the first state between the third node

and the first node
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Fig. 7 Synchronization errors of the first state between the fourth

node and the first node
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