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Abstract We compare the generalization characteristics

of complex-valued and real-valued feedforward neural

networks. We assume a task of function approximation

with phase shift and/or amplitude change in signals having

various coherence. Experiments demonstrate that complex-

valued neural networks show smaller generalization error

than real-valued networks having doubled input and output

neurons in particular when the signals have high coherence,

that is, high degree of wave nature. We also investigate the

relationship between amplitude and phase errors. It is

found in real-valued networks that abrupt change in

amplitude is often accompanied by steep change in phase,

which is a consequence of local minima in real-valued

supervised learning.

Keywords Complex-valued neural network �
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1 Introduction

Researches on complex-valued neural networks (CVNNs)

have revealed various aspects of their dynamics. However,

at the same time, it is true that a complex number is rep-

resented by a pair of real numbers, namely real and

imaginary parts, or amplitude and phase. Actually, a vari-

ety of useful neural dynamics theories are obtained by

paying attention to the real and imaginary parts [1, 10, 11]

or amplitude and phase [2, 3]. This fact sometimes leads to

an assumption that a CVNN is almost equivalent to a

double-dimensional real-valued neural network.

In this paper, we compare complex- and real-valued

neural networks by focusing on their generalization char-

acteristics. We investigate the generalization ability of

feedforward complex-valued and double-dimensional real-

valued neural networks, in particular when they learn and

process wave-related data for function approximation or

filtering. We observe the characteristics by feeding signals

that have various degrees of wave nature by mixing a

sinusoidal wave and white noise. Computer experiments

demonstrate that the generalization characteristics of

CVNNs are different from those of double-dimensional

real-valued neural networks (RVNNs) depending on the

degree of wave nature of the signals, or the coherence.

This paper is an extension of a conference paper [8]. A

statistical evaluation and discussion on this topic are also

given in Ref. [9]. Contrarily, we concentrate on the rela-

tionship between the amplitude and phase response

occurring with the time shift and amplitude changes in the

input signals.

This paper is organized as follows. Section 2 reviews a

property of complex numbers by representing them as

2 9 2 matrices and discuss its effect on the supervised

learning in non-layered feedforward neural networks.

Section 3 presents the construction of the computer

experiments and learning dynamics. In Sect. 4, we show

the difference in the generalization characteristics experi-

mentally. We find that the generalization ability of CVNNs

is higher than that of double-dimensional RVNNs espe-

cially when they process signals having high degree of

wave nature. We discuss the characteristics specific to

respective networks. Section 5 is the conclusion.
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2 Qualitative difference between complex-

and real-valued neural networks

2.1 Complex number represented as real 2 9 2 matrix

First, we review the nature of a complex number [5]. As we

focus on multiplication out of the four arithmetic opera-

tions of complex numbers, we can represent a complex

number as a real 2 9 2 matrix. That is, with every complex

number c ¼ aþ
ffiffiffiffiffiffiffi

�1
p

b, where a and b are real numbers,

we associate a C-linear transformation

Tc : C! C; z 7!cz ¼ ax� byþ
ffiffiffiffiffiffiffi

�1
p

ðbxþ ayÞ ð1Þ

If we identify C with R2 by

z ¼ xþ iy ¼ x
y

� �

ð2Þ

it follows that

Tc

x

y

� �

¼
ax� by

bxþ ay

� �

¼
a �b

b a

� �

x

y

� �
ð3Þ

In other words, the linear transformation Tc determined by

c = a ? ib is described by the matrix
a �b
b a

� �

. Gen-

erally, a mapping represented by a 2 9 2 matrix is non-

commutative. However, in the present case, it becomes

commutative.

The most important point of this representation lies in

the fact that it clearly expresses the function specific to the

complex numbers as the rotation and amplification or

attenuation as

a �b
b a

� �

¼ r
cos h � sin h
sin h cos h

� �

ð4Þ

where r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p

and h � arctan b=a denote amplifica-

tion or attenuation of amplitude and rotation angle applied

to the complex signals z, respectively.

2.2 Phase rotation and amplitude amplification/

attenuation in neural networks

Let us consider how the above feature of the complex

number emerges in neural dynamics. Assume a task to

realize a mapping that transforms an input xIN to an output

xOUT shown in Fig. 1a through supervised learning that

adjusts the synaptic weights wji. Simply, we have only a

single teacher pair of input and output signals here. We

consider a very simple feedforward neural network in the

real number domain shown in Fig. 1b having a single-

layer, 2-input, 2-output. For simplicity, we omit possible

nonlinearity at the neurons, that is, the activation function

is the identity function. Then, the general input–output

relationship is described by using four real numbers a,

b, c, and d as

xOUT
1

xOUT
2

� �

¼ a b
c d

� �

xIN
1

xIN
2

� �

ð5Þ

In the present case, we have a variety of possible mappings

realized by the learning because the number of parameters

to be determined is larger than that of the condition, that is,

the learning task is an ill-posed problem. The functional

difference among the possible mapping functions emerges

as the difference in the generalization characteristics. For

example, learning can result in a degenerate mapping

shown in Fig. 1c, which is often unuseful in practice.

Next let us consider the learning of the mapping in

the complex domain, which transforms a complex value

xIN = (x1
IN, x2

IN) to another complex value xOUT = (x1
OUT,

x2
OUT). Figure 1d shows a CVNN, where the weight is a

single complex value w ¼ jwj expð
ffiffiffiffiffiffiffi

�1
p

hÞ. The situation is

expressed just like in (5) with the constraint (4) as

(a)

(b) (c)

(e)(d)

Fig. 1 a A task to map xIN to xOUT, and a simple RVNN to learn the

task having b 2-input 2-output single-layer structure and c a possible

but degenerate solution that is often not useful, and a simple CVNN to

learn the same task having b 1-input 1-output single-layer structure

and c expected learning result [5]
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xOUT
1

xOUT
2

� �

¼ jwj cos h �jwj sin h
jwj sin h jwj cos h

� �

xIN
1

xIN
2

� �

ð6Þ

The degree of freedom is reduced, and the arbitrariness of

the solution is also reduced. That is, we have a unique

solution in this case as follows. Figure 1d illustrates the

result of the learning. The mapping is a combination of

phase rotation and amplitude attenuation.

This property can be a great advantage when we deal

with information related with waves such as electromag-

netic wave, lightwave, and electron wave. This is an

intuitive expectation, and investigated numerically in the

following sections.

3 Construction of experiments and learning dynamics

We organize our experiment as follows.

• Preparation of input signals: Variously weighted sum-

mation of sinusoidal wave (coherent wave) and non-

wave data, that is, white noise having random amplitude

and phase (or real and imaginary parts).

• Definition of the task to learn: Identity mapping, which is

expected to show the learning characteristics clearly, for

the above signals with various degrees of wave nature.

• Evaluation of generalization: Observation of the gen-

eralization error when the input signals shift in time

and/or when the amplitude is changed.

3.1 Forward processing and learning dynamics

3.1.1 Complex-valued neural network

We consider a layered feedforward network having input

terminals, hidden neurons, and output neurons. In the case

of a CVNN, we employ a phase-amplitude-type sigmoid

activation function and the teacher-signal-backpropagation

learning process [3, 7] with notations of

zI ¼ ½z1; . . .; zi; . . .; zI ; zIþ1�T ðInput signal vectorÞ ð7Þ

zH ¼ ½z1; . . .; zh; . . .; zH; zHþ1�T
ðHidden-layer output signal vectorÞ ð8Þ

zO ¼ ½z1; . . .; zo; . . .; zO�T ðOutput-layer signal vectorÞ
ð9Þ

WH ¼ ½whi� ðHidden neuron weight matrixÞ ð10Þ

WO ¼ ½woh� ðOutput neuron weight matrixÞ ð11Þ

where ½��T means transpose. In (10) and (11), the weight

matrices include additional weights whI?1 and woH?1,

equivalent to neural thresholds, where we add formal

constant inputs zI?1 = 1 and zH?1 = 1 in (7) and (8),

respectively. Respective signal vectors and synaptic

weights are connected with one another through an

activation function f(z) as

zH ¼ f WHzI
� �

; zO ¼ f WOzH
� �

ð12Þ

where f(z) is a function of each vector element z ð2 CÞ
defined as

f ðzÞ ¼ tanh zj jð Þ exp
ffiffiffiffiffiffiffi

�1
p

arg z
� �

ð13Þ

Figure 2 is a diagram to explain the supervised learning

process. We prepare a set of teacher signals at the input

ẑI
s ¼ ½ẑ1s; . . .; ẑis; . . .; ẑIs; ẑIþ1 s�T and the output ẑO

s ¼
½ẑ1s; . . .; ẑos; . . .; ẑOs�T ðs ¼ 1; . . .; s; . . .SÞ for which we

employ the teacher-signal backpropagation learning. We

define an error function E to obtain the dynamics [3, 7] as

E � 1

2

X

S

s¼1

X

O

o¼1

	

	

	
zoðẑI

sÞ � ẑos

	

	

	

2

ð14Þ

wnew
oh

	

	

	

	 ¼ wold
oh

	

	

	

	� K
oE

o wohj j ð15Þ

arg wnew
oh ¼ arg wold

oh � K
1

jwohj
oE

oðarg wohÞ
ð16Þ

Fig. 2 Schematic diagram of

the learning process of

complex- and double-

dimensional real-valued

feedforward neural networks for

pairs of input–output teachers
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oE

o wohj j ¼ 1� zoj j2
� �

zoj j � ẑoj j cos arg zo � arg ẑoð Þð Þ

� zhj j cos arg zo � arg ẑo � arg wohð Þ

� zoj j ẑoj j sin arg zo � arg ẑoð Þ zhj j
tanh�1 zoj j

� sin arg zo � arg ẑo � arg wohð Þ

ð17Þ

1

jwohj
oE

oðarg wohÞ
¼ 1� zoj j2
� �

zoj j � ẑoj j cos arg zo � arg ẑoð Þð Þ zhj j

� sin arg zo � arg ẑo � arg wohð Þ

þ zoj j ẑoj j sin arg zo � arg ẑoð Þ zhj j
tanh�1 zoj j

� cos arg zo � arg ẑo � arg wohð Þ

ð18Þ

where ð�Þnew
and ð�Þold

indicate the update of the weights

from ð�Þold
to ð�Þnew

and K is a learning constant. The

teacher signals at the hidden layer ẑH ¼ ½ẑ1; . . .; ẑh; . . .; ẑH �T

are obtained by making the output teacher vector itself ẑO

propagate backward as

ẑH ¼ f ẑO
� ��

ŴO
� �� �� ð19Þ

where ð�Þ� denotes Hermite conjugate. Using ẑH, the

hidden-layer neurons change their weights by following

(15)–(18) with replacement of the suffixes o, h with

h, i [4, 6].

3.1.2 Double-dimensional real-valued neural network

Similarly, the forward processing and learning of a double-

dimensional RVNN is explained as follows. Figure 2

includes also this case. We represent a complex number as

a pair of real numbers as zi ¼ x2i�1 þ
ffiffiffiffiffiffiffi

�1
p

x2i. That is, we

have a double-dimensional real input vector zR
I , a double-

dimensional hidden signal vector zR
H, and a double-dimen-

sional output signal vector zR
O. A forward signal processing

connects the signal vectors as well as hidden neuron

weights WR
H and output neuron weights WR

O through a real-

valued activation function fR as

zI
R¼ x1; x2

zfflfflffl}|fflfflffl{

real&imaginary

; . . .;x2i�1;x2i; . . .;x2I�1;x2I ;x2Iþ1;x2Iþ2

" #T

¼ zI
� �

ðInput signal vectorÞ
ð20Þ

zH
R ¼½x1; x2; . . .; x2h�1; x2h; . . .; x2H�1; x2H ; x2Hþ1; x2Hþ2�T

ðHidden-layer output signal vectorÞ
ð21Þ

zO
R ¼½x1; x2; . . .; x2o�1; x2o; . . .; x2O�1; x2O�T

ðOutput-layer signal vectorÞ
ð22Þ

WH
R ¼ ½wRhi� ðHidden neuron weight matrixÞ ð23Þ

WO
R ¼ ½wRoh� ðOutput neuron weight matrixÞ ð24Þ

zH
R ¼ fR WH

RzI
R

� �

; zO
R ¼ fR WO

RzH
R

� �

ð25Þ

fRðxÞ ¼ tanh xð Þ ð26Þ

where the thresholds are wR h 2Iþ1; wR h 2Iþ2; wR h 2Hþ1, and

wR h 2Hþ2 with formal additional inputs x2H?1 = 1,

x2H?2 = 1, x2H?1 = 1, and x2H?2 = 1. We employ the

conventional error backpropagation learning.

4 Computer experiments

4.1 Experimental setup

We chose the identity mapping as the task to be learned to

show the network characteristics most clearly. To generate

input signals as a function of time z(t) having several

degrees of coherence, we added white Gaussian noise n(t)

to a sinusoidal wave sin xt (angular frequency x) with

various weighting as zðtÞ ¼ as sin xt þ annðtÞ where as and

an denote equivalent amplitude. Then, the degree of wave

nature is expressed as the signal-to-noise ratio SNR :
as/an where SNR ¼ 1 means complete wave, while

SNR = 0 corresponds to complete non-wave. The network

parameters are as follows: Number of input neurons

I = 16, hidden neurons H = 25, output neurons O = 16,

learning constant K = 0.01, and the learning iteration =

3,000.

4.2 Results and discussion

Figures 3, 4, 5, 6 display typical examples of the learning

curves and output signals when SNR ¼ 1, 20dB, 10dB,

and 0dB, respectively. Figure 3a shows an example of the

learning curve when SNR ¼ 1, that is, the signal is

sinusoidal. We find that the learning is almost successfully

completed for both the CVNN and RVNN. The learning

errors converge roughly at zero, which means that there is

only slight residual error at the learning teacher points.

However, the curves are different from each other at the

beginning of the learning. The curve of the CVNN shows

quick decreases. Contrarily, that of the RVNN has a pla-

teau just after the beginning and then steep decrease. This

tendency is often observed in the RVNN to learn high-

coherence signals, which implies that the RVNN is subject

to local minima.
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After the learning, we feed other input signals to inves-

tigate the generalization. As mentioned above, the wave-

length is adjusted to span over the 16 neural input terminals.

Figure 3b and c presents examples of the output amplitude

and phase, respectively, showing from left-hand side to the

right-hand side the ideal output of the identity mapping, the

(a)

(b) (d)

(e)(c)

Fig. 3 Example of a learning curve, b amplitude, and c phase when

the input signal amplitude gradually changed, and d amplitude and e
phase when the input signal gradually shifts in time, in the real-valued

and complex-valued neural networks (RVNN and CVNN) when no

noise is added to sinusoidal signals (S=N ¼ 1)

Neural Comput & Applic (2013) 22:1357–1366 1361
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RVNN outputs, and the CVNN outputs of the 16 output

neurons. The horizontal axis shows the amplitude changing

from 0 to 1. Figure 3d and e shows the output amplitude and

phase when the input signal is shifted in time. The horizontal

axes present the time shift t normalized by the unit-wave

duration T.

(a)

(b) (d)

(e)(c)

Fig. 4 Example of a learning curve, b amplitude, and c phase when

the input signal amplitude gradually changed, and d amplitude and e
phase when the input signal gradually shifts in time, in the real-valued

and complex-valued neural networks (RVNN and CVNN) when no

noise is added to sinusoidal signals (S/N = 20 dB)
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Wefindthat the RVNNoutputamplitudeandphasevaluesare

very different from the ideal ones. The learning has been con-

ducted at 16 snapshots of the signal waveform, that is, four points

in the amplitude (a = 0, 0.25, 0.5, 0.75) multiplied by four phase

shifts, or time shifts t normalized by the signal wave period T (t/

T = 0, 1/8, 2/8, 3/8) plus initial waveform phase at respective

(a)

(b) (d)

(e)(c)

Fig. 5 Example of a learning curve, b amplitude, and c phase when

the input signal amplitude gradually changed, and d amplitude and e
phase when the input signal gradually shifts in time, in the real-valued

and complex-valued neural networks (RVNN and CVNN) when no

noise is added to sinusoidal signals (S / N = 10dB)

Neural Comput & Applic (2013) 22:1357–1366 1363
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neurons 2ip=16 ði ¼ 0; 1; 2; . . .; 15Þ. (For the details of the

learning process, see Ref. [9].) In each charts in Fig. 3b, c, d, or e,

we have 16 curves corresponding to the 16 neuron outputs.

Figure 3b shows the output amplitude response when

the input signal amplitude is changed. The ideal output

(left-hand side) is given as the proportional outputs where

(a)

(b) (d)

(e)(c)

Fig. 6 Example of a learning curve, b amplitude, and c phase when

the input signal amplitude gradually changed, and d amplitude and e
phase when the input signal gradually shifts in time, in the real-valued

and complex-valued neural networks (RVNN and CVNN) when no

noise is added to sinusoidal signals (S/N = 0 dB)
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16 curves are identical. However, the RVNN output

amplitudes are largely different. At the learning points of 0,

0.25, and 0.5, the curves are forced to converge at almost

ideal values. The phase values at 0.25 and 0.5 in Fig. 3c

also show values near to the ideal ones. However, in total,

it deviates very largely from the ideal line, though at the

0-amplitude point the phase value means nothing.

At the last learning point, amplitude of 0.75, the state is

different. The amplitude values do not converge but are

scattered instead. The phase values also differ from the

ideal ones. The result implies that the network sought

optimal solution in the scattered amplitude condition,

which is a local minimum.

In contrast, the 16 amplitude outputs of the CVNN in

Fig. 3b are identical with one another, which situation is

the same as the ideal one, though the amplitude curves

show saturation at the large amplitude region. This result

reflects directly the saturation characteristic of the neuron

activation function. As an optimal learning result, the

network shows slightly larger amplitude in the small input-

amplitude region, while a little smaller amplitude in the

large input region. The phase values in Fig. 3c are similar

to ideal ones, though at around 0-amplitude they are

meaningless and deviating.

Next, we observe the responses to the time shift (or

phase shift) of the input signal. The horizontal axes in

Figs. 3d and e show the time shift normalized by the wave

period T. Figure 3d presents the output amplitude when the

input amplitude is fixed at 0.5. Ideally, it should be 0.5

constantly. However, the RVNN outputs deviate very lar-

gely again. The phase values in Fig. 3e also deviate from

the ideal ones. The large phase error regions in (e) corre-

spond to the regions of steep amplitude changes in (d).

Contrarily, the CVNN output amplitude values in Fig. 3d

are almost constant. The value is a little different from 0.5

because of the nonlinearity of the neuron activation func-

tion. The phase values of the CVNN in Fig. 3e are almost

identical with the ideal lines.

As seen above, the CVNN presents better generalization

ability in both amplitude and phase for coherent signals. Its

feature is obvious in the response including the phase

rotation observed clearly as the phase stability against input

amplitude changes as well as the linear phase changes

versus the input phase shift. These characteristics match the

single neuron dynamics in Fig. 1e in Sect. 2, which shows

that the elemental process consists of phase rotation as well

as amplitude change if needed.

Figures 4, 5, 6 show the data for SNR = 20dB, 10dB,

and 0dB, respectively. As the degree of wave nature

decreases, the generalization error increases. However, in

any SNR case, both the amplitude and phase of the CVNN

exhibit better generalization than those of the RVNN.

Note that the time required for the learning can also be

longer, in particular for the signals with lower degree of

wave nature (smaller the SNR, lower the coherence). This

fact is attributed to the smaller degree of freedom of the

CVNNs described in Sect. 2.2.

The correspondence between steep changes in amplitude

and phase is sometimes observed also in these low coher-

ence cases. For example, in Fig. 6b where SNR = 0dB, at

amplitude of about 0.75, the amplitude has a sharp dip for

several neuron outputs. Correspondingly, in Fig. 6c, we

can find phase change in the phase outputs of the same

neurons. Such changes are observed only in the RVNN

where there is no implicit limitation of phase-and-ampli-

tude elemental dynamics.

5 Conclusion

This paper investigated numerically the generalization

characteristics in the feedforward complex-valued and real-

valued neural networks (CVNN and RVNN). We compared

a CVNN and a double-dimensional RVNN in a simple

case where the networks deal with the task of function

approximation. Computer experiments demonstrated that

the CVNN exhibits better generalization characteristics in

particular for signals having high degree of wave nature,

that is, coherence. This fact is attributed to the smaller

degree of freedom of the CVNN than that of the RVNN,

resulting in a learning tendency to assume phase rotation

and amplitude amplification or attenuation. We also

investigated the relationship between the amplitude and

phase errors. We found in the RVNN that abrupt change in

amplitude is often accompanied by a steep change in phase.

This phenomenon is a consequence of local minima in the

RVNN and not observed in the CVNN. These character-

istics of the CVNN are expected to be used in many

applications to deal with wave phenomena and wave-

related information processing.

References

1. Benvenuto N, Piazza F (1992) On the complex backpropagation

algorithm. IEEE Trans Sign Process 40:967–969

2. Georgiou GM, Koutsougeras C (1992) Complex domain back-

propagation. IEEE Trans Circ Syst II 39(5):330–334

3. Hirose A (1992) Continuous complex-valued back-propagation

learning. Electron Lett 28(20):1854–1855

4. Hirose A (1994) Applications of complex-valued neural networks

to coherent optical computing using phase-sensitive detection

scheme. Inform Sci Appl 2:103–117

5. Hirose A (2011) Nature of complex number and complex-valued

neural networks. Frontiers of Electrical and Electronic Engi-

neering in China 6(1):171–180

Neural Comput & Applic (2013) 22:1357–1366 1365

123



6. Hirose A (2012) Complex-valued neural networks, 2nd (ed)

Springer, Heidelberg

7. Hirose A, Eckmiller R (1996) Behavior control of coherent-type

neural networks by carrier-frequency modulation. IEEE Trans

Neural Netw 7(4):1032–1034

8. Hirose A, Yoshida S (November 2011) Comparison of complex-

and real-valued feedforward neural networks in their generaliza-

tion ability. In: International Conference on Neural Information

Processing (ICONIP) 2011 Shanghai. Springer, pp. 526–531

9. Hirose A, Yoshida S (2012) Generalization characteristics of

complex-valued feedforward neural networks in relation to signal

coherence. IEEE Trans Neural Netw Learn Syst 23:541–551

10. Leung H, Haykin S (1991) The complex backpropagation algo-

rithm. IEEE Trans Sign Process 39:2101–2104

11. Nitta T (1997) An extension of the back-propagation algorithm to

complex numbers. Neural Netw 10:1391–1415

1366 Neural Comput & Applic (2013) 22:1357–1366

123


	Relationship between phase and amplitude generalization errors in complex- and real-valued feedforward neural networks
	Abstract
	Introduction
	Qualitative difference between complex- and real-valued neural networks
	Complex number represented as real 2 x 2 matrix
	Phase rotation and amplitude amplification/attenuation in neural networks

	Construction of experiments and learning dynamics
	Forward processing and learning dynamics
	Complex-valued neural network
	Double-dimensional real-valued neural network


	Computer experiments
	Experimental setup
	Results and discussion

	Conclusion
	References


