
ORIGINAL ARTICLE

Swallow swarm optimization algorithm: a new method
to optimization

Mehdi Neshat • Ghodrat Sepidnam •

Mehdi Sargolzaei

Received: 7 November 2011 / Accepted: 2 April 2012 / Published online: 26 April 2012

� Springer-Verlag London Limited 2012

Abstract This paper presents an exposition of a new

method of swarm intelligence–based algorithm for opti-

mization. Modeling swallow swarm movement and their

other behavior, this optimization method represents a new

optimization method. There are three kinds of particles

in this method: explorer particles, aimless particles, and

leader particles. Each particle has a personal feature but all

of them have a central colony of flying. Each particle

exhibits an intelligent behavior and, perpetually, explores

its surroundings with an adaptive radius. The situations

of neighbor particles, local leader, and public leader are

considered, and a move is made then. Swallow swarm

optimization algorithm has proved high efficiency, such as

fast move in flat areas (areas that there is no hope to find

food and, derivation is equal to zero), not getting stuck in

local extremum points, high convergence speed, and

intelligent participation in the different groups of particles.

SSO algorithm has been tested by 19 benchmark functions.

It achieved good results in multimodal, rotated and shifted

functions. Results of this method have been compared to

standard PSO, FSO algorithm, and ten different kinds of

PSO.

Keywords Computational intelligence � Swallow swarm

optimization (SSO) � Benchmark function � Fish swarm

optimization � Particle swarm optimization

1 Introduction

Swarm intelligence (SI) [1] as observed in natural swarms

is the result of actions that individual in the swarm perform

exploiting local information. Usually, the swarm behavior

serves to accomplish certain complex colony-level goals.

Examples include group foraging by ants, division of

labor among scouts and recruits in honeybee swarms,

evading predators by fish schools, flocking of birds, and

group-hunting as observed in canids, herons, and several

cetaceans.

The decentralized decision-making mechanisms found

in the above examples, and others in the natural world,

offer an insight on how to design distributed algorithms

that solve complex problems related to diverse fields, such

as optimization, multi-agent decision making, and collec-

tive robotics. Ant colony optimization technique [2–4],

particle swarm optimization algorithm [5–7], artificial fish

swarm optimization algorithm [8–10], and glowworm

swarm optimization algorithm [11–14] and several swarms

based collective robotic algorithms, etc are different

methods of swarm intelligence [15–17].

In this paper, we present a novel algorithm called

swallow swarm optimization (SSO) for the simultaneous

computation of multimodal functions. The algorithm shares

some common features with particle swarm optimization

(PSO) with fish swarm optimization (FSO), but with

several significant differences. Swallows own high

swarm intelligence. Their flying speed is high, and they

are able to fly long distances in order to migrate from one

M. Neshat (&) � G. Sepidnam � M. Sargolzaei

Department of Computer Engineering, Shirvan Branch,

Islamic Azad University, Shirvan, Iran

e-mail: Neshat_mehdi@ieee.org

G. Sepidnam

e-mail: sepidnam@ferdowsi.um.ac.ir

M. Sargolzaei

e-mail: sargolzaei@yahoo.com

123

Neural Comput & Applic (2013) 23:429–454

DOI 10.1007/s00521-012-0939-9

point to another. They fly in great colonies. Flying col-

lectively, they mislead hunters in dangerous positions.

Swallow swarm life has many particular features that

are more complicated and bewildering in comparison

with fish schools and ant colonies. Consequently, it has

been appointed as the subject of research and algorithm

simulation.

The second section is about the method. Third section is

about the benchmark function. Forth section is about experi-

mental results and examining the diverse states of PSO and

FSO and then comparing them to proposed method.

2 Method

Using swarm intelligence in optimization problems has

become prevalent in recent decades. Methods like PSO,

GA, ACO, FSO, GSO and many compound methods which

by combining these methods are trying to refine the diverse

engineering problems more and more. Some examples of

what have been done which are combinations of different

methods of SI are shown in Table 1. Certainly, fuzzy logic

plays an important role in optimization [18].

2.1 PSO and its developments

2.1.1 PSO structure

The initial ideas on particle swarms of Kennedy (a social

psychologist) and Eberhart (an electrical engineer) were

basically aimed at producing computational intelligence by

exploiting simple analogs of social interaction, rather than

purely individual cognitive abilities. The first simulations

[5] were influenced by Heppner and Grenander’s work [19]

and involved analogs of bird flocks searching for corn.

These soon developed [5, 20, 21] into a powerful optimi-

zation method—PSO [22].

In PSO, a swarm of particles are represented as potential

solutions, and each particle i is associated with two vectors,

that is, the velocity vector Vi ¼ v1
i ; v

2
i ; . . .; vD

i

� �
and the

position vector Xi ¼ x1
i ; x

2
i ; . . .; xD

i

� �
where D stands for

the dimensions of the solution space. The velocity and the

position of each particle are initialized by random vectors

within the corresponding ranges. During the evolutionary

process, the velocity and position of particle i on dimension

d are updated as:

vd
i ¼ wvd

i þ c1randd
1 pBestd

i � xd
i

� �

þ c2randd
2 nBestd � xd

i

� �
ð1Þ

xd
i ¼ xd

i þ vd
i ð2Þ

where w is the inertia weight [23], c1 and c2 are the

acceleration coefficients [20], and randd
1 and randd

2 are two

uniformly distributed random numbers independently

generated within [0, 1] for the dth dimension [5]. In (1),

pBesti is the position with the best fitness found so far for

the ith particle, and nBest is the best position in the

neighborhood. In the literature, instead of using nBest,

gBest may be used in the global-version PSO, whereas

lBest may be used in the local-version PSO (LPSO). An

Table 1 Review to compound methods of new optimization

Method Authors Paper Publisher

PSO-GA [79] Esmin, A. A. A. Lambert-

Torres, G. Alvarenga,

G. B. UFLA, Brazil

Hybrid evolutionary algorithm based on

PSO and GA mutation

Sixth International Conference on Hybrid

Intelligent Systems, 2006. HIS ‘06

PSO-GA [80] Matthew Settles and Terence

Soule

Breeding swarms: a GA/PSO hybrid In GECCO ‘05: Proceedings of the 2005

conference on Genetic and evolutionary

computation (2005), pp. 161–168

ACO-PSO [81] Yan Meng and

O
˙

lo
˙
rundamilo

˙
la Kazeem

A hybrid ACO/PSO control algorithm for

distributed swarm robots

Proceedings of the 2007 IEEE Swarm

Intelligence Symposium (SIS 2007)

PSO-ACO [82] D. Gómez-Cabrero,

D. N. Ranasinghe

Fine-tuning the ant colony system

algorithm through particle swarm

optimization

Proceedings of the International

Conference on Information and

Automation, 2005

PSO-FSO [83] Huadong Chen, Shuzong

Wang, Jingxi Li, Yunfan Li

A hybrid of artificial fish swarm algorithm

and particle swarm optimization for

feedforward neural network training

2007 International Conference on

Intelligent Systems and Knowledge

Engineering (ISKE 2007)

ACO-FSO [84] Hongyan Shi, Zhaoyu Bei Application of improved ant colony

algorithm

Fourth International Conference on

Natural Computation, 2008. ICNC ‘08

ACO-FSO [85] Hong-yan Shi, Zhao-yu Bei A mixed ant colony algorithm for

function optimization

Proceedings of the 21st annual

international conference on Chinese

control and decision

IEEE Press Piscataway, NJ, USA

3919–3923, 2009

430 Neural Comput & Applic (2013) 23:429–454

123

user-specified parameter Vd
max 2 <þ is applied to clamp the

maximum velocity of each particle on the dth dimension.

Thus, if the magnitude of the updated velocity vd
i

�� �� exceeds

Vd
max, then vd

i is assigned the value sign vd
i

� �
Vd

max.

2.1.2 New developments of the PSO

Given its simple concept and efficiency, the PSO has

become a popular optimizer and has widely been applied in

practical problem solving. Thus, theoretical studies and

performance improvements of the algorithm have become

important and attractive. Convergence analysis and stabil-

ity studies have been reported by Clerc and Kennedy [24],

Trelea [25], Yasuda et al. [26], Kadirkamanathan et al.

[27], and van den Bergh and Engelbrecht [28].

The inertia weight w in (1) was introduced by Shi and

Eberhart [23]. They proposed a w linearly decreasing with

the iterative generations as:

w ¼ wmax � ðwmax � wminÞg=G ð3Þ

where g is the generation index representing the current

number of evolutionary generations and G is a predefined

maximum number of generations. Here, the maximal and

minimal weights wmax and wmin are usually set to 0.9 and

0.4, respectively [23, 29]. In addition, a fuzzy adaptive w

was proposed in [30], and a random version setting w to

0.5 ? random (0, 1)/2 was experimented in [31] for

dynamic system optimization. As this random w has an

expectation of 0.75, it has a similar idea as Clerc’s

constriction factor [32, 33]. The constriction factor has

been introduced into PSO for analyzing the convergence

behavior, that is, by modifying (1) to

vd
i ¼ v vd

i þ c1randd
1 pBestd

i � xd
i

� �
þ c2randd

2 nBestd � xd
i

� �� �

ð4Þ

where the constriction factor

v ¼ 2

2� /�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2 � 4/

p���
���

ð5Þ

is set to 0.729 with

/ ¼ c1 þ c2 ¼ 4:1 ð6Þ

where c1 and c2 are both set to 2.05 [33]; mathematically,

the constriction factor is equivalent to the inertia weight, as

Eberhart and Shi pointed out in [34]. Besides the inertia

weight and the constriction factor, the acceleration coeffi-

cients c1 and c2 are also important parameters in PSO. In

Kennedy’s two extreme cases [35], that is, the ‘‘social-

only’’ model and the ‘‘cognitive-only’’ model, experiments

have shown that both acceleration coefficients are essential

to the success of PSO. Kennedy and Eberhart suggested a

fixed value of 2.0, and this configuration has been adopted

by many other researchers. Suganthan [36] showed that

using ad hoc values of c1 and c2 rather than a fixed value

of 2.0 for different problems could yield better perfor-

mance. Ratnaweera et al. [37] proposed a PSO algorithm

with linearly time-varying acceleration coefficients

(HPSO-TVAC), where a larger c1 and a smaller c2 were

set at the beginning and were gradually reversed during the

search. Among these three methods, the HPSO-TVAC

shows the best overall performance [37]. This may be due

to the time-varying c1 and c2 that can balance the global

and local search abilities, which implies that adaptation of

c1 and c2 can be promising in enhancing the PSO perfor-

mance. Hence, this paper will further investigate the effects

of c1 and c2 and develop an optimal adaptation strategy

according to ESE.

Another active research trend in PSO is hybrid PSO,

which combines PSO with other evolutionary paradigms.

Angeline [38] first introduced into PSO a selection oper-

ation similar to that in a genetic algorithm (GA).

Hybridization of GA and PSO has been used in [39] for

recurrent artificial neural network design. In addition to

the normal GA operators, for example, selection [38],

crossover [40], and mutation [41], other techniques such

as local search [42] and differential evolution [43] have

been used to combine with PSO. Cooperative approach

[44], self-organizing hierarchical technique [45], deflec-

tion, stretching, and repulsion techniques [46] have also

been hybridized with traditional PSO to enhance perfor-

mance. Inspired by biology, some researchers introduced

niche [47, 48] and speciation [49] techniques into PSO to

prevent the swarm from crowding too closely and to

locate as many optimal solutions as possible and adaptive

particle swarm optimization (APSO) that features better

search efficiency than classical particle swarm optimiza-

tion [50]. The orthogonal PSO (OPSO) reported in [41]

uses an ‘‘intelligent move mechanism’’ (IMM) operation

to generate two temporary positions, H and R, for each

particle X, according to the cognitive learning and social

learning components, respectively. Then, OED is per-

formed on H and R to obtain the best position X* for the

next move, and then, the particle velocity is obtained by

calculating the difference between the new position X*

and the current position X. Such an IMM was also used in

[51] to orthogonally combine the cognitive learning and

social learning components to form the next position, and

the velocity was determined by the difference between the

new position and the current position. The OED in [52]

was used to help generate the initial population evenly.

Different from previous work and to go steps further, in

this paper, we use the OED to form an orthogonal learning

Neural Comput & Applic (2013) 23:429–454 431

123

strategy, which discovers and preserves useful informa-

tion in the personal best and the neighborhood best

positions in order to construct a promising and efficient

exemplar. This exemplar is used to guide the particle to

fly toward the global optimal region. The OL (orthogonal

learning) strategy is a generic operator and can be

applied to any kind of topology structure. If the OL is

used for the GPSO, then Pn is Pg. If it is used for the

LPSO, then Pn is Pl. For either a global or a local ver-

sion, when constructing the vector of Po, if Pi is the same

as Pn (e.g., for the globally best particle, Pi and Pg are

identical vectors), the OED (orthogonal experimental

design) makes no contribution. In such a case, OLPSO

will randomly select another particle Pr and then con-

struct Po by using the information of Pi and Pr through

the OED. Two OLPSO versions that based on a global

topology (OLPSO-G) and a local topology (OLPSO-L)

are simulated [53].

In addition to research on parameter control and

auxiliary techniques, PSO topological structures are also

widely studied. The LPSO with a ring topological struc-

ture and the von Neumann topological structure PSO

(VPSO) have been proposed by Kennedy and Mendes

[54, 55] to enhance the performance in solving multi-

modal problems. Further, dynamically changing neigh-

borhood structures have been proposed by Suganthan

[36], Hu and Eberhart [56], and Liang and Suganthan [57]

to avoid the deficiencies of fixed neighborhoods. More-

over, in the ‘‘fully informed particle swarm’’ (FIPS)

algorithm [58], the information of the entire neighborhood

is used to guide the particles. The CLPSO in [59] lets the

particle use different pBests to update its flying on dif-

ferent dimensions for improved performance in multi-

modal applications.

2.2 Artificial fish swarm algorithm (AFSA)

A new evolutionary computation technique, artificial fish

swarm algorithm (AFSA), was first proposed in 2002 [60].

The idea of AFSA is based on the simulation of the sim-

plified natural social behavior of fish schooling and the

swarming theory. AFSA possess similar attractive features

of genetic algorithm (GA) such as independence from

gradient information of the objective function, the ability to

solve complex non-linear high-dimensional problems.

Furthermore, they can achieve faster convergence speed

and require few parameters to be adjusted. The AFSA does

not possess the crossover and mutation processes used in

GA, so it could be performed more easily. AFSA is also an

optimizer based on population. The system is initialized

firstly in a set of randomly generated potential solutions

and then performs the search for the optimum one itera-

tively [61].

Artificial fish (AF) is a fictitious entity of true fish,

which is used to carry on the analysis and explanation of

problem, and can be realized by using animal ecology

concept. With the aid of the object-oriented analytical

method, we can regard the artificial fish as an entity

encapsulated with one’s own data and a series of behaviors,

which can accept amazing information of environment by

sense organs, and do stimulant reaction by the control of

tail and fin. The environment in which the artificial fish

lives is mainly the solution space and the states of other

artificial fish. Its next behavior depends on its current state

and its environmental state (including the quality of the

question solutions at present and the states of other com-

panions), and it influences the environment via its own

activities and other companions’ activities [62].

The AF realizes external perception by its vision shown

in Fig. 1. X is the current state of an AF, Visual is the visual

distance, and Xv is the visual position at some moment. If

the state at the visual position is better than the current

state, it goes forward a step in this direction and arrives the

Xnext state; otherwise, it continues an inspecting tour in the

vision. The greater number of inspecting tour the AF does,

the more knowledge about overall states of the vision the

AF obtains. Certainly, it does not need to travel throughout

complex or infinite states, which is helpful to find the

global optimum by allowing certain local optimum with

some uncertainty.

Let X = (x1, x2, …, xn) and Xv ¼ xv
1; x

v
2; . . .; xv

n

� �
, then

this process can be expressed as follows:

xv
i ¼ xi þ Visual:randðÞ; i 2 ð0; n� ð7Þ

Xnext ¼ X þ Xv � X

Xv � Xk k :Step:randðÞ: ð8Þ

where Rand() produces random numbers between 0 and 1,

Step is the step length, xi is the optimizing variable, and n is

Fig. 1 Vision concept of the artificial fish

432 Neural Comput & Applic (2013) 23:429–454

123

the number of variables. The AF model includes two parts

(variables and functions). The variable X is the current

position of the AF, Step is the moving step length, Visual

represents the visual distance, try_number is the try

number, and d is the crowd factor (0 \ d \ 1). The

functions include the behaviors of the AF: AF_Prey,

AF_Swarm, AF_Follow, AF_Move, AF_Leap, and

AF_Evaluate.

2.2.1 The basic functions of AFSA

Fish usually stay in the place with a lot of food, so we

simulate the behaviors of fish based on this characteristic to

find the global optimum, which is the basic idea of the

AFSA. The basic behaviors of AF are defined [9, 10] as

follows for maximum:

(1) AF_Prey: This is a basic biological behavior that

tends to the food; generally, the fish perceives the con-

centration of food in water to determine the movement by

vision or sense and then chooses the tendency. Behavior

description: Let Xi be the AF current state and select a state

Xj randomly in its visual distance, and Y is the food con-

centration (objective function value); the greater Visual is,

the more easily the AF finds the global extreme value and

converges.

Xj ¼ Xi þ Visual:randðÞ ð9Þ

If Yi \ Yj in the maximum problem, it goes forward a

step in this direction;

X
ðtþ1Þ
i ¼ X

ðtÞ
i þ

Xj � X
ðtÞ
i

Xj � X
ðtÞ
i

���
���
:Step:randðÞ: ð10Þ

Otherwise, select a state X j randomly again and judge

whether it satisfies the forward condition. If it cannot

satisfy after try_number times, it moves a step randomly.

When the try_number is small in AF_Prey, the AF can

swim randomly, which makes it flee from the local extreme

value field.

X
ðtþ1Þ
i ¼ X

ðtÞ
i þ Visual:randðÞ ð11Þ

(2) AF_Swarm: The fish will assemble in groups

naturally in the moving process, which is a kind of living

habits in order to guarantee the existence of the colony and

avoid dangers. Behavior description: Let X i be the AF

current state, X c be the center position, and nf be the

number of its companions in the current neighborhood

(dij \ Visual), and n is total fish number. If Yc [Yi

and
nf

n
\d, which means that the companion center

has more food (higher fitness function value) and is not

very crowded, it goes forward a step to the companion

center;

X
ðtþ1Þ
i ¼ X

ðtÞ
i þ

Xc � X
ðtÞ
i

Xc � X
ðtÞ
i

���
���
:Step:randðÞ: ð12Þ

Otherwise, executes the preying behavior. The crowd fac-

tor limits the scale of swarms, and more AF only cluster at

the optimal area, which ensures that AF move to optimum

in a wide field.

(3) AF_Follow: In the moving process of the fish swarm,

when a single fish or several ones find food, the neigh-

borhood partners will trail and reach the food quickly.

Behavior description: Let Xi be the AF current state, and it

explores the companion Xj in the neighborhood (dij \
Visual), which has the greatest Yj. If Yj [Yi and

nf

n
\d,

which means that the companion Xj state has higher food

concentration (higher fitness function value) and the sur-

roundings are not very crowded, it goes forward a step to

the companion Xj,

X
ðtþ1Þ
i ¼ X

ðtÞ
i þ

Xj � X
ðtÞ
i

Xj � X
ðtÞ
i

���
���
:Step:randðÞ: ð13Þ

Otherwise, executes the preying behavior.

(4) AF_Move: Fish swim randomly in water; in fact,

they are seeking food or companions in larger ranges.

Behavior description: Chooses a state at random in the

vision; then it moves toward this state; in fact, it is a default

behavior of AF_Prey.

X
ðtþ1Þ
i ¼ X

ðtÞ
i þ Visual:randðÞ ð14Þ

(5) AF_Leap: Fish stop somewhere in water, every AF’s

behavior result will gradually be the same, the difference in

objective values (food concentration, FC) becomes smaller

within some iterations, it might fall into local extremum,

change the parameters randomly to the still states for

leaping out current state.

Behavior description: If the objective function is almost

the same or difference in the objective functions is smaller

than a proportion during the given (m–n) iterations, choose

some fish randomly in the whole fish swarm and set

parameters randomly to the selected AF. The b is a

parameter or a function that can make some fish to have

other abnormal actions (values), and eps is a smaller

constant.

ifðBestFCðmÞ � BestFCðnÞÞ\eps

Xðtþ1Þ
some ¼ XðtÞsome þ b:Visual:randðÞ ð15Þ

The detail behavior pseudo-code can be seen in [63].

AF_Swarm makes few fish confined in local extreme

values move in the direction of a few fish tending to global

extreme value, which results in AF fleeing from the local

extreme values. AF_Follow accelerates AF moving to

Neural Comput & Applic (2013) 23:429–454 433

123

better states and, at the same time, accelerates AF moving

to the global extreme value field from the local extreme

values.

2.3 Swallow swarm optimization (SSO)

2.3.1 Swallows natural life

There are eight different breeds of swallows. They have

social life, migrate together, and find appropriate places

for resting, breeding, and feeding. Swarm moving

(swarm intelligence) keeps them immune against the

attacks of other birds. A pair of swallows has to search a

wide area in order to find food, while in collective living

as soon as one swallow finds food, other birds of the

group fly toward that area and enjoy it. Swallows are

very intelligent birds. They fly quickly, and there is a

strong interaction between members of groups [64]. They

apply different sounds in different situations (warning,

asking help, inviting to food, being ready to breeding)

that the number of these sounds is more than other birds’

and even signal of swallow’s sound is used as a special

model in signal processing [65]. Figure 2 is a swallow

tree.

Many creatures have a social life and live in groups,

including birds. A variety of birds in the small and large

colonies have a social life, and each one has certain char-

acteristics and social behaviors. By investigating these

behaviors and getting inspired by them, various optimiza-

tion algorithms have been presented, such as PSO. These

swallows have unique characteristics and social behaviors

that have attracted our attention.

Swallow is an insect-eating bird; 83 species of swallows

have been so far identified [66]. Due to its high compati-

bility with the environment, this bird lives almost

everywhere on Earth. This bird has special characteristics

that make it distinct from the other birds. So many studies

have been conducted on the life of various species of

swallows and remarkable results have been obtained,

which will be further discussed:

2.3.1.1 Immigration ‘‘Swallows’’ annually travel 17,000

km and migrate from a continent to another continent.

Swallows migrate in very large groups of even hundred

thousand [67]. The very social life in large groups indicates

high swarm intelligence of these birds.

2.3.1.2 High-speed flying Swallows keep a record of

speed among the other migrants, so that they travel

4,000 km per 24 h, that is, with a speed of 170 km/h per

hour. This feature can be very effective in the particles’

convergence speed and in solving the optimization prob-

lems in the least time.

2.3.1.3 Skilled hunters Swallows have adapted to hunt-

ing insects on the wing by developing a slender streamlined

body and long-pointed wings, which allow great maneu-

verability and endurance, as well as frequent periods of

gliding. Their body shape allows for very efficient flight,

which costs 50–75 % less for swallows than equivalent

passerines of the same size. Swallows usually forage at

around 30–40 km/h. Swallows are excellent flyers and use

these skills to feed and attract a mate.

The swallows generally forage for prey that is on the

wing, but they will on occasion snap prey off branches or

on the ground. The flight may be fast and involve a rapid

succession of turns and banks when actively chasing fast-

moving prey; less agile prey may be caught with a slower

more leisurely flight that includes flying in circles and

bursts of flapping mixed with gliding. Where several spe-

cies of swallow feed together, they will be separated into

different niches based on height off the ground: some

species feeding closer to the ground and others feeding at

higher levels. Similar separation occurs where feeding

overlaps with swifts. Niche separation may also occur with

the size of prey chosen.

2.3.1.4 Different calls Swallows are able to produce

many different calls or songs, which are used to express

excitement, to communicate with others of the same spe-

cies, during courtship, or as an alarm when a predator is in

the area. The songs of males are related to the body con-

dition of the bird and are presumably used by females to

judge the physical condition and suitability for mating of

males. Begging calls are used by the young when soliciting

food from their parents. The typical song of swallows is a

simple, sometimes musical twittering [68].Fig. 2 Tree male swallow photograph by Steve Berliner [88]

434 Neural Comput & Applic (2013) 23:429–454

123

Swallows are regularly correlated through various

sounds, and if one of them does not find the food source, it

immediately calls the other birds in the colony. These

special sounds help them to have a better social life.

2.3.1.5 Information centers Cliff swallow colonies func-

tion as ‘‘information centers’’ in which individuals unsuc-

cessful at finding food locate other individuals that have found

food and follow them to a food source [69]. Advantages

associated with information sharing on the whereabouts of

food are substantial and probably represent a major reason

why cliff swallows live in colonies. He also discovered that

cliff swallows represent one of the few birds (and indeed

non-human vertebrates) that actively communicate the

presence of food to others by giving distinct signals (calls)

used only in that context [70]. The evolution of such

information sharing is perplexing, because the typical

beneficiaries of calling are individuals unrelated to the

caller.

2.3.1.6 Floating swallow When migrating, a few swal-

lows always fly out of the colony and in the first glance; it

might look like that they disturb the colony order. But these

swallows that are generally young (newly matured) play an

important role in the colony. First, the swallows have the

chance to find food outside the internal areas of the colony

and call the other swallows as soon as they find food.

Second, if a hunting bird intends to attack the swallows,

these floating swallows quickly notice and inform the other

members of the colony. These swallows fly between the

colonies and can change their colonies. This behavior has

been used in this study. These particles can increase the

chance to find the optimum points, and if the other particles

converge on a local optimum by mistake, these particles

strengthen the chance to find better points by their random

and independent movement. In this paper, these particles

have been called aimless particle.

2.3.1.7 The interest in social life Swallows are one of

the most important species of birds that prefer living in

colonies to individual life. Sometimes, thousands of

swallows can be seen as a colony in the sky. However,

large colonies are composed of several smaller colonies.

The number of birds in the group has a critical role in

more successful reproduction, fighting predators, and a

better search for food [71, 72]. There is a factor in the

group life of swallows called social stimulation, which is

an important influence [72]. Swallows’ colony size can

have a direct impact on the hormones level in their

bodies. The larger the colony is, the higher the hormone

levels will be and the more successful swallows’ life

and reproduction will be [73]. During 1,000 years of

evolution, this bird has obtained a high swarm intelli-

gence and has a successful social life.

2.3.1.8 Leaders Each colony is divided into several

subcolonies that have side-by-side nests and live in a site.

Each colony has a leader that is commonly an experienced

bird. If the suitability of the group leader is reduced for any

reason, another bird immediately supersedes it. Swallows

always follow the leader, provided they have the necessary

competencies. In this study, two types of leaders are used:

Local leaders that conduct the internal colonies and show a

local optimum point and Head Leader that is responsible

for the leadership of the entire colony and shows the public

optimum point.

2.3.1.9 Escaping from predators Because of their small

body, swallows are good prey for most birds. Two of their

strategies are synchronous flying and namely safety in

numbers. Swallows’ intelligent behaviors against hunting

birds are very interesting. Swallows can be highly adapt-

able to the different environments. These adaptive behav-

iors have been intelligent and can be well seen in feeding

and nest-building architecture. Swallows are very

successful in search of food and have specific strategies for

finding food which are very complex [74]. Many behaviors

of the swallows have remained unknown, and it is very

difficult to implement all behaviors of this bird to produce a

working collective intelligence algorithm, because the

desired algorithm will have a high time complexity and

will not have the necessary optimality, due to the high

complexity of these behaviors. In this paper, only the

behaviors of 8, 6, 2, and 1 have been used and good results

have been obtained.

2.3.2 Algorithm SSO

Major idea of this new optimization algorithm is inspired

by swallow swarm. There are three kinds of particles in this

algorithm:

1. Explorer particle (ei)

2. Aimless particle (oi)

3. Leader particle (li)

These particles move parallel to each other and always

are in interaction. Each particle in colony (each colony can

be consisted of some subcolonies) is responsible for

something that through doing it guides the colony toward a

better situation.

2.3.2.1 Explorer particle These particles encompass the

major population of colony. Their primary responsibility is

to explore in problem space. With just arriving at an

Neural Comput & Applic (2013) 23:429–454 435

123

extreme point (swallow), using a special sound guides the

group toward there, and if this place is the best one in

problem space, this particle plays role as a Head Leader

(HLi). But if the particle is in a good (not the best) situation

in comparison with its neighboring particles, it is chosen as

a local leader LLi; otherwise, each particle ei regarding

VHLi
(velocity vector of particle toward HL), VLLi

(velocity

vector of particle toward LL), and competence of resultant

of these two vector makes a random move. Figure 3 shows

how a particle moves in problem space.

VHLiþ1
¼ VHLi

þ aHLrandðÞðebest � eiÞ
þ bHLrandðÞðHLi � eiÞ ð16Þ

aHL ¼ fifðei ¼ 0jjebest ¼ 0Þ ! 1:5g ð17Þ

aHL ¼

ifðei\ebestÞ&&ðei\HLiÞ ! randðÞ:ei

ei�ebest

ei; ebest 6¼ 0

ifðei\ebestÞ&&ðei [HLiÞ ! 2randðÞ�ebest

1=ð2:eiÞ
ei 6¼ 0

ifðei [ebestÞ ! ebest

1=ð2:randðÞÞ

8
>>>>><

>>>>>:

ð18Þ
bHL ¼ fifðei ¼ 0jjebest ¼ 0Þ ! 1:5g ð19Þ

bHL ¼

ifðei\ebestÞ&&ðei\HLiÞ ! randðÞ:ei

ei�HLi

ei;HLi 6¼ 0

ifðei\ebestÞ&&ðei [HLiÞ ! 2randðÞ�HLi

1=ð2:eiÞ
ei 6¼ 0

ifðei [ebestÞ ! HLi

1=ð2:randðÞÞ

8
>>>>><

>>>>>:

ð20Þ

Vector VHLi
has a significant effect on explorer particle

behavior. ei is the particle current position in problem

space. ebest is the best position that particle remembers

from the beginning up to now. HLi is a leader particle that

has the best possible response in current position. aHL and

bHL are the control of acceleration coefficients that are

defined adaptively. These two parameters change during

the particle movements, and this change depends on the

particle’s position. If the particle is a minimum point

(minimizing problem) and is in a better position than the

ebest and HLi, probability of being a global minimum for

that particle should be considered and control coefficients

estimate a small amount to decrease the particle movement

to the least. If the particle is in a better situation than ebest

but is in worse situation than HLi, it should move toward

HLi with an average amount. If the particle position is

worse than ebest, consequently it is worse than HLi too, so it

can move toward HLi with a larger amount. Remember that

the vector of VLLi
affects this movement.

VLLiþ1
¼ VLLi

þ aLLrandðÞðebest � eiÞ
þ bLLrandðÞðLLi � eiÞ ð21Þ

aLL ¼ fifðei ¼ 0jjebest ¼ 0Þ ! 2g ð22Þ

aLL ¼

ifðei\ebestÞ&&ðei\LLiÞ ! randðÞ:ei

ei�ebest

ei; ebest 6¼ 0

ifðei\ebestÞ&&ðei [LLiÞ ! 2randðÞ�ebest

1=ð2:eiÞ
ei 6¼ 0

ifðei [ebestÞ ! ebest

1=ð2:randðÞÞ

8
>>>>><

>>>>>:

ð23Þ
bLL ¼ fifðei ¼ 0jjebest ¼ 0Þ ! 2g ð24Þ

bLL ¼

ifðei\ebestÞ&&ðei\LLiÞ ! randðÞ:ei

ei�LLi

ei;LLi 6¼ 0

ifðei\ebestÞ&&ðei [LLiÞ ! 2randðÞ�LLi

1=ð2:eiÞ
ei 6¼ 0

ifðei [ebestÞ ! LLi

1=ð2:randðÞÞ

8
>>>>><

>>>>>:

ð25Þ
Viþ1 ¼ VHLiþ1

þ VLLiþ1
ð26Þ

eiþ1 ¼ ei þ Viþ1 ð27Þ

Every particle ei utilizes nearest particle LLi in order to

compute the vector of VLLi
.

2.3.2.2 Aimless particle These particles in the beginning

of exploring the situation do not have a good position in

comparison with other particles, and the amount of their

f(oi) is bad. These particles, after being recognized, are

differentiated from explorer particles ei, so a new respon-

sibility in group is defined for them (oi). Their duty is an

exploratory and random search. They start moving ran-

domly and do not have anything to do with the position of

HLi and LLi. They are swallows that explore remote areas

as the scout of colony and inform the group if they find a

Fig. 3 Kinds of particles and how explorer particles move

436 Neural Comput & Applic (2013) 23:429–454

123

good point. In a lot of optimization problems because of

inappropriate distribution of particles in position space, the

optimum response is kept hidden from the group’s eyes and

the group converges in a local optimum. This is the greatest

difficulty with optimization problems (early convergence

in local optimum pints). Particles oi, apparently, may have

an aimless and useless behavior but examine the proba-

bility of neglecting the global optimum response and go

around the diverse surrounding points with their long

jumps and examine the situation of optimization. The

particle oi compares its position with the local optimum

points LLi and HLi.

If this particle finds an optimum point while it is

searching, it will replace its position with the nearest

explorer particle ei and then keep searching.

oiþ1 ¼ oi þ randðf�1; 1gÞ � randðmins;maxsÞ
1þ randðÞ

	

ð28Þ

New position of each particle of oi is equal to its previous

position plus a random amount between the minimum and

the maximum of position space, divided by an amount

between one and two. The division answer is added to or

subtracted from the previous position of particle oi

randomly.

For example, the range of the function Rosenbrock has

been defined between (-50, 50). If the function rand (min,

max) produces a random number (25) and the function

rand() produces 0.5, the fraction result would be 12.5. Now

this amount may be added to or subtracted from the posi-

tion of oi. This will increase the chance of examining the

different areas of environment.

2.3.2.3 Leader particle There are particles in SSO algo-

rithm named Leader. These particles have the best amount

of f(li) in the beginning of position space searching. Their

place and their amount may change in each level. There is

just one leader particle in PSO method (gbest), while in this

new method there may be nl leader particle. These particles

may be distributed or gathered in space. The best leader is

named Leader Head, which is recognized as the major

leader in colony, also there are some particles named Local

Leader. They are candidates for quite good answers which

we preserve. In real world of swallows, each thousands

member colony is divided into a number of subcolonies.

These subcolonies have a local leader; though, this lead-

ership may be changed repeatedly by other wiser and

stronger swallows. In the population of swallows, leader is

a bird which is in a better location which is near to food

and a resting place. The duty of this leader is to guide other

members of colony to this area. This issue is simulated in

SSO algorithm. In each repetition, leader particles whether

head or local may be changed or an aimless particle may

discover an area that is the best response of problem up to

then; consequently, this swallows acts as a leader. Figure 4

shows an example of swallow swarm flying.

Real boundaries between subcolonies may never be

marked because swallow movements happen in high speed

and high dynamic. The diagram of swallows and their

numbers changes according to the size of subcolonies.

All of these three particles (ei, oi, and li) interact with

each other continuously, and each particle (swallow) can

play each of these three roles. During searching period,

these particles may frequently change their role but pri-

mary goal (finding optimum point) is such a more impor-

tant task.

2.3.2.4 Pseudocode SSO Programming the SSO algo-

rithm is easy. In this research, MATLAB software is used

for above simulation (Figs. 5, 6).

Swallow swarm optimization algorithm:

Fig. 4 Swallow swarm flying. Circles are subcolonies, and triangles

are local leaders (choosing that swallow is surely a hard job but that

swallow is generally in the center of subcolony and there is a high

density around it. Never forget that this swallow may be changed

every second. Squares are aimless swallows oi

1. Initialize population (random all particle ei)

2. Iter = 1

3. While (iter \ max_iter)

4. For every particle (ei) Calculate f(ei)

5. Sort f(e1, e2, …, en))?min to max

6. All particles ei = f(ei)

7. HL = emin

8. For (j = 2 to j \ m) LLi = ej

9. For (j = 1 to j \ b) oj = en-j?1

10. i = 1

11. While (k \ iter)

12. While (j \ N)

13. if (ebest [ei) ebest = ei

14. While (i \ N)

Neural Comput & Applic (2013) 23:429–454 437

123

ei is that f(ei) in above algorithm (Table 2).

3 Benchmark functions

To test the ability of the proposed algorithm and to com-

pare it to conventional Variant PSO and FSO, some

benchmarks are considered. Each of these functions tests

the optimization algorithm in special conditions. So,

weakness points of the optimization algorithm will be

obvious. These functions are described in Table 3 and

Fig. 7.

The first problem is the sphere function, and it is easy to

solve. The second problem is the Rosenbrock function. It

can be treated as a multimodal problem. It has a narrow

valley from the perceived local optima to the global opti-

mum. In the experiments below, we find that the algorithms

that perform well on sphere function perform well on

Rosenbrock function too. Ackley’s function has one nar-

row global optimum basin and many minor local optima.

It is probably the easiest problem among the six as

its local optima are shallow. Griewank’s function has a
QD

i¼1 cosðxi=
ffiffi
i
p
Þ component causing linkages among vari-

ables, thereby making it difficult to reach the global opti-

mum. An interesting phenomenon of Griewank’s function

is that it is more difficult for lower dimensions than for

higher dimensions [75].

Rastrigin’s function is a complex multimodal problem

with a large number of local optima. When attempting to

solve Rastrigin’s function, algorithms may easily fall into a

local optimum. Hence, an algorithm capable of maintaining

a larger diversity is likely to yield better results. Non-

continuous Rastrigin’s function is constructed based on the

Rastrigin’s function and has the same number of local

optima as the continuous Rastrigin’s function. The com-

plexity of Schwefel’s function is due to its deep local

optima being far from the global optimum. It will be hard

to find the global optimum if many particles fall into one of

the deep local optima.

To rotate a function, first an orthogonal matrix M should

be generated. The original variable is left multiplied by the

orthogonal matrix M to get the new rotated variable

y = M*x, and this variable y is used to calculate the fitness

value f.

if M ¼

m11 m12 . . . m1D

m21 m22 . . . m2D

.
mD1 mD2 . . . mDD

2

664

3

775x

¼ ½x1; x2; . . .; xD�T and y ¼ ½y1; y2; . . .; yD�T ð29Þ

Fig. 5 Swallow swarm flying

continued

15. Search (nearest LLi to ei)

16. aHL = {if(ei = 0||ebest = 0)?1.5}

17.aHL ¼
ifðei\ebestÞ&&ðei\HLiÞ ! randðÞ:ei

ei �ebest
ei; ebest 6¼ 0

ifðei\ebestÞ&&ðei [HLiÞ ! 2randðÞ�ebest

1=ð2:eiÞ ei 6¼ 0

ifðei [ebestÞ ! ebest

1=ð2:randðÞÞ

8
><

>:

18. bHL = {if(ei = 0||ebest = 0)?1.5}

19.

bHL ¼
ifðei\ebestÞ&&ðei\HLiÞ ! randðÞ:ei

ei �HLi
ei;HLi 6¼ 0

ifðei\ebestÞ&&ðei [HLiÞ ! 2randðÞ�HLi

1=ð2:eiÞ ei 6¼ 0

ifðei [ebestÞ ! HLi

1=ð2:randðÞÞ

8
><

>:

20. VHLiþ1
¼ VHLi

þ aHLrandðÞðebest � eiÞ þ bHLrandðÞðHLi � eiÞ
21. aLL = {if(ei = 0||ebest = 0)?2}

22.

aLL ¼
ifðei\ebestÞ&&ðei\LLiÞ ! randðÞ:ei

ei �ebest
ei; ebest 6¼ 0

ifðei\ebestÞ&&ðei [LLiÞ ! 2randðÞ�ebest

1=ð2:eiÞ ei 6¼ 0

ifðei [ebestÞ ! ebest

1=ð2:randðÞÞ

8
><

>:

23. bLL = {if(ei = 0||ebest = 0)?2}

24. bLL ¼
ifðei\ebestÞ&&ðei\LLiÞ ! randðÞ:ei

ei�LLi
ei;LLi 6¼ 0

ifðei\ebestÞ&&ðei [LLiÞ ! 2randðÞ�LLi

1=ð2:eiÞ ei 6¼ 0

ifðei [ebestÞ ! LLi

1=ð2:randðÞÞ

8
><

>:

25. VLLiþ1
¼ VLLi

þ aLLrandðÞðebest � eiÞ þ bLLrandðÞðLLi � eiÞ
26. Viþ1 ¼ VHLiþ1

þ VLLiþ1

27. ei?1 = ei ? Vi?1

28. oiþ1 ¼ oi þ randðf�1; 1gÞ � randðmins ;maxsÞ
1þrandðÞ

29. if (f ðoiþ1Þ[f ðHLiÞ) enearest = Oi?1 ? go to 30

30. While (ko B b)

31. While (l B nl)

32. if ðf ðoko
Þ[f ðLLlÞÞ

33. enearest = Oi?1

34. Loop//i \ N

35. Loop//iter \ max_iter

36. End.

438 Neural Comput & Applic (2013) 23:429–454

123

then yi ¼ mi1x1 þ mi2x2 þ � � � þ miDxD i ¼ 1; 2; . . .;D

ð30Þ

When one dimension in x vector is changed, all dimensions

in vector y will be affected. Hence, the rotated function

cannot be solved by just D one-dimensional searches. The

orthogonal rotation matrix does not affect the shape of the

functions. In this paper, we used Salomon’s method to

generate the orthogonal matrix [76].

In rotated Schwefel’s function, in order to keep the

global optimum in the search range after rotation, noting

that the original global optimum of Schwefel’s function is

at [420.96, 420.96,…, 420.96], y0 = M * (x - 420.96) and

y = y0 ? 420.96 are used instead of y = M * x. Since

Schwefel’s function has better solutions out of the

search range [500, -500]D, when |yi| [500, zi = 0.001

(yi - 500)2, that is, zi is set in portion to the square distance

between yi and the bound.

4 Experiments

A number of benchmarks have been used to test the pro-

posed algorithm. Choosing each of these functions for

testing had a particular reason, for instance Ackley function

is used to aimless particles testing. These particles are

expected to find one of the minimum areas with their

random movements and guide the group toward there. Each

of these functions has particular features that generally

have been applied in numerous articles to examine the

optimization methods. The SSO method with different

iterations of particles and different iterations has been

Fig. 6 Swallow swarm flying

and food searching

Table 2 Parameters of SSO

algorithm
Parameter Description

1 Iter Algorithm iteration

2 ei Explorer particle

3 oi Aimless particle

4 HL Head leader

5 LLi Local leader

6 nl The number of local leader

7 ebest The best position the particle has ever had

8 aHL bHL Control parameters of convergence speed toward particle HL

9 aLL bLL Control parameters of convergence speed toward particle LL

10 VHL Velocity vector of particle toward HL

11 VLL Velocity vector of particle toward LL

12 mins, maxs The minimum and the maximum amount of benchmark function

13 b The number of aimless particle

Neural Comput & Applic (2013) 23:429–454 439

123

T
a

b
le

3
B

en
ch

m
ar

k
s

th
at

ar
e

u
se

d
to

te
st

th
e

ab
il

it
y

o
f

th
e

p
ro

p
o

se
d

al
g

o
ri

th
m

#
F

u
n

ct
io

n
E

q
u

at
io

n
D

o
m

ai
n

F
m

in
D

f 1
S

p
h

er
e

P
D i¼

1
x2 i

±
5

.1
2

0
3

0
U

n
im

o
d

al

f 2
R

o
se

n
b

ro
ck

P
D
�

1
i¼

1
1

0
0

x i
þ

1
�

x2 i

�
� 2
þ
ðx

i
�

1
Þ2

�
�

±
5

0
0

3
0

f 3
S

ch
w

ef
el

’s
P

2
.2

2
P

D i¼
1
jx i
jþ
Q

D i¼
1
jx

ij
±

1
0

0
3

0

f 4
Q

u
ad

ri
c

P
D i¼

1

P
i j¼

1
x j

�
� 2

±
1

0
0

0
3

0

f 5
S

te
p

P
D i¼

1
x i
þ

0
:5

b
c

ð
Þ2

±
1

0
0

0
3

0

f 6
Q

u
ad

ri
c

n
o

is
e

P
D i¼

1
ix

4 i
þ

ra
n

d
½0
;1
Þ

±
1

.2
8

0
3

0

f 7
A

ck
le

y

2
0
þ

e
�

2
0
e�

0
:2

ffiffiffi
ffiffiffi
ffiffiffi
ffiffiffi
ffiffiffi

1 D

P
D i¼

1
x2 i

q

�
e

1 D
co

sð
2
p

x i
Þ

±
3

2
0

3
0

M
u

lt
im

o
d

al

f 8
G

ri
ew

an
k

P
D i¼

1

x2 i

4
0
0
0

�
�
�
Q

D i¼
1

co
s

x i
ffi i
p�
�
þ

1
±

6
0

0
0

3
0

f 9
R

as
tr

ig
in

P
D i¼

1
x2 i
�

1
0

co
sð

2
px

iÞ
þ

1
0

�
�

±
5

.1
2

0
3

0

f 1
0

P
er

m
#

1
[8

6
]

P
4 x¼

1

P
4 i¼

1
ðik
þ

bÞ
ðð

x i
=

iÞk
�

1
Þ

h
i 2

±
4

b
=

5
0

0
3

0

f 1
1

S
ch

w
ef

el
P

D i¼
1
�

x
si

n
ð
ffiffiffiffi x i
p
Þ

±
5

0
0

-
1

2
5

6
9

.5
3

0

f 1
2

N
o

n
-c

o
n

ti
n

u
o

u
s

R
as

tr
ig

in
X

D i¼
1

y2 i
�

1
0

co
sð

2
px

iÞ
þ

1
0

�
�

w
h

er
e

yi
¼

x i
jx i
j\

0
:5

ro
u
n
d
ð2

x i
Þ

2
jx

ij�
0
:5

(
±

5
.1

2
0

3
0

f 1
3

G
en

er
al

iz
ed

p
en

al
iz

ed
p=

D
1

0
si

n
2
ðp

y i
Þþ

P
D
�

1
i¼

1
ðy

i
�

1
Þ2

1
þ

1
0

si
n

2
ðp

y i
þ

1
Þ

�
�
þ
ðy

D
�

1
Þ2

n
o
þ
P

D i¼
1

u
ðx

i;
1

0
;1

0
0
;4
Þ

w
h

er
e

yi
¼

1
þ

1 4
ðx

i
þ

1
Þ;

u
ðx

i;
a
;k
;m
Þ¼

k
ðx

i
�

a
Þm

x i
[

a

0
�

a
�

x i
�

a

k
ð�

x i
�

a
Þm

x i
\
�

a

8 < :

±
5

0
0

3
0

f 1
4

R
o

ta
te

d
4

1
8
:9

8
2

9
�

D
�
P

D i¼
1

z i

z i
¼

y i
si

n
ð
ffiffiffi
ffiffiffi jy i
j

p
Þ

if
jy

ij�
5

0
0

0
o

th
er

w
is

e

y i
¼

y0 i
þ

4
2

0
:9

6
y0
¼

M
�
ðx
�

4
2

0
:9

6
Þ;

M
is

an
o

rt
h

o
g

o
n

al
m

at
ri

x

±
5

0
0

0
3

0
R

o
ta

te
d

an
d

sh
if

te
d

f 1
5

R
o

ta
te

d
R

as
tr

ig
in

X
D i¼

1
y2 i
�

1
0

co
sð

2
p

y i
Þþ

1
0

�
�

y
¼

M
�

x

±
5

.1
2

0
3

0

f 1
6

R
o

ta
te

d
A

ck
le

y
�

2
0

ex
p
�

0
:2

ffiffiffi
ffiffiffi
ffiffiffi
ffiffiffi
ffiffiffi
ffiffiffi
ffiffiffiffi

1 D

X
D i¼

1
y2 i

r

!

�
ex

p
1 D

X
D i¼

1
co

s
2
p

y i

�
�
þ

2
0
þ

e

y
¼

M
�

x

±
3

2
0

3
0

440 Neural Comput & Applic (2013) 23:429–454

123

tested by every function of bench and then has been

compared to FSO and PSO.

In SSO algorithm, first amount of parameters are

try_number = 3, S = 3, d = 16, visualmin = 0.001,

dimension = 30, and stepmin = 0.0002. Proposed idea

besides standard FSO and standard PSO simulated in the

MATLAB software and then functions of section three

have been used to test the accuracy of the method perfor-

mance. Goal of this simulation is to compare the perfor-

mance of these three methods in speed of convergence and

escaping from minimum local points. First, the Ackley

function is applied to test. Table 4 shows the results of

performance of two optimization methods (PSO and FSO)

and the proposed method (SSO).

Regarding the Table 4, proposed method (SSO) does not

have good performance when the number of particles is

low, and in comparison with other two methods, it does not

achieve good results. But by increasing the number of

particles, performance of proposed method begins being

refined and shows a better performance than PSO’s and

FSO’s. This is a fact that when there are a few swallows in

a colony, there is not a big success. This shows why

swallows choose bigger colonies to live in and to migrate

in (Fig. 8).

It is seen clearly in Fig. 9 when exploring particles’

number is high, the convergence speed of the SSO method

heightens, and in iterations that are more than 100, the

process of finding the global minimum point is satisfying.

FSO has a better convergence speed than PSO, but unfor-

tunately both methods got stuck in a local minimum point

in the function Ackley and they have not optimized after

600 repetitions. Another point that is seen in Fig. 9 is that

in iterations less than 50, the proposed method (SSO) has a

same performance as the FSO.

Function Sphere is a good function to test every opti-

mization method because it is a simple structure one with a

global minimum equal to zero. Generally, different opti-

mization methods perform quite well in this function.

Table 5 compares the proposed method with PSO and

FSO.

Performance of the proposed method stays the same in

comparison with FSO when there are 100 particles and

1,000 unchanging iterations. This is correct for 50 particles

too. But when the number of particles decreases and comes

to 30, the SSO performs a better performance, and if the

number of particles keeps on decreasing and comes to (5,

10), the SSO performs a better performance again com-

paring to other two methods. But a steep decrease in the

number of particles (2, 3) changes the result. Then, FSO

and PSO make a better performance, respectively (Fig. 10).

Performance of three optimization methods with a low

number of particles (2) and 1,000 iterations is shown in

Fig. 11. The FSO and PSO had a quite good performanceT
a

b
le

3
co

n
ti

n
u

ed

#
F

u
n

ct
io

n
E

q
u

at
io

n
D

o
m

ai
n

F
m

in
D

f 1
7

R
o

ta
te

d
G

ri
ew

an
k

X
D i¼

1

y2 i

4
;0

0
0

�
�
�
Y

D i¼
1

co
s

y i
ffiffi i
p
�

�
þ

1

y
¼

M
�

x

±
6

0
0

0
3

0

f 1
8

S
h

if
te

d
R

o
se

n
b

ro
ck

P
D i¼

1
1

0
0

z2 i
�

z i
þ

1

�
� 2
þ
ðz

i
�

1
Þ2

�
�
þ

f
b

ia
s 6

z
¼

x
�

o
þ

1
;

x
¼
½x

1
;x

2
;.

..
;x

D
�

o
¼
½o

1
;o

2
;.

..
o

D
�:

th
e

sh
if

te
d

g
lo

b
al

o
p

ti
m

u
m

±
1

0
0

3
9

0
3

0

f 1
9

S
h

if
te

d
R

as
tr

ig
in

P
v i¼

1
z2 i
�

1
0

co
sð

2
p

z i
Þþ

1
0

�
�
þ

f
b

ia
s 9

o
¼
½o

1
;o

2
;.

..
;o

D
�:

th
e

sh
if

te
d

g
lo

b
al

o
p

ti
m

u
m

±
5

-
3

3
0

3
0

Neural Comput & Applic (2013) 23:429–454 441

123

and could find small minimum amounts. Since the pro-

posed method is heavily relied on swarm intelligence

knowledge, when the population is small, it confronts a

fundamental deficiency. Actually, this problem is not a

weak point of the SSO but it is its particular feature. The

number of particles should not be less than a distinct

amount in order to have a good performance. However, in

iterations less than 200, this method has a better perfor-

mance comparing to FSO and PSO, and in iterations

400–600, it is better than PSO again but in iterations more

than 600 has not found optimum response and got stuck in

local minimum points.

Ackley Function Rosenbrock Function Sphere Function

Perm Function Rastrigin Function Griewank Function

Non continuous Rastrigin esioNcirdauQ22.2lefewhcS

Rotated Schwefel Rotated Ackley Shifted Rosenbrock

Fig. 7 Benchmark tests and its view in 2-dimensional axes

442 Neural Comput & Applic (2013) 23:429–454

123

Function Griewank has a complex structure. It is like a

hedgehog full of ups and downs and a collection of local

extremum points. It is a hard function for testing the

optimization methods. Searching would be stopped, falling

down one of the local optimum points. Performance of the

SSO in this function is good. Table 6 shows the result of

comparing three considered methods with each other.

The SSO has shown a good performance in the function

Griewank. Because of the interaction between the particles

ei and aimless movements of particles oi, the probability of

finding the minimum points is well examined. This method

comparing to PSO has a better performance with a less

number of particles in function Griewank (Fig. 12).

Convergence speed in SSO is more than other two

methods. Step-like movements in diagram of SSO perfor-

mance exhibit how it escapes from local minimum points

in order to find a better optimum point (Fig. 13).

SSO with two particles in function Griewank has a good

performance. It shows more proper behavior comparing to

other two methods in the iterations less than 100, but in

Table 4 Comparing the performance results between two optimiza-

tion methods (PSO and FSO) and proposed method (SSO) in the

function Ackley

Particle Iteration PSOgbest FSOgbest SSOgbest

1 10 100 1.8703e-005 7.1776e-007 3.8612e-009

2 20 100 1.8703e-005 3.5021e-007 4.7025e-012

3 30 100 1.8703e-005 2.8182e-008 1.2436e-014

4 40 100 1.8703e-005 2.5565e-009 3.7155e-015

5 5 100 5.2714e-004 9.4081e-006 2.1381e-006

6 3 100 2.5799 3.6774e-001 5.1442e-001

7 2 100 14.4370 1.0895 7.0286

8 50 1,000 1.003e-015 1.003e-015 5.0842e-22

Fig. 8 Comparing the performance of SSO to the FSO and PSO. In

the function Ackley with 5 particles and 300 repetition

Fig. 9 Comparing the performance of SSO with the FSO and PSO in

the function Ackley with 50 particles and 1,000 repetition

Table 5 Comparison between SSO, PSO, and FSO in the function

Sphere

Particle Iteration PSOgbest FSOgbest SSOgbest

100 1,000 1.9240e-082 0 0

50 1,000 7.5243e-078 0 0

30 1,000 3.4892e-064 2.2378e-091 0

10 1,000 4.9240e-041 6.4182e-087 8.0016e-095

5 1,000 2.2926e-038 2.5051e-076 6.0971e-085

3 1,000 6.5324e-034 1.0036e-061 4.0176e-032

2 1,000 4.5519e-028 7.0584e-041 7.4218e-012

Fig. 10 Comparison between SSO, PSO, and FSO in the function

Sphere with 100 particles and 1,000 repetitions

Neural Comput & Applic (2013) 23:429–454 443

123

iterations more than 100, FSO escapes better from local

minimum points.

Rastrigin is a hard and difficult function. It, like

Griewank, has many local minimum points and, different

from Griewank, its apexes (peaks) are too higher and too

deeper (Table 7).

Performance of PSO has not been good at all in this

function. PSO gets stuck very quickly in one of the local

minimum points and cannot find a more proper response.

FSO’s behavior is better and more intelligently has found

more optimum points comparing to PSO. The performance

of the SSO is much better than that of other two methods

and in all cases with any number of particles has survived

from local minimum points (Fig. 14).

Function Rosenbrock has a complex and particular

structure. This function has different areas that distract any

optimization method. This special function is used in this

research to observe the performance of proposed method.

Table 8 shows the comparison between proposed method

and other two methods.

As shown in Table 8, the PSO represents inappropriate

responses. But FSO with 100 particles has a quite good

response. The SSO has been able to pass different areas of

this function and recognizes different minimum points.

Appointing some local leaders and using aimless particles

Fig. 11 Comparison between SSO and PSO, FSO in the function

Sphere with 2 particles and 1,000 repetitions

Table 6 Comparison between SSO and PSO, FSO in the function

Griewank

Particle Iteration PSOgbest FSOgbest SSOgbest

100 1,000 2.4192e-003 2.0008e-009 7.5301e-012

50 1,000 7.7481e-002 1.7812e-007 1.4704e-011

30 1,000 3.4521e-002 3.2304e-006 3.3501e-009

10 1,000 1.0081e-002 1.4102e-005 4.8516e-008

5 1,000 1.2047e-001 2.5051e-005 4.0072e-003

3 1,000 2.0489e-001 6.1099e-004 1.0051e-002

2 1,000 2.1105e-001 4.0529e-004 1.0063e-002

Fig. 12 Comparison between SSO and PSO, FSO in the function

Griewank with 10 particles and 1,000 repetitions

Fig. 13 Comparison between SSO and PSO, FSO in the function

Griewank with 2 particles and 1,000 iterations

Table 7 Comparison between SSO and PSO, FSO in the function

Rastrigin

Particle Iteration PSOgbest FSOgbest SSOgbest

100 1,000 1.08254e-004 7.3841e-009 3.3557e-015

50 1,000 2.3961e-002 1.0014e-006 7.2471e-013

30 1,000 8.73 4.5106e-005 8.4519e-012

10 1,000 10.26 9.0045e-005 1.0041e-009

5 1,000 10.57 1.5067e-002 6.7581e-004

3 1,000 14.81 2.15 2.0076e-002

2 1,000 14.73 4.78 2.12

444 Neural Comput & Applic (2013) 23:429–454

123

oi have been a great help to intensify the feasibility of

finding the minimum points.

Performance of the three methods is shown in Fig. 15.

All the three methods have had a quite good performance in

iterations less than 200 and a descending movement toward

minimum points. In iterations between 200 and 400, the

PSO has not optimized but other two methods especially

PSO have behaved well. In iterations between 400 and 600,

the PSO has not optimized again but the FSO has had a

small optimization and the SSO has found better minimum

points again. In iterations between 600 and 800, the PSO

suddenly performs a good movement and jumps over a local

minimum point but other two methods have not had any

noticeable optimization. At the end (iterations between 800

and 1,000), the three methods have not had any noticeable

optimization. Totally, the SSO method has had a very good

function and in lower numbers of iterations, has found

optimum points with high convergence speed.

Perm is a hard function. Its outline is like a flatfish

keeping its wings up and has a curving back. In this

function, particle distribution in goal space is so crucial in

order to let the particles have the chance of finding the

global optimum point. Table 9 shows the results of these

three methods’ performance.

The SSO has a quite good performance in this function.

Its responses are close to FSO’s. But what is really clear is

that its results are better than PSO’s (Fig. 16).

Convergence speed in the function Perm is very good. In

iterations less than 200, it has been able to achieve consid-

erable minimum points. Common aspect between these three

Fig. 14 Comparison between SSO, PSO, and FSO in the function

Rastrigin with 30 particles and 1,000 repetitions

Table 8 Between SSO, PSO, and FSO in the function Rosenbrock

Particle Iteration PSOgbest FSOgbest SSOgbest

100 1,000 5.0158 8.4573e-001 4.1217e-004

50 1,000 11.2104 1.381 9.2483e-003

30 1,000 18.0025 3.4502 2.1172e-003

10 1,000 26.5891 4.8604 1.0043e-001

5 1,000 29.4508 8.955 1.2541

3 1,000 38.25 13.104 3.402

2 1,000 38.6271 13.8004 4.815

Fig. 15 Comparison between SSO, PSO, and FSO in the function

Rosenbrock with 10 particles and 1,000 repetitions

Table 9 Comparison between SSO, PSO, and FSO in the function

perm

Particle Iteration PSOgbest FSOgbest SSOgbest

100 1,000 3.4573e-003 2.0792e-004 1.0102e-004

50 1,000 9.1824e-002 4.0482e-004 2.5724e-004

30 1,000 3.0045e-001 1.6614e-003 7.8254e-004

20 1,000 8.4793e-001 5.3554e-003 4.1047e-003

15 1,000 0.14 7.0008e-002 8.4471e-003

10 1,000 1.004 9.7329e-002 2.5711e-003

5 1,000 3.024 1.3381e-001 6.1049e-002

Fig. 16 Comparison between SSO, PSO, and FSO in the function

Perm with 10 particles and 1,000 repetitions

Neural Comput & Applic (2013) 23:429–454 445

123

methods is in iterations more than 400. All three methods

have got stuck in local minimum points and could not release

themselves up to the end. The FSO did not have a good

commencement. It means that in iterations less than 100, it

had a bad behavior comparing to the PSO. But in iterations

more than 100, it has found proper minimum points.

Global best has been used for comparing the proposed

method to other optimization methods up to now; however,

this topology is bad for multimodal functions [77].

Local best PSO, or lbest PSO, uses a ring social network

topology where smaller neighborhoods are defined for each

particle. The social component reflects the information

exchanged within the neighborhood of the particle,

reflecting local knowledge of the environment. With ref-

erence to the velocity equation, the social contribution to

particle velocity is proportional to the distance between a

particle and the best position found by the neighborhood of

particles [78].

In this comparison, the number of particles 20, the

number of iterations 1000, the size of neighborhood 2, ring

topology, and the parameters c1 = c2 = 1.5, x = 0.73

have been used for lbest PSO. try_number = 3, S = 3,

d = 16, visualmin = 0.001, dimension = 30, and step

visualmin = 0.002 have been used for FSO. Comparison of

the proposed method to the other two methods PSO and

FSO with the size of neighborhood 2 is shown in Table 10.

According to the results of the Table 10, the SSO

method, considering the Ibest, is better than the other two

methods FSO and PSO. The reason why it is better is local

searching of function Sphere as well as having a local

leader, which causes the particles not to converge prema-

turely and not to get stuck in local optimum points. The

SSO has found more optimum points in multimodal func-

tions and has achieved better results. A considering thing

about the SSO is that the results of local best have been

improved in comparison with the global best. This is an

attribute of the SSO. Besides, the results of the FSO have

been noticeable.

Certainly, it is not claimed in this research that the SSO

is the best optimization method since this is a new method

and should be optimized by other researchers as the PSO

has been optimized by other researchers and, now, there are

different kinds of this good optimization method. Many

methods of PSO algorithm have been innovated. Table 11

shows different methods of PSO.

It is represented that the comparison among the per-

formance of new optimization method SSO and a number

of current optimization methods. This is done to assess

the significance of the SSO among other current methods.

Table 10 Comparison between SSO and PSO, FSO in the local best

Benchmark PSOLbest FSOLbest SSOLbest

Ackley Mean 7.547e-002 2.84e-004 4.841e-007

Min 7.99e-015 3.045e-019 7.172e-024

Max 1.5017 5.21e-001 1.842

Griewank Mean 9.399e-002 2.874e-002 1.895e-005

Min 0 0 0

Max 5.407e-001 1.472e-001 2.647e-001

Quadric Mean 1.039e-011 3.542e-014 1.521e-015

Min 8.2216e-016 5.157e-021 2.708e-023

Max 1.6906e-010 2.657e-012 1.952e-011

Quadric noise Mean 1.325e-002 2.238e-004 1.411e-004

Min 4.8734e-004 2.416-e006 5.274e-007

Max 2.9155e-002 1.286e-002 1.561e-002

Rastrigin Mean 54.2849 7.124e-003 1.604e-005

Min 25.8689 2.206e-005 4.522e-010

Max 85.5663 2.071e-001 1.055e-002

Rosenbrock Mean 3.2552 5.602e-004 8.741e-005

Min 4.128e-005 1.0477e-008 8.525e-010

Max 19.091 2.255e-002 2.581e-002

Sphere Mean 5.514e-160 4.117e-171 2.11e-185

Min 1.3621e-177 2.554e-180 0

Max 2.757e-158 1.478e-142 3.344e-161

Bold values indicate the best values in the benchmark functions

Table 11 Shows different methods of PSO

Algorithm Year Topology Parameters setting Reference

GPSO 1998 Global star w: 0.9-0.4, c1, c2 = 2 [23]

LPSO 2002 Local ring w: 0.9-0.4, c1, c2 = 2 [54]

VPSO 2002 Local von Neumann w: 0.9-0.4, c1, c2 = 2 [55]

FIPS 2004 Local URing v ¼ 0:729;
P

ci ¼ 4:1 [58]

HPSO-TVAC 2004 Global star w: 0.9-0.4, c1 = 2.5 – 0.5, c2 = 0.5 – 2.5 [37]

DMS-PSO 2005 Dynamic multiswarm w: 0.9-0.2, c1 = c2 = 2, m = 3, R = 5 [42]

CLPSO 2006 Comprehensive learning w: 0.9-0.2, c = 1.49445, m = 7 [59]

OPSO 2008 Orthogonal particle swarm w: 0.9-0.4, c1 = c2 = 0.2, Vmax = 0.5*rang [87]

APSO 2009 Adaptive swarm Adaptation of the inertia weight [50]

OLPSO 2010 Orthogonal learning particle swarm w: 0.9-0.4, c = 2, G = 5, Vmax = 0.2*rang [53]

446 Neural Comput & Applic (2013) 23:429–454

123

To do it, these methods should be tested in same software

and hardware. Applied software is MATLAB version

7.0.4 (R14) service pack2. Current hardware is Celeron

2.26-GHz CPU, 256-MB memory, and Windows XP2

operating system. The number of particles is 20 and the

number of iterations is 1,000. Table 12 shows the per-

formance of the methods of Table 11 and the SSO

method.

Table 12 Comparison between SSO and optimization several methods

Algorithm Sphere Rosenbrock Ackley Griewank Rastrigin Schwefel

GPSO 1.98e-053 28.1 1.15e-014 2.37e-002 8.68 -10,090.16

LPSO 4.77e-029 21.8627 1.85e-014 1.10e-02 7.25 -9,628.35

VPSO 5.11e-038 37.6469 1.40e-014 1.31e-02 8.07 -9,845.27

FIPS 3.21e-030 22.5387 7.69e-015 9.04e-04 10.92 -10,113.8

HPSO-TVAC 3.38e-041 13 2.06e-010 1.07e-02 3.71 -10,868.57

DMS-PSO 3.85e-054 32.3 8.52e-015 1.31e-02 6.42 -9,593.33

CLPSO 1.89e-019 11 2.01e-012 6.45e-13 6.64e-011 -12,557.65

OPSO 6.45e-018 49.61 6.23e-009 2.29e-03 6.97 -8,402.53

APSO 1.45e-150 2.84 1.11e-014 1.67e-02 1.01e-14 212,569.5

OLPSO-G 4.12e-054 21.52 7.98e-015 4.83e-03 1.07 -9,821.74

OLPSO-L 1.11e-038 1.26 4.14-e015 0 0 -12,150.63

SSO 0 2.4373e-001 4.7025e-012 4.8516e-008 1.8104e-010 212,569.5

Best method SSO SSO OLPSO-L OLPSO-L OLPSO-L SSO&APSO

Algorithm Schwefel’s P2.22 Quadric Step Quadric noise Perm N_Rastrigin Generalized Penalized

GPSO 2.51e-034 6.45e-002 0 7.77e-003 1.02e-001 15.5 1.04e-002

LPSO 2.03e-020 18.6 0 1.49e-002 1.41e-002 30.4 2.18e-030

VPSO 6.29e-027 1.44 0 1.08e-002 12.5 21.33 3.46e-003

FIPS 1.32e-017 0.77 0 2.55e-003 5.68e-001 35.91 1.22e-031

HPSO-TVAC 6.90e-023 2.89e-007 0 5.54e-002 2.02e-002 1.83 7.07e-030

DMS-PSO 2.61e-029 47.5 0 1.10e-002 2.78 32.8 2.05e-032

CLPSO 1.01e-013 395 0 3.92e-003 4.05e-001 1.67e-002 1.59e-021

OPSO 1.26e-010 2.44e-002 0 4.87e-002 2.33e-002 2.49e-006 1.56e-019

APSO 5.15e-084 1.13e-010 0 4.66e-003 2.94e-003 4.14e-016 3.27e-031

OLPSO-G 9.85e-030 5.59e-006 0 6.21e-003 1.28 1.05e-011 1.59e-032

OLPSO-L 7.67e-022 1.56e-001 0 1.32e-002 5.31e-002 6.32e-009 1.57e-032

SSO 1.58e-078 4.16e-015 0 2.86e-003 1.01e-004 6.04e-019 1.84e-031

Best method APSO SSO # FIPS SSO SSO OLPSO-L

Algorithm Rotated Schwefel Rotated Rastrigin Rotated Ackley Rotated Griewank Shifted Rosenbrock Shifted Rastrigin

GPSO 4.61e-003 60.02 1.93 1.80e-002 427.93 -223.18

LPSO 4.50e-003 53.36 1.55 1.68e-003 432.33 -234.95

VPSO 4.29e-003 71.05 2.56e-002 4.91e-003 501.29 -284.39

FIPS 4.41e-003 1.50e-02 3.16e-007 1.28e-008 424.83 -245.77

HPSO-TVAC 5.32e-003 52.9 9.29 9.26e-003 494.2 -318.33

DMS-PSO 4.04e-003 41.97 2.42e-014 1.02e-002 502.51 -303.17

CLPSO 4.39e-003 87.14 5.91e-005 7.96e-005 403.07 2330

OPSO 4.48e-003 63.78 1.49e-008 1.28e-003 2.45e007 -284.11

APSO 2.98e-003 51.78 6.41e-012 2.25e-008 431.47 -314.21

OLPSO-G 4.00e-003 46.09 7.69e-015 1.68e-003 424.75 -328.57

OLPSO-L 3.13e-003 53.35 4.28e-015 4.19e-08 415.94 2330

SSO 3.11e-003 41.02 1.08e-14 1.93e-011 403.48 2330

Best method APSO SSO OLPSO-L SSO SSO CLPSO&OLPSO-L&SSO

Bold values indicate the best values in the benchmark functions

Neural Comput & Applic (2013) 23:429–454 447

123

According to the results of Table 12, in the Sphere

function, the proposed method achieved the best result and

the total optimum point. The APSO with a proper result is

placed second, and the DMS-PSO with a rather good result

is placed third. In the Rosenbrock function, the proposed

method, the OLPSO-L, and the APSO are placed first to

third, respectively. Table 13 shows the ranking of different

methods in every benchmark function.

The best performance in the sphere function was

achieved by SSO and after that APSO. GPSO, DMS-PSO,

and OLPSO-G have achieved almost the same results, but

the speed of convergence of OLPSO-G is more. In the

Table 13 The ranking of different methods in every benchmark function

f1 f2 f3 f4 f5 f6

SSO SSO OLPSO_L OLPSO_L OLPSO_L SSO(1)

APSO OLPSO_L FIPS CLPSO APSO APSO(1)

DMS-PSO APSO OLPSO_G SSO CLPSO CLPSO

OLPSO_G CLPSO DMS_PSO FIPS SSO OLPSO_L

GPSO HPSO APSO OPSO OLPSO_G HPSO

HPSO OLPSO_G GPSO OLPSO_G HPSO FIPS

OLPSO_L LPSO VPSO HPSO DMS-PSO GPSO

VPSO FIPS LPSO LPSO OPSO VPSO

FIPS GPSO CLPSO VPSO(8) LPSO OLPSO_G

LPSO DMS_PSO SSO DMS_PSO(8) VPSO LPSO

CLPSO VPSO HPSO APSO GPSO DMS_PSO

OPSO OPSO OPSO GPSO FIPS OPSO

f7 f8 f9 f10 f11 f12

APSO SSO All equals FIPS SSO SSO

SSO APSO … SSO APSO APSO

GPSO HPSO … CLPSO LPSO OLPSO_G

OLPSO_G OLPSO_G … APSO HPSO OLPSO_L

DMS_PSO OPSO … OLPSO_G OPSO OPSO

VPSO GPSO … GPSO OLPSO_L CLPSO

HPSO OLPSO_L … VPSO GPSO HPSO

OLPSO_L FIPS … DMS_PSO CLPSO GPSO

LPSO VPSO … OPSO FIPS VPSO

FIPS LPSO … OLPSO_L OLPSO_G LPSO

CLPSO DMS_PSO … LPSO DMS_PSO DMS_PSO

OPSO CLPSO … HPSO VPSO FIPS

f13 f14 f15 f16 f17 f18

APSO SSO OLPSO_L SSO CLPSO SSO(1)

SSO DMS_PSO OLPSO_G FIPS SSO CLPSO(1)

OLPSO_L OLPSO_G SSO APSO OLPSO_L OLPSO_L(1)

OLPSO_G APSO DMS_PSO OLPSO_L OLPSO_G OLPSO_G

DMS_PSO HPSO APSO CLPSO FIPS HPSO

VPSO OLPSO_L OPSO OPSO GPSO APSO

CLPSO LPSO FIPS OLPSO_G(7) APSO DMS_PSO

FIPS GPSO CLPSO LPSO(7) LPSO VPSO

OPSO OPSO VPSO VPSO HPSO OPSO

LPSO VPSO LPSO HPSO VPSO FIPS

GPSO CLPSO GPSO DMS_PSO DMS_PSO LPSO

HPSO FIPS HPSO GPSO OPSO GPSO

448 Neural Comput & Applic (2013) 23:429–454

123

iterations less than 100, the speed of convergence of APSO

is high, but SSO has had a better convergence after the

iteration of 200. In all PSO methods except for SSO,

getting trapped in local optima points is visible (Fig. 17).

Various behaviors of the eleven PSO methods are seen

in the Ackley function, and the best result is achieved by

OLPSO-L, and OLPSO-G, FIPS, and DMS-PSO have

achieved almost the same results. HPSO and OPSO proved

to have gotten trapped in local optima points and to obtain

the worst results. In the iterations less than 250, SSO had

the fastest convergence among the other methods, but the

particles were trapped in local optima and could not escape

from this point until the iteration of 600. In the iteration of

600, the particles escaped from the local optima point and

reached a better result, but in the iteration of 700, they got

trapped in the other local optima again and failed to pro-

vide better results up to the end of iterations. However,

some good methods such as APSO have also similar

behaviors toward SSO, but they have shown better

performance.

The best performance in the Griewank function has been

achieved by OLPSO-L, CLPSO and SSO, respectively. The

other methods have nearly identical performance, and

getting trapped in local optima points is a serious problem

Fig. 17 Convergence performance of the eleven different PSOs and SSO on the six test functions. a Sphere, b Ackley, c Griewank,

d N_Rastrigin, e Quadric noise, f Quadric

Neural Comput & Applic (2013) 23:429–454 449

123

in all of them and has been unable to achieve good results.

In the iterations less than 300, the speed of convergence of

SSO is better than that of the other PSO methods.

The best results in the non-continuous Rastrigin

function were obtained by SSO. The speed of conver-

gence and escaping from local optima points in the low

iterations can be seen well by the SSO. The function is

one of the difficult functions for the various PSO meth-

ods. The APSO and OLPSO-G methods could also

achieve good results.

The best result in the Quadric function was obtained by

SSO, and after that, APSO, OLPSO-G, and HPSO,

respectively, achieved relatively good results. SSO has

presented a very good behavior in this function, and the

role of particles is seen well here. These particles prevent

the other particles from getting trapped in the local optima

points, and the chance to find some better points will be

always investigated in Fig. 18.

The best result in the Rosenbrock function was obtained

by SSO; however, in the initial iterations (less than 100),

Fig. 18 Convergence performance of the eleven different PSOs and SSO on the six test functions. g Rastrigin, h Rosenbrock, k Schwefel’s

P2.22, l Schwefel, m Rotated Rastrigin, n Rotated Griewank

450 Neural Comput & Applic (2013) 23:429–454

123

FIPS has managed to reach a good optima point very

quickly.

Between 100 and 400 iterations, the performance of

APSO has been better than that of the other methods, but

unfortunately it has been trapped in a local optima point

and has been able to be optimized. After iteration of 400,

SSO has managed to escape from a local optima point and

present the best performance.

SSO has had the best performance in the rotated

Griewank function. APSO, FIPS, and OLPSO-L methods

have also achieved acceptable results. In the iterations less

than 250, APSO has converged faster than SSO and has

had better performance, but after the iteration of 250, SSO

method has managed to become more efficient.

Now, a general comparison between the different

methods of PSO and the proposed method is made.

Table 14 shows a comparison of the results of different

methods in 6 unimodal functions, 7 multimodal functions,

and 6 rotated and shifted functions.

According to the results of the Table 14, in unimodal

functions, the OLPSO_L, the proposed method, and the

OLPSO_L are placed first to third, respectively. In the

multimodal functions, the proposed method, the APSO,

and the OLPSO_G are placed first to third, respectively. In

the rotated and shifted functions, the proposed method, the

OLPSO_L, and the OLPSO_G are placed first to third,

respectively.

5 Conclusion

In this paper, the method of SSO is a new optimization

method that is inspired by the PSO and FSO methods. This

method has represented a new optimization method with

examining the swallow swarms and their behavioral fea-

tures. In this method, the particles can have three distinct

duties during the searching period: explorer particles,

aimless particles, and leader particles. Every particle shows

a different behavior regarding its position. They interact

with each other continuously. This new method has par-

ticular features such as high convergence speed in different

functions and not getting stuck in local minimum points. If a

particle gets stuck in one of these points, assistance offered

by local leader particles and/or aimless particles give hope

to it to flee. Different optimization methods such as FSO

and kinds of PSO were performed in MATLAB. Different

benchmark functions have been used. These methods have

been compared to SSO and have been tested. In some

functions, the SSO has represented a more optimized

response comparing to the other methods, and in some

functions and positions, it is rated in second place or third

place. It is not claimed in this research that the SSO is the

best optimization method but it can be applied in differentT
a

b
le

1
4

T
h

e
ra

n
k

in
g

o
f

d
if

fe
re

n
t

m
et

h
o

d
s

in
th

re
e

g
ro

u
p

s
o

f
b

en
ch

m
ar

k
fu

n
ct

io
n

s

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2

U
n

im
o

d
al

O
L

P
S

O
_

L
S

S
O

A
P

S
O

O
L

P
S

O
_

G
C

L
P

S
O

H
P

S
O

-T
V

A
C

F
IP

S
D

M
S

-P
S

O
G

P
S

O
V

P
S

O
L

P
S

O
O

P
S

O

M
u

lt
im

o
d

al
S

S
O

A
P

S
O

O
L

P
S

O
_

G
O

L
P

S
O

_
L

G
P

S
O

F
IP

S
O

P
S

O
D

M
S

-P
S

O
C

L
P

S
O

L
P

S
O

V
P

S
O

H
P

S
O

_
T

V
A

C

R
o

ta
te

d
_

sh
if

te
d

S
S

O
O

L
P

S
O

_
L

O
L

P
S

O
_

G
A

P
S

O
C

L
P

S
O

D
M

S
-P

S
O

F
IP

S
V

P
S

O
O

P
S

O
L

P
S

O

H
P

S
O

_
T

V
A

C

G
P

S
O

Neural Comput & Applic (2013) 23:429–454 451

123

engineering problems for optimizing the functions and

problems. Regarding the results achieved, it can be claimed

that it is one of the best optimization methods in swarm

intelligence. This method should be examined and refined

by other researchers. Using fuzzy logic for increasing the

flexibility of this method is a part of future activities.

References

1. Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence:

from natural to artificial systems. Oxford University Press, New York

2. Dorigo M, Maniezzo V, Colorni A (1996) The ant system:

optimization by a colony of cooperating agents. IEEE Trans Syst

Man Cybern Part B 26(1):29–41

3. Dorigo M, Gambardella LM (1997) Ant colony system: a coop-

erative learning approach to the traveling salesman problem.

IEEE Trans Evol Comput 1(1):53–66

4. Dorigo M, Stützle T (2004) Ant colony optimization. MIT Press,

Cambridge

5. Kennedy J, Eberhart RC (1995) Particle swarm optimization.

Proceedings of the IEEE international conference on neural net-

works. IEEE Press, Piscataway, pp 1942–1948

6. Clerc M (2007) Particle swarm optimization. ISTE Ltd., London

7. Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimi-

zation: an overview. Swarm Intell 1(1):33–57

8. Li XL (2003) A new intelligent optimization-artificial fish swarm

algorithm. PhD thesis, Zhejiang University, China, June, 2003

9. Jiang MY, Yuan DF (2006) Artificial fish swarm algorithm and

its applications. In: Proceedings of the international conference

on sensing, computing and automation, (ICSCA’2006). Chongq-

ing, China, 8–11 May. 2006, pp 1782–1787

10. Xiao JM, Zheng XM, Wang XH (2006) A modified artificial fish-

swarm algorithm. In Proc. of the IEEE 6th World Congress on

Intelligent Control and Automation, (WCICA’2006). Dalian,

China, 21–23 June 2006, pp 3456–3460

11. Krishnanand KN, Ghose D (2005) Detection of multiple source

locations using a glowworm metaphor with applications to col-

lective robotics. Proceedings of IEEE swarm intelligence sym-

posium. IEEE Press, Piscataway, pp 84–91

12. Krishnanand KN, Ghose D (2006) Glowworm swarm based

optimization algorithm for multimodal functions with collective

robotics applications. Multiagent Grid Syst 2(3):209–222

13. Krishnanand KN, Ghose D (2006) Theoretical foundations for

multiple rendezvous of glowworm inspired mobile agents with

variable local-decision domains. Proceedings of American con-

trol conference. IEEE Press, Piscataway, pp 3588–3593

14. Krishnanand KN, Ghose D (2009) Glowworm swarm optimiza-

tion for simultaneous capture of multiple local optima of

multimodal functions. Swarm Intell 3:87–124. doi:10.1007/

s11721-008-0021-5

15. Dorigo M, Trianni V, Sahin E, Gross R, Labella TH, Baldassarre

G, Nolfi S, Deneubourg J-L, Mondada F, Floreano D,

Gambardella LM (2004) Evolving self-organizing behaviors for a

swarm-bot. Autonomous Robots 17(2–3):223–245

16. Fronczek JW, Prasad NR (2005) Bio-inspired sensor swarms to

detect leaks in pressurized systems. In: Proceedings of IEEE

international conference on systems, man and cybernetics. IEEE

Press, Piscataway, pp 1967–1972

17. Zarzhitsky D, Spears DF, Spears WM (2005) Swarms for

chemical plume tracing. Proceedings of IEEE Swarm intelligence

symposium. IEEE Press, Piscataway, pp 249–256

18. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

19. Heppner H, Grenander U (1990) A stochastic non-linear model

for coordinated bird flocks. In: Krasner S (ed) The ubiquity of

chaos. AAAS, Washington, pp 233–238

20. Eberhart RC, Kennedy J (1995) A new optimizer using particle

swarm theory. In: Proceedings of the sixth international sympo-

sium on micro machine and human science. IEEE, Nagoya,

Japan, Piscataway, pp 39–43

21. Eberhart RC, Simpson PK, Dobbins RW (1996) Computational

intelligence PC tools. Academic Press, Boston

22. Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimi-

zation an overview. Swarm Intell 1:33–57. doi:10.1007/s11721-

007-0002-0

23. Shi Y, Eberhart RC (1998) A modified particle swarm optimizer.

In: Proceedings of IEEE world congress on computational

intelligence, pp 69–73

24. Clerc M, Kennedy J (2002) The particle swarm-explosion, sta-

bility and convergence in a multidimensional complex space.

IEEE Trans Evol Comput 6(1):58–73

25. Trelea IC (2003) The particle swarm optimization algorithm:

convergence analysis and parameter selection. Inf Process Lett

85(6):317–325

26. Yasuda K, Ide A, Iwasaki N (2003) Stability analysis of particle

swarm optimization. In: Proceedings of the 5th metaheuristics

international conference, pp. 341–346

27. Kadirkamanathan V, Selvarajah K, Fleming PJ (2006) Stability

analysis of the particle dynamics in particle swarm optimizer.

IEEE Trans Evol Comput 10(3):245–255

28. van den Bergh F, Engelbrecht AP (2006) A study of particle

optimization particle trajectories. Inf Sci 176(8):937–971

29. Shi Y, Eberhart RC (1999) Empirical study of particle swarm

optimization. In: Proceedings of IEEE congress on evolution and

computation, pp 1945–1950

30. Shi Y, Eberhart RC (2001) Fuzzy adaptive particle swarm opti-

mization. IEEE Congr Evol Comput 1:101–106

31. Eberhart RC, Shi Y (2001) Tracking and optimizing dynamic

systems with particle swarms. In: Proceedings of IEEE congress

on evolution and computation, Seoul, Korea, pp 94–97

32. Clerc M (1999) The swarm and the queen: toward a deterministic

and adaptive particle swarm optimization. In: Proceedings of

IEEE Congress on Evolution and Computation, pp 1951–1957

33. Clerc M, Kennedy J (2002) The particle swarm-explosion, sta-

bility and convergence in a multidimensional complex space.

IEEE Trans Evol Comput 6(1):58–73

34. Eberhart RC, Shi Y (2000) Comparing inertia weights and con-

striction factors in particle swarm optimization. In: Proceeding of

IEEE Congress on Evolution and Computation, pp 84–88

35. Kennedy J (1997) The particle swarm social adaptation of

knowledge. In: Proceedings of IEEE international conference

on Evolution and computation. Indianapolis, IN, pp 303–308

36. Suganthan PN (1999) Particle swarm optimizer with neighbor-

hood operator. In: Proceedings of IEEE congress on evolution

and computation. Washington DC, pp 1958–1962

37. Ratnaweera A, Halgamuge S, Watson H (2004) Self-organizing

hierarchical particle swarm optimizer with time-varying accel-

eration coefficients. IEEE Trans Evol Comput 8(3):240–255

38. Angeline PJ (1998) Using selection to improve particle swarm

optimization. In: Proceedings of IEEE congress on evolution and

computation. Anchorage, AK, pp 84–89

39. Juang CF (2004) A hybrid of genetic algorithm and particle

swarm optimization for recurrent network design. IEEE Trans

Syst Man Cybern B Cybern 34(2):997–1006

40. Chen YP, Peng WC, Jian MC (2007) Particle swarm optimization

with recombination and dynamic linkage discovery. IEEE Trans

Syst Man Cybern B Cybern 37(6):1460–1470

41. Andrews PS (2006) An investigation into mutation operators for

particle swarm optimization. In: Proceedings of IEEE congress

452 Neural Comput & Applic (2013) 23:429–454

123

http://dx.doi.org/10.1007/s11721-008-0021-5
http://dx.doi.org/10.1007/s11721-008-0021-5
http://dx.doi.org/10.1007/s11721-007-0002-0
http://dx.doi.org/10.1007/s11721-007-0002-0

on evolution and computation. Vancouver, BC, Canada,

pp 1044–1051

42. Liang JJ, Suganthan PN (2005) Dynamic multi-swarm particle

swarm optimizer with local search. In: Proceedings of IEEE

congress on evolution and computation, pp 522–528

43. Zhang WJ, Xie XF (2003) DEPSO: hybrid particle swarm with

differential evolution operator. In: Proceedings of IEEE confer-

ence on systems, man, cybernetics, pp 3816–3821

44. van den Bergh F, Engelbrecht AP (2004) A cooperative approach

to particle swarm optimization. IEEE Trans Evol Comput

8(3):225–239

45. Ratnaweera A, Halgamuge S, Watson H (2004) Self-organizing

hierarchical particle swarm optimizer with time-varying accel-

eration coefficients. IEEE Trans Evol Comput 8(3):240–255

46. Parsopoulos KE, Vrahatis MN (2004) On the computation of all

global minimizers through particle swarm optimization. IEEE

Trans Evol Comput 8(3):211–224

47. Brits R, Engelbrecht AP, van den Bergh F (2002) A niching

particle swarm optimizer. In: Proceedings of 4th Asia-

Pacific conference on simulation and evolution and learning,

pp. 692–696

48. Brits R, Engelbrecht AP, van den Bergh F (2007) Locating

multiple optima using particle swarm optimization. Appl Math

Comput 189(2):1859–1883

49. Parrott D, Li XD (2006) Locating and tracking multiple dynamic

optima by a particle swarm model using speciation. IEEE Trans

Evol Comput 10(4):440–458

50. Zhan Z, Zhang J, Li Y, Shu-Hung Chung H (2009) Adaptive

particle swarm optimization. IEEE Trans Syst Man Cybern B

Cybern 39(6):1362–1381

51. Liu J-L, Chang C–C (2008) Novel orthogonal momentum-type

particle swarm optimization applied to solve large parameter

optimization problems. J Artif Evol Appl 1:1–9

52. Sivanandam SN, Visalakshi P (2009) Dynamic task scheduling

with load balancing using parallel orthogonal particle swarm

optimization. Int J Bio Inspired Comput 1(4):276–286

53. Zhan Z-H, Zhang J, Li Y, Shi Y-H (2011) Orthogonal learning

particle swarm optimization. IEEE Trans Evol Comput 15(6):

832–847

54. Kennedy J, Mendes R (2002) Population structure and particle

swarm performance. In: Proceedings of IEEE congress on evo-

lution and computation. Honolulu, HI, pp 1671–1676

55. Kennedy J, Mendes R (2006) Neighborhood topologies in fully

informed and best-of-neighborhood particle swarms. IEEE Trans

Syst Man Cyber Part C Appl Rev 36(4):515–519

56. Hu X, Eberhart RC (2002) Multiobjective optimization using

dynamic neighborhood particle swarm optimization. In: Pro-

ceedings of IEEE congress on evolution and computation.

Honolulu, HI, pp 1677–1681

57. Liang JJ, Suganthan PN (2005) Dynamic multi-swarm particle

swarm optimizer. In: Proceedings of swarm intelligence sympo-

sium, pp 124–129

58. Mendes R, Kennedy J, Neves J (2004) The fully informed particle

swarm: Simpler, maybe better. IEEE Trans Evol Comput 8(3):

204–210

59. Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehen-

sive learning particle swarm optimizer for global optimization of

multimodal functions. IEEE Trans Evol Comput 10(3):281–295

60. Li LX, Shao ZJ, Qian JX (2002) An Optimizing method based on

autonomous animals: fish-swarm algorithm. Syst Eng Theory

Pract 22(11):32–38

61. Zhang M, Shao C, Li F, Gan Y, Sun J (2006) Evolving neural

network classifiers and feature subset using artificial fish swarm.

In: Proceedings of the 2006 IEEE international conference on

mechatronics and automation, June 25–28. Luoyang, China

62. Jiang M, Wang Y, Rubio F, Yuan D (2007) Spread spectrum code

estimation by artificial fish swarm algorithm. In: IEEE interna-

tional symposium on intelligent signal processing (WISP)

63. Jiang MY, Yuan DF (2005) Wavelet threshold optimization

with artificial fish swarm algorithm. In: Proceedings of the IEEE

international conference on neural networks and brain,

(ICNN&B’2005), Beijing, China, 13–15, pp 569–572

64. Paul Gorenzel W, Salmon TP (1994) Swallows, prevention and

control of wildlife damage

65. Lazareck LJ, Moussavi Z Adaptive swallowing sound segmen-

tation by variance dimension

66. Angela T, Chris R (1989) Swallows and martins: an identification

guide and handbook. Houghton-Mifflin. ISBN 0-395-51174-7

67. Bijlsma RG, van den Brink B (2005) A Barn Swallow Hirundo

rustica roost under attack:timing and risks in the presence of

African Hobbies Falco cuvieri. Ardea 93(1):37–48

68. Saino N, Galeotti P, Sacchi R, Møller A (1997) Song and

immunological condition in male barn swallows (Hirundo rus-

tica). Behav Ecol 8(94):364–371. doi:10.1093/beheco/8.4.364

(http://dx.doi.org/10.1093%2Fbeheco%2F8.4.364)

69. Brown CR (1986) Cliff swallow colonies as information centers.

Science 234:83–85

70. Brown CR, Brown M, Shaffer ML (1991) food sharing signals

among socially foraging cliff swallows. Anim Behav 42:551–564

71. Safran R (2010) Barn swallows: sexual and social behavior.

Encycl Animal Behav 1:139–144 (Elsevier)

72. Snapp BD (1976) Colonial breeding in the barn swallow (hirundo

rustica) and its adaptive significance. Condor 783471480

73. Smith LC, Raouf SA, Brown MB, Wingfield JC, Brown CR

(2005) Testosterone and group size in cliff swallows: testing the

‘‘challenge hypothesis’’ in a colonial bird. Horm Behav 47:76–82

74. Mccarty JP, Winkler DW (1999) Foraging ecology and diet tree

swallows feeding selectivity of nestlings. The Condor IO

1:246–254. The cooper ornithological society

75. Whitley D, Rana D, Dzubera J, Mathias E (1996) Evaluating

evolutionary algorithms. Artif Intell 85(1–2):245–276

76. Salomon R (1996) Reevaluating genetic algorithm performance

under coordinate rotation of benchmark functions. BioSystems

39:263–278

77. Esquivel SC, Coello CAC (2003) On the use of particle swarm

optimization with multimodal functions. IEEE Congr Evol

Comput 2:1130–1136

78. Engelbrecht AP (2005) Fundamentals of computational swarm

intelligence. Wily, New York

79. Esmin AAA, Lambert-Torres G, Alvarenga GB (2006) UFLA,

Brazil, hybrid evolutionary algorithm based on PSO and GA

mutation, sixth international conference on hybrid intelligent

systems. HIS ‘06

80. Settles M, Soule T (2005) Breeding swarms: A GA/PSO Hybrid.

In: GECCO ‘05: proceedings of the 2005 conference on genetic

and evolutionary computation, pp 161–168

81. Meng Y, Kazeem O (2007) A hybrid ACO/PSO control algorithm

for distributed swarm robots. In: Proceedings of the 2007 IEEE

swarm intelligence symposium (SIS 2007)

82. Gomez-Cabrero D, Ranasinghe DN (2005) Fine-tuning the ant

colony system algorithm through particle swarm optimization,

technical report TR07-2005. Departamento de Estadistica e

Investigacio Operativa, Universitat de Valencia, Burjassot, Spain

83. Chen H, Wang S, Li J, Li Y (2007) A hybrid of artificial fish

swarm algorithm and particle swarm optimization for feed for-

ward neural network training, 2007 international conference on

intelligent systems and knowledge engineering (ISKE 2007)

84. Shi H, Bei Z (2008) Application of improved ant colony algo-

rithm. In: 4th International conference on natural computation.

ICNC ‘08

Neural Comput & Applic (2013) 23:429–454 453

123

http://dx.doi.org/10.1093/beheco/8.4.364
http://dx.doi.org/10.1093%2Fbeheco%2F8.4.364

85. Shi H, Bei Z (2009) A mixed ant colony algorithm for function

optimization. In: Proceedings of the 21st annual international

conference on Chinese control and decision IEEE Press Piscat-

away, NJ, USA, pp 3919–3923

86. Mishra SK (2006) Performance of differential evolution and

particle swarm methods on some relatively harder multi-modal

benchmark functions. Available at SSRN: http://ssrn.com/

abstract=937147

87. Ho S-Y, Lin H-S, Liauh W-H, Ho S-J (2008) OPSO: Orthogonal

particle swarm optimization and its application to task assign-

ment problems. IEEE Trans Syst Man Cybern Part A 38(2):

288–298

88. Berliner S (2004) The Birders Report. http://home.earthlink.net/

*s.berliner/

454 Neural Comput & Applic (2013) 23:429–454

123

http://ssrn.com/abstract=937147
http://ssrn.com/abstract=937147
http://home.earthlink.net/~s.berliner/
http://home.earthlink.net/~s.berliner/

	Swallow swarm optimization algorithm: a new method to optimization
	Abstract
	Introduction
	Method
	PSO and its developments
	PSO structure
	New developments of the PSO

	Artificial fish swarm algorithm (AFSA)
	The basic functions of AFSA

	Swallow swarm optimization (SSO)
	Swallows natural life
	Immigration
	High-speed flying
	Skilled hunters
	Different calls
	Information centers
	Floating swallow
	The interest in social life
	Leaders
	Escaping from predators

	Algorithm SSO
	Explorer particle
	Aimless particle
	Leader particle
	Pseudocode SSO

	Benchmark functions
	Experiments
	Conclusion
	References

