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Abstract This study proposes a new regressor—e-twin

support vector regression (e-TSVR) based on TSVR. e-TSVR

determines a pair of e-insensitive proximal functions by solving

two related SVM-type problems. Different form only empirical

risk minimization is implemented in TSVR, the structural risk

minimization principle is implemented by introducing the

regularization term in primal problems of our e-TSVR, yielding

the dual problems to be stable positive definite quadratic pro-

gramming problems, so can improve the performance of

regression. In addition, the successive overrelaxation technique

is used to solve the optimization problems to speed up the

training procedure. Experimental results for both artificial and

real datasets show that, compared with the popular e-SVR, LS-

SVR and TSVR, our e-TSVR has remarkable improvement of

generalization performance with short training time.

Keywords Machine learning � Support vector machines �
Regression � Twin support vector machine � Successive

overrelaxation

1 Introduction

Support vector machines (SVMs), being computationally

powerful tools for pattern classification and regression

[1–3], have been successfully applied to a variety of

real-world problems [5–7]. Regards to support vector

classification, there exist some classical methods such as

C-support vector classification (C-SVC) [2, 4], least square

support vector classification (LS-SVC) [8], etc. The basic

idea of all of these classifiers is to find the decision function

by maximizing the margin between two parallel hyper-

planes. Recently, some nonparallel hyperplane classifiers

such as generalized eigenvalue proximal support vector

machine (GEPSVM) and twin support vector machine

(TWSVM) were proposed in [9, 10]. TWSVM seeks two

nonparallel proximal hyperplanes such that each hyper-

plane is closest to one of two classes and as far as possible

from the other class. A fundamental difference between

TWSVM and C-SVC is that TWSVM solves two smaller

sized quadratic programming problems (QPPs), whereas

C-SVC solves one larger QPP. This makes TWSVM work

faster than C-SVC. In addition, TWSVM is excellent at

dealing with the ‘‘Cross Planes’’ dataset. Thus, the methods

of constructing the nonparallel hyperplanes have been

studied extensively [11–17].

Regards to the support vector regression, there exist

some corresponding methods such as e-support vector

regression (e-SVR), least square support vector regression

(LS-SVR) [8, 18], etc. For linear e-SVR, its primal problem

can be understood in the following way: finds a linear

function f(x) such that, on the one hand, more training

samples locate in the e-intensive tube between f(x) - e and

f(x) ? e, on the other hand, the function f(x) is as flat as

possible, leading to introduce the regularization term. Thus,

the structural risk minimization principle is implemented.
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Linear LS-SVR works in a similar way. Different from

e-SVR and LS-SVR, Peng [19] proposed a regressor in the

spirit of TWSVM, termed as twin support vector regression

(TSVR). The formulation of TSVR is in the spirit of

TWSVM via two nonparallel planes and also solves two

smaller sized QPPs, whereas the classical SVR solves one

larger QPP. Experimental results in [19] showed the

effectiveness of TSVR over e-SVR in terms of both gen-

eralization performance and training time. Thus, TSVR has

been studied in [20–24].

It is well known that one significant advantage of e-SVR

is the implementation of the structural risk minimization

principle [25]. However, only the empirical risk is con-

sidered in the primal problems of TSVR. In addition, we

noticed that the matrix ðG>GÞ�1
appears in the dual

problems derived from the primal problems of TSVR. So,

the extra condition that G>G is nonsingular, must be

assumed. This is not perfect from the theoretical point of

view although it has been handled by modifying the dual

problems technically and elegantly.

In this study, we proposes another regressor in the spirit

of TWSVM, named e-twin support vector regression

(e-TSVR). Similar to TSVR, linear e-TSVR constructs two

nonparallel e-insensitive proximal functions by solving two

smaller QPPs. However, there are differences as the fol-

lowing: (1) The main difference is that, in the primal

problems of TSVR, the empirical risk is minimized,

whereas, in our e-TSVR, the structural risk is minimized by

adding a regularization term. Similar to e-SVR, the mini-

mization of this term requires that two functions are as flat

as possible. (2) The dual problems of our primal problems

can be derived without any extra assumption and need not

to be modified any more. We think that our method is more

rigorous and complete than TSVR from theoretical point of

view. (3) In order to shorten training time, an effective

successive overrelaxation (SOR) technique is applied to

our e-TSVR. The preliminary experiments show that our

e-TSVR is not only faster, but also has better generalization.

This study is organized as follows. Section 2 briefly

dwells on the standard e-SVR, LS-SVR, and TSVR.

Section 3 proposes our e-TSVR, and the SOR technique

is used to solve the optimization problems in e-TSVR.

Experimental results are described in Sect. 4 and con-

cluding remarks are given in Sect. 5.

2 Background

Consider the following regression problem, suppose that

the training set is denoted by (A, Y), where A is a l 9 n

matrix and the i-th row Ai 2 Rn represents the i-th training

sample, i ¼ 1; 2; . . .; l: Let Y ¼ ðy1; y2; . . .; ylÞ denotes the

response vector of training sample, where yi 2 R: Here, we

briefly describe some methods that are closely related to our

method, including e-SVR, LS-SVR and TSVR. For sim-

plicity, we only consider the linear regression problems.

2.1 e-Support vector regression

Linear e-SVR [3, 25–27] searches for an optimal linear

regression function

f ðxÞ ¼ w>xþ b; ð1Þ

where w 2 Rn and b 2 R: To measure the empirical risk,

the e-intensive loss function

Re
emp½f � ¼

1

l

Xl

i¼1

jyi � f ðxiÞje; ð2Þ

is used, where jyi � f ðxiÞje ¼ maxf0; jyi � f ðxiÞj � eg: By

introducing the regularization term 1
2
jjwjj2 and the slack

variables n, n�; the primal problem of e-SVR can be

expressed as

min
w;b;n;n�

1
2
jjwjj2 þ Cðe>nþ e>n�Þ;

s.t. Y � ðAwþ ebÞ� eeþ n; n� 0;
ðAwþ ebÞ � Y � eeþ n�; n� � 0;

ð3Þ

where C [ 0 is a parameter determining the trade-off

between the empirical risk and the regularization term.

Note that a small 1
2
kwk2

corresponds to the linear function

(1) that is flat [25, 26]. In the case of support vector clas-

sification, the structural risk minimization principle is

implemented by this regularization term 1
2
kwk2: In the case

of support vector regression, this term is also added to

minimize the structural risk.

2.2 Least squares support vector regression

Similar to e-SVR, linear LS-SVR [8, 18] also searches for

an optimal linear regression function

f ðxÞ ¼ w>xþ b; ð4Þ

and the following loss function is used to measure the

empirical risk

Remp½f � ¼
1

l

Xl

i¼1

ðyi � f ðxiÞÞ2: ð5Þ

By adding the regularization term 1
2
jjwjj2 and the slack

variable n, the primal problem can be expressed as

min
w;b;n

1
2
jjwjj2 þ C

2
n>n;

s.t. Y � ðAwþ ebÞ ¼ n;
ð6Þ

where C [ 0 is a parameter.
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2.3 Twin support vector regression

Different from e-SVR and LS-SVR, linear TSVR seeks a

pair of up-bound and down-bound functions

f1ðxÞ ¼ w>1 xþ b1 and f2ðxÞ ¼ w>2 xþ b2; ð7Þ

where w1 2 Rn; w2 2 Rn; b1 2 R and b2 2 R: Here, the

empirical risks are measured by:

Re1

emp½f1� ¼
Xl

i¼1

maxf0; ðyi � f1ðxiÞ � e1Þ2g

þ c1

Xl

i¼1

maxf0;�ðyi � f1ðxiÞ � e1Þg ð8Þ

and

Re2

emp½f2� ¼
Xl

i¼1

maxf0; ðf2ðxiÞ � yi � e2Þ2g

þ c2

Xl

i¼1

maxf0;�ðf2ðxiÞ � yi � e2Þg ð9Þ

where c1 [ 0 and c2 [ 0 are parameters. By introducing

the slack variable n, n�; g and g�; the primal problems are

expressed as

min
w1;b1;n;n

�
1
2
n�>n� þ c1e>n;

s.t. Y � ðAw1 þ eb1Þ� e1e� n; n� 0;
Y � ðAw1 þ eb1Þ ¼ e1eþ n�;

ð10Þ

and

min
w2;b2;g;g�

1
2
g�>g� þ c2e>g;

s.t. ðAw2 þ eb2Þ � Y � e2e� g; g� 0;
ðAw2 þ eb2Þ � Y ¼ e2eþ g�:

ð11Þ

Their dual problems are

max
a

� 1
2
a>GðG>GÞ�1

G>aþ f>GðG>GÞ�1
G>a� f>a

s.t. 0� a� c1e:

ð12Þ

and

max
c

� 1
2
c>GðG>GÞ�1

G>c� h>GðG>GÞ�1
G>cþ h>c

s.t. 0� c� c2e:

ð13Þ

respectively when G>G is positive definite, where G ¼
½A e�; f ¼ Y � ee1 and h ¼ Y þ ee2:

In order to deal with the case when G>G is singular and

avoid the possible ill-conditioning, the above dual prob-

lems are modified artificially as:

max
a

� 1
2
a>GðG>Gþ rIÞ�1

G>aþ f>GðG>G

þrIÞ�1
G>a� f>a

s.t. 0� a� c1e:

ð14Þ

and

max
c

� 1
2
c>GðG>Gþ rIÞ�1

G>c� h>GðG>G

þrIÞ�1
G>cþ h>c

s.t. 0� c� c2e:

ð15Þ

by adding a term rI, where r is a small positive scalar, and

I is an identity matrix of appropriate dimensions.

The augmented vectors can be obtained from the solu-

tion a and c of (14) and (15) by

v1 ¼ ðG>Gþ rIÞ�1
G>ðf � aÞ; ð16Þ

and

v2 ¼ ðG>Gþ rIÞ�1
G>ðhþ cÞ; ð17Þ

where v1 = [w1 b1], v2 = [w2 b2].

3 e-Twin support vector regression

3.1 Linear e-TSVR

Following the idea of TWSVM and TSVR, in this section,

we introduce a novel approach that we have termed as e-
twin support vector regression (e-TSVR). As mentioned

earlier, e-TSVR also finds two e-insensitive proximal linear

functions:

f1ðxÞ ¼ w>1 xþ b1 and f2ðxÞ ¼ w>2 xþ b2: ð18Þ

Here, the empirical risks are measured by:

Re1

emp½f1� ¼
Xl

i¼1

maxf0; ðyi � f1ðxiÞÞ2g

þ c1

Xl

i¼1

maxf0;�ðyi � f1ðxiÞ þ e1Þg ð19Þ

and

Re2

emp½f2� ¼
Xl

i¼1

maxf0; ðf2ðxiÞ � yiÞ2g

þ c2

Xl

i¼1

maxf0;�ðf2ðxiÞ � yi þ e2Þg ð20Þ

where c1 [ 0 and c2 [ 0 are parameters, and
Pl

i¼1 max

f0;�ðyi � f1ðxiÞ þ e1Þg and
Pl

i¼1 maxf0;�ðf2ðxiÞ � yiþ
e2Þg are the one-side e-insensitive loss function [25].
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By introducing the regularization terms 1
2
ðw>1 w1 þ b2

1Þ
and 1

2
ðw>2 w2 þ b2

1Þ; the slack variables n, n�; g and g�; the

primal problems can be expressed as

min
w1;b1;n;n

�
1
2

c3ðw>1 w1 þ b2
1Þ þ 1

2
n�>n� þ c1e>n;

s.t. Y � ðAw1 þ eb1Þ ¼ n�;
Y � ðAw1 þ eb1Þ� � e1e� n; n� 0;

ð21Þ

and

min
w2;b2;g;g�

1
2

c4ðw>2 w2 þ b2
2Þ þ 1

2
g�>g� þ c2e>g;

s.t. ðAw2 þ eb2Þ � Y ¼ g�;
ðAw2 þ eb2Þ � Y � � e2e� g; g� 0;

ð22Þ

where c1, c2, c1, e1 and e2 are positive parameters.

Now, we discuss the difference between the primal

problems of TSVR and our e-TSVR, by comparing prob-

lem (10) and problem (21).

1. The main difference is that there is an extra regular-

ization term 1
2

c3ðkw1k2 þ b2
1Þ in (21). Now, we show

that the structural risk is minimized in (21) due to this

term. Remind the primal problem of e-SVR, where the

structural risk minimization is implemented by mini-

mizing the regularization term 1
2
kwk2

and a small kwk2

corresponds to the linear function (1) that is flat. In

fact, by introducing the transformation from Rn to

Rn?1: x ¼ x

1

� �
; the functions f1ðxÞ ¼ w>1 xþ b1 can be

expressed as:

w1
>x ¼ ½w>1 ; b1�

x

1

� �
ð23Þ

showing that the flatness of the linear function f1(x) in

the x-space can be measured by kw1k2 þ b2
1: So, it is

easy to see that the minimization of kw1k2 þ b2
1

requires that the linear function (23) is as flat as pos-

sible in x-space. Thus, the structural risk minimization

principle is implemented. Note that the corresponding

extra regularization term was proposed in our TBSVM

[15] for classification problems. Peng [22] also added a

similar regularization term in TSVR.

2. Except the regularization term 1
2

c3ðkw1k2 þ b2
1Þ; the

other terms in (21) are different from (10) just because

we choose the empirical risk (19) in e-TSVR, whereas

the empirical risk (8) is used in TSVR. Figure 1 gives

the geometric interpretation of linear TSVR and e-
TSVR formulations for an example.

In order to get the solutions to problems (21) and (22),

we need to derive their dual problems. The Lagrangian of

the problem (21) is given by

Lðw1;b1;n;a;bÞ ¼
1

2
ðY �ðAw1þ eb1ÞÞ>ðY �ðAw1þ eb1ÞÞ

þ 1

2
c3ðkw1k2þ b2

1Þþ c1e>n

� a>ðY �ðAw1þ eb1Þþ e1eþ nÞ�b>n;

ð24Þ

where a¼ ða1; . . .;alÞ and b¼ ðb1; . . .;blÞ are the vectors of

Lagrange multipliers. The Karush-Kuhn-Tucker (K.K.T.)

condition for w1, b1, n and a, b are given by:

�A>ðY � Aw1 � eb1Þ þ c3w1 þ A>a ¼ 0; ð25Þ

�e>ðY � Aw1 þ eb1Þ þ c3b1 þ e>a ¼ 0; ð26Þ
c1e� b� a ¼ 0; ð27Þ
Y � ðAw1 þ eb1Þ� � e1e� n; n� 0; ð28Þ

a>ðY � ðAw1 þ eb1Þ þ e1eþ nÞ ¼ 0; b>n ¼ 0; ð29Þ
a� 0; b� 0: ð30Þ

Since b C 0, from the (27) we have

0� a� c1e: ð31Þ

Obviously, (25)–(26) imply that

(a) (b)

Fig. 1 The geometric

interpretation for TSVR (a),

e-TSVR (b)
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� A>

e>

� �
Y þ A>

e>

� �
½A e� þ c3I

� �
w1

b1

� �
þ A>

e>

� �
a ¼ 0:

ð32Þ

Defining G ¼ ½A e�; v1 ¼ ½w>1 b1�>; the Eq. (32) can be

rewritten as:

�G>Y þ ðG>Gþ c3IÞv1 þ G>a ¼ 0; ð33Þ

or

v1 ¼ ðG>Gþ c3IÞ�1
G>ðY � aÞ: ð34Þ

Then putting (34) into the Lagrangian and using the above

K.K.T. conditions, we obtain the dual problem of the

problem (21):

max
a

� 1
2
a>GðG>Gþ c3IÞ�1

G>a> þ Y>GðG>G

þc3IÞ�1
G>a� ðe>e1 þ Y>Þa

s.t. 0� a� c1e;

ð35Þ

It is easy to see that the formulation of the problem

(35) is similar to that of the problem (12) when the

parameter c3 in (35) is replaced by r. However, r in (12)

is just a fixed small positive number, so the structural risk

minimization principle can not be reflected completely as

c3 does. The experimental results in Sect. 4 will show that

adjusting the value of c3 can improve the classification

accuracy indeed.

In the same way, the dual of the problem (22) is

obtained:

max
c

� 1
2
c>GðG>Gþ c4IÞ�1

G>c> � Y>GðG>G

þc4IÞ�1
G>cþ ðY> � e>e2Þc

s.t. 0� c� c2e;

ð36Þ

where c is the Lagrange multiplier. The augmented vector

v2 ¼ ½w>2 b2�> is given by

v2 ¼ ðG>Gþ c4IÞ�1
G>ðY þ cÞ: ð37Þ

Once the solutions (w1, b1) and (w2, b2) of the problems

(21) and (22) are obtained from the solutions of (35) and

(36), the two proximal functions f1(x) and f2(x) are

obtained. Then the estimated regressor is constructed as

follows

f ðxÞ ¼ 1

2
ðf1ðxÞ þ f2ðxÞÞ ¼

1

2
ðw1 þ w2Þ>xþ 1

2
ðb1 þ b2Þ:

ð38Þ

3.2 Kernel e-TSVR

In order to extend our results to nonlinear regressors, con-

sider the following two e-insensitive proximal functions:

f1ðxÞ ¼ Kðx>;A>Þu1 þ b1 and

f2ðxÞ ¼ Kðx>;A>Þu2 þ b2;
ð39Þ

where K is an appropriately chosen kernel. We construct

the primal problems:

min
u1;b1;n

1
2

c3ðu>1 u1 þ b2
1Þ þ 1

2
n>n� þ c1e>n;

s.t. Y � ðKðA;A>Þu1 þ eb1Þ� � e1e� n; n� 0;
Y � ðKðA;A>Þu1 þ eb1Þ ¼ n�;

ð40Þ

and

min
u2;b2;g

1
2

c4ðu>2 u2 þ b2
2Þ þ 1

2
g>g� þ c2e>g;

s.t. ðKðA;A>Þu1 þ eb1Þ � Y � � e2e� g; g� 0;
ðKðA;A>Þu2 þ eb2Þ � Y ¼ g�:

ð41Þ

where c1, c2, c3 and c4 are positive parameters. In a similar

way, we obtain their dual problems as the following:

max
a

� 1
2
a>HðH>H þ c3IÞ�1

H>a> � ðe>e1 þ Y>Þa
þY>HðH>H þ c3IÞ�1

H>a
s.t. 0� a� c1e:

ð42Þ

and

max
c

� 1
2
c>HðH>H þ c4IÞ�1

H>c> þ ðY> � e>e2Þc

�Y>HðH>H þ c4IÞ�1
H>c

s.t. 0� c� c2e;

ð43Þ

where H ¼ ½KðA;A>Þ e�: Then the augmented vector

v1 ¼ ½u>1 b1�> and v2 ¼ ½u>2 b2�> are given by

v1 ¼ ðH>H þ c3IÞ�1
H>ðY � aÞ; ð44Þ

and

v2 ¼ ðH>H þ c4IÞ�1
H>ðY þ cÞ: ð45Þ

Once the solutions (u1,b1) and (u2,b2) of the problems

(40) and (41) are obtained from the solution of (42) and

(43), the two functions f1(x) and f2(x) are obtained. Then

the estimated regressor is constructed as follows

f ðxÞ ¼ 1

2
ðf1ðxÞ þ f2ðxÞÞ

¼ 1

2
ðu>1 þ u>2 ÞKðA; xÞ þ

1

2
ðb1 þ b2Þ: ð46Þ

3.3 A fast e-TSVR solver–successive overrelaxation

technique

In our e-TSVR, there are four strictly convex quadratic

problems to be solved: (35), (36), (42), (43). It is easy to
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see that these problems can be rewritten as the following

unified form:

max
a

da� 1
2
a>Qa;

s.t. a 2 S ¼ f0� a� ceg;
ð47Þ

where Q is positive definite. For example, the above

problem becomes the problem (35), when Q ¼ GðG>Gþ
c3IÞ�1

G>; c ¼ c1 and d ¼ Y>Q� ðe>e1 þ Y>Þ: Because

the problem (35) entails the inversion of a possibly massive

m 9 m matrix, to reduce the complexity of computation,

we make immediate use of the Sherman–Morrison–

Woodbury formula [28] for matrix inversion as used in

[13, 14, 16, 29], which results in: ðc3I þ G>GÞ�1 ¼ 1
c3

ðI � G>ðc3I þ GG>Þ�1
GÞ:

The above problem (47) can be solved efficiently by the

following successive overrelaxation (SOR) technique, see

[15, 30].

Algorithm 3.1 Choose t 2 ð0; 2Þ: Start with any a0 2 Rn:

Having ai compute ai?1 as follows

aiþ1 ¼ ðai � tE�1ðQai � d þ Lðaiþ1 � aiÞÞÞ]; ð48Þ

until ||ai?1 - ai|| is less than some prescribed tolerance,

where the nonzero elements of L 2 Rm�m constitute the

strictly lower triangular part of the symmetric matrix

Q, and the nonzero elements of E 2 Rm�m constitute the

diagonal of Q.

SOR has been proved that this algorithm converges

linearly to a solution. It should be pointed out that we also

improve the original TSVR by applying the SOR technique

to solve the problems (12) and (13). The experimental

results in the following section will show that the SOR

Table 1 Performance metrics and their calculations

Metrics Calculation

SSE SSE ¼
Pm

i¼1ðyi � ŷiÞ2

SST SST ¼
Pm

i¼1ðyi � �yÞ2

SSR SSR ¼
Pm

i¼1ðŷi � �yÞ2

NMSE
NMSE ¼ SSE=SST ¼

Pm

i¼1
ðyi�ŷiÞ2Pm

i¼1
ðyi��yÞ2

R2

R2 ¼ SSR=SST ¼
Pm

i¼1
ðŷi��yÞ2Pm

i¼1
ðyi��yÞ2

MAPE
MAPE ¼

Pm

i¼1
jyi�ŷi j=yi

m
� 100 %
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0
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2
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Data x2/3 ε−SVR

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
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1

1.5

2
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(a) (b)

(c) (d)

Fig. 2 Predictions of our

e-TSVR, TSVR, e-SVR and

LS-SVR on y ¼ x
2
3 function
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technique has remarkable acceleration effect on both our

e-TSVR and TSVR.

3.4 Comparison with TPISVR

We mentioned that our e-TSVR is motivated by the TSVR.

And different from only empirical risk is implemented in

TSVR, a regularization term is added in e-TSVR. Similar

to e-TSVR, TPISVR [23] also introduced a regularization

term in its primal problems. Now, we show some com-

parisons of our e-TSVR with TPISVR. The primal prob-

lems of linear TPISVR can be expressed as

min
w1;b1;n

1
2
jjw1jj2 þ m1

l
e>ðAw1 þ eb1Þ þ c1

l
e>n;

s.t. Y � ðAw1 þ eb1Þ� � n; n� 0;
ð49Þ

and

min
w2;b2;g

1
2
jjw2jj2 þ m2

l
e>ðAw1 þ eb1Þ þ c2

l
e>g;

s.t. Y � ðAw1 þ eb1Þ� g; g� 0;
ð50Þ

where c1, c2, m1 and m2 are positive parameters. From the

above two QPPs, we can see that our e-TSVR derives the

similar characteristics as TPISVR, such as both of them has

the same decisions and also loses the sparsity. However, by

Table 2 Result comparisons of

our e-TSVR, TSVR, e-SVR and

LS-SVR on datasets (51) and

(52)

Dataset Regressor SSE NMSE R2 CPU sec.

(51) e-TSVR 0.5249 0.0152 0.9988 0.008

TSVR 1.2183 0.0352 0.9973 0.009

e-SVR 0.5672 0.0164 0.9986 39.4

LS-SVR 0.8117 0.0235 0.9983 0.015

(52) e-TSVR 1.1016 0.0203 0.9911 0.073

TSVR 1.8790 0.0347 0.9862 0.079

e-SVR 1.7298 0.0319 0.9858 35.8

LS-SVR 2.1613 0.0399 0.9846 0.012
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Fig. 3 Predictions of our

e-TSVR, TSVR, e-SVR and

LS-SVR on Sinc function
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comparing the formulations of our e-TSVR and TPISVR,

we can see that both the objective functions and the con-

straints are differences, and Fig. 1a, b show the geometric

interpretations of the TSVR (TPISVR) and our e-TSVR,

respectively. From Fig. 1, we can see that the two algo-

rithms have some differences in geometric interpretations.

TPISVR constructs a pair of up-bound and down-bound

functions, while our e-TSVR constructs a pair of e-insen-

sitive proximal functions. In addition, in our e-TSVR, only

have the boundary constraints, this strategy makes SOR

can be used for our e-TSVR (and TSVR), which obtains the

less learning cost than TPISVR. But in our e-TSVR, the

parameters have no meaning of bounds of the fractions of

SVs and margin errors as in TPISVR.

4 Experimental results

In this section, some experiments are made to demonstrate

the performance of our e-TSVR compared with the TSVR,

e-SVR, and LS-SVR on several datasets, including two

type artificial datasets and nine benchmark datasets. All

methods are implemented in Matlab 7.0 [31] environment

on a PC with an Intel P4 processor (2.9 GHz) with 1 GB

RAM. e-SVR and LS-SVR are solved by the optimization

toolbox: QP and LS-SVMlab in Matlab [31, 32] respec-

tively. Our e-TSVR and TSVR are solved by SOR tech-

nique. The values of the parameters in four methods are

obtained through searching in the range 2-8–28 by tuning a

set comprising of random 10 % of the dataset. In our

experiments, we set c1 = c2, c3 = c4 and e1 = e2, to

degrade the computational complexity of parameter

selection.

4.1 Performance criteria

In order to evaluate the performance of the algorithms,

some evaluation criteria [19, 33, 34] commonly used

should be introduced firstly. Without loss of generality, let l

be the number of training samples and denote m as the

number of testing samples, ŷi as the prediction value of

yi, and �y ¼ 1
m

P
i yi as the average value of y1; . . .; ym: Then

the definitions of some criteria are stated in Table 1.

4.2 Artificial datasets

In order to compare our e-TSVR with TSVR, e-SVR, LS-

SVR, we choose the same artificial datasets to the ones in

[19] and [35]. Firstly, consider the function: y ¼ x
2
3: To

effectively reflect the performance of the methods, training

samples are polluted by Gaussian noises with zero means

and 0.2 standard deviation, i.e. we have the following

training samples (xi, yi):

yi ¼ x
2
3

i þ ni; x	U½�2; 2�; ni	Nð0; 0:22Þ; ð51Þ

where U[a, b] represents the uniformly random variable in

[a, b] and Nð�a; �b2Þ represents the Gaussian random variable

with means �a and �b standard deviation, respectively. To

avoid biased comparisons, ten independent groups of noisy

samples are generated randomly using Matlab toolbox,

which consists of 200 training samples and 200 none noise

test samples.

Table 3 The description for real datasets

Dataset No. of samples No. of features

Motorcycle 133 1

Diabetes 43 2

Servo 167 4

Auto price 159 15

Machine CPU 209 17

Wisconsin B.C. 194 32

Auto-Mpg 398 7

Boston housing 506 13

Concrete CS 1,030 8
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Fig. 4 Predictions of e-TSVR, TSVR, e-SVR and LS-SVR on the

‘‘Motorcycle’’ dataset

Table 4 Result comparisons of e-TSVR, TSVR, e-SVR and LS-SVR

on Motorcycle and Diabetes datasets

Dataset Regressor NMSE R2 CPU sec.

Motorcycle e-TSVR 0.2132 0.7992 0.067

TSVR 0.2446 0.7800 0.064

e-SVR 0.2214 0.7963 43.60

LS-SVR 0.2261 0.7760 0.001

Diabetes e-TSVR 0.7041 0.6340 0.002

TSVR 0.7115 0.5825 0.002

e-SVR 0.7418 0.6075 0.30

LS-SVR 0.7573 0.5961 0.001
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Figure 2a–d illustrate the estimated functions obtained

by these four methods, respectively. It can be observed that

our e-TSVR obtain the best approximation among four

methods. The results of the performance criteria are listed

in Table 2. Our e-TSVR derives the smallest SSE, NMSE

and the largest R2 among the four methods. This indicates

the statistical information in the training dataset is well

presented by our e-TSVR with fairly small regression

Table 5 Result comparisons of e-TSVR, TSVR, e-SVR and LS-SVR on UCI datasets

Dataset Regressor NMSE R2 MAPE CPU sec.

Servo e-TSVR 0.2130 ± 0.1035 0.9609 ± 0.1563 0.3334 ± 0.1439 0.011

TSVR 0.2209 ± 0.1530 0.9303 ± 0.1643 0.3992 ± 0.2020 0.009

e-SVR 0.2415 ± 0.1620 0.9130 ± 0.1543 0.3762 ± 0.1551 10.8

LS-SVR 0.2579 ± 0.1120 0.9101 ± 0.1356 0.3749 ± 0.2999 0.002

Auto Price e-TSVR 0.3348 ± 0.0837 0.9240 ± 0.2356 0.3939 ± 0.0938 0.008

TSVR 0.3199 ± 0.0951 0.9018 ± 0.2008 0.3765 ± 0.0940 0.014

e-SVR 0.3485 ± 0.0867 1.0824 ± 0.2101 0.3394 ± 0.0951 9.8

LS-SVR 0.3691 ± 0.1104 0.9166 ± 0.2461 0.4158 ± 0.0940 0.016

Machine CPU e-TSVR 0.2104 ± 0.0302 0.8775 ± 0.3069 0.1618 ± 0.0633 0.012

TSVR 0.2158 ± 0.0921 0.8834 ± 0.3485 0.1623 ± 0.0931 0.012

e-SVR 0.2001 ± 0.0554 0.8911 ± 0.2146 0.1614 ± 0.0882 21.6

LS-SVR 0.2041 ± 0.0981 0.8814 ± 0.2416 0.1746 ± 0.0907 0.004

Wisconsin B.C. e-TSVR 0.8470 ± 0.1149 0.5685 ± 0.1052 0.9139 ± 0.1062 0.020

TSVR 0.9065 ± 0.1097 0.4641 ± 0.1164 0.9544 ± 0.3762 0.027

e-SVR 0.9093 ± 0.1182 0.5173 ± 0.1032 1.0626 ± 0.1197 14.5

LS-SVR 0.9235 ± 0.1074 0.4628 ± 0.1305 0.9493 ± 0.1922 0.009

Auto-Mpg e-TSVR 0.0980 ± 0.0268 1.0284 ± 0.1343 0.3163 ± 0.0319 0.036

TSVR 0.1167 ± 0.0349 1.0698 ± 0.1643 0.3214 ± 0.0382 0.041

e-SVR 0.1160 ± 0.0235 0.8999 ± 0.1358 0.3298 ± 0.0161 210.8

LS-SVR 0.1188 ± 0.0438 0.8898 ± 0.1427 0.3445 ± 0.0863 0.012

Boston housing e-TSVR 0.1146 ± 0.0263 1.0401 ± 0.1028 – 0.176

TSVR 0.1238 ± 0.0721 1.0333 ± 0.1314 – 0.172

e-SVR 0.1135 ± 0.0682 1.0632 ± 0.1212 – 581.5

LS-SVR 0.1435 ± 0.0524 0.8667 ± 0.1475 – 0.085

Concrete CS e-TSVR 0.1004 ± 0.0221 0.9897 ± 0.0764 0.2405 ± 0.0689 0.720

TSVR 0.1027 ± 0.0325 0.9801 ± 0.0725 0.2414 ± 0.0779 0.690

e-SVR 0.1664 ± 0.0342 0.9072 ± 0.0521 0.9207 ± 0.0709 1,744.5

LS-SVR 0.1969 ± 0.0281 0.8185 ± 0.0941 0.9111 ± 0.0279 0.130

Table 6 The best parameters of e-TSVR and TSVR on UCI datasets

Dataset e-TSVR TSVR

c1 = c2 c3 = c4 e1 = e2 p c1 = c2 r e1 = e2 p

Motorcycle 0.25 1 4 8 0.0156 10-7 8 16

Diabetes 1 0.0625 4 2 0.0625 10-7 4 8

Servo 0.0039 0.0039 0.0078 2 4 10-7 2 4

Auto Price 4 0.0313 0.25 256 2 10-7 32 4

Machine CPU 0.5 8 0.125 8 64 10-7 0.0156 8

Wisconsin B.C. 128 4 0.25 – 2 10-7 1 –

Auto-Mpg 64 0.0078 0.0313 16 0.0625 10-7 1 16

Boston housing 256 0.0625 0.5 1 64 10-7 0.0039 1

Concrete CS 0.25 0.0039 0.0156 1 0.0039 10-7 0.1250 4
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errors. Besides, Table 2 also compares the training CPU

time for these four methods. It can be seen that e-TSVR is

the fastest learning method, indicating that SOR technique

can improve the training speed.

Furthermore, we generate the datasets by the sinc

function that is polluted by Gaussian noises with zero

means and 0.2 standard deviation. We have the training

samples (xi, yi):

yi ¼
sinðxiÞ

xi

þ ni; x	U½�4p; 4p�; ni	Nð0; 0:22Þ:

ð52Þ

Our dataset consists of 252 training samples and 503 test

samples. Figure 3a–d illustrate the estimated functions

obtained by four methods and Table 2 lists the corre-

sponding performances. These results also show the supe-

riority of our method.

4.3 UCI datasets

For further evaluation, we test nine benchmark datasets: the

Motorcycle [36], Diabetes, Boston housing, Auto-Mpg,

Machine CPU, Servo, Concrete Compressive Strength,

Auto price, and Wisconsin breast cancer datasets [37],

which are commonly used in testing machine learning

algorithms. More detailed description can be found in

Table 3.

Because the two datasets ‘‘Motorcycle’’ and ‘‘Diabetes’’

have smaller number of samples and features, the criterions

leave-one-out are used on them. Figure 4 shows the

regression comparison of our e-TSVR, TSVR, e-SVR and

LS-SVR on the ‘‘Motorcycle’’ dataset. Table 4 lists the

learning results of these four methods on the Motorcycle

and Diabetes datsets. It can be seen that our e-TSVR out-

performs the other three methods. For instance, our e-
TSVR obtains the largest R2 and the smallest NMSE among

the four methods. As for the computation time, although

LS-SVR spends on the least CPU time, our e-TSVR needs

far less CPU time than e-SVR, indicating that e-TSVR is an

efficient algorithm for regression.

For the other seven datasets, the criterions ‘‘NMSE’’,

‘‘R2’’ and ‘‘MAPE’’ are used. Table 5 shows the testing

results of the proposed e-TSVR, TSVR, e-SVR and LS-

SVR on these seven datasets. The results in Table 5 are

similar with that appeared in Table 4 and therefore

confirm the superiority of our method further. Table 6

lists the best parameters selected by e-TSVR and TSVR

on the above UCI datasets. It can be seen that the c3 and

c4 vary and are usually not take a smaller value in our e-
TSVR, while r is a fixed small positive scalar in TSVR.

This implies that the regularization terms in our e-TSVR

are useful.

5 Conclusions

For regression problems, an improved version e-TSVR

based on TSVR is proposed in this study. The main con-

tribution is that the structural risk minimization principle is

implemented by adding the regularization term in the pri-

mal problems of our e-TSVR. This embodies the marrow of

statistical learning theory. The parameters c3 and c4 intro-

duced are the weights between the regularization term and

the empirical risk, so they can be chosen flexibly. In addi-

tion, the application of SOR technique is also an excellent

contribution, since it speeds up the training procedure.

Computational comparisons between our e-TSVR and other

methods including TSVR, e-SVR, and LS-SVR have been

made on several datasets, indicating that our e-TSVR is not

only faster, but also shows better generalization. We believe

that its nice generalization mainly comes from the fact that

the parameters c3 and c4 are adjusted properly. Our e-TSVR

Matlab codes can be downloaded from: http://math.cau.edu.

cn/dengnaiyang.html.

It should be pointed out that as does the TWSVM, our e-
TSVR also loses sparsity, so it is interesting to find a

sparsity algorithm for our e-TSVR. Note that, for LS-SVR,

there are some relevant improvements such as the work in

[38, 39]. May be they are useful references in further study.

Besides, the parameters selection is a practical problem and

should be addressed in the future too.
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