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Abstract We propose a rough margin-based one class

support vector machine (Rough one class SVM) by intro-

ducing the rough set theory into the one class SVM, to deal

with the over-fitting problem. We first construct rough

lower margin, rough upper margin, and rough boundary

and then maximize the rough margin rather than the margin

in the one class SVM. Thus, more points are adaptively

considered in constructing the separating hyper-plane than

those used in the conventional one class SVM. Moreover,

different points staying at the different positions are pro-

posed to give different penalties. Specifically, the samples

staying at the lower margin are given the larger penalties

than those in the boundary of the rough margin. Therefore,

the new classifier can avoid the over-fitting problem to a

certain extent and yields great generalization performance.

Experimental results on one artificial dataset and eight

benchmark datasets demonstrate the feasibility and validity

of our proposed algorithm.

Keywords Rough set theory � Rough margin �
One class SVM � Rough one class SVM

1 Introduction

Support vector machine (SVM), motivated by the Vapnik–

Chervonenkis (VC) dimensional theory and the statistical

learning theory [1], is a promising machine learning tech-

nique. Compared with other machine learning approaches

like artificial neural networks [2], SVM has many

advantages. First, SVM solves a quadratic programming

problem (QPP), which assures that once an optimal solu-

tion is obtained, it is the unique (global) solution. Second,

SVM derives its sparse and robust solution by maximizing

the margin between the two classes. Third, SVM imple-

ments the structural risk minimization principle rather than

the empirical risk minimization principle, which minimizes

the upper bound of the generalization error. At present,

SVM has been successfully applied in various aspects

ranging from machine learning, data mining, and knowl-

edge discovery [3, 4].

Classical SVM can effectively deal with the binary

classification problem, but it requires the class labels of

training samples. However, it is sometimes hard or expen-

sive to acquire them in real life, and it leads to unsupervised

learning. One class problems are prevalent in real world

where positive and unlabeled data are widely available.

One class SVM [5–7] is a novel machine learning

algorithm in dealing with one class problem or clustering

problem. It first maps the samples into the high-dimen-

sional feature space corresponding to the kernel function,

then separates them from the origin with maximum margin.

Finally, it returns a decision function f that takes the value

?1 in a small region capturing most of the data points and

-1 elsewhere. Because the classification hyper-plane

depends only on a small proportion of the training samples

(i.e. support vectors) in one class SVM, hence it is too

sensitive to the noise data and outliers, and produces over-

fitting problem.

In order to avoid over-fitting problem in one class SVM,

some improved algorithms were proposed, for example, in

order to reduce the effects of outliers, the fuzzy one class

SVM associated with a fuzzy membership to each training

sample was proposed in [8], but it was difficult to deter-

mine membership of each samples. A weighted one class
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SVM was proposed in [9]. However, it was also difficult to

determine the weighted coefficient. In addition, in order to

improve the prediction accuracy of classifier, a support

vector classification algorithm based on rough set prepro-

cessing was proposed in [10], and it could eliminate the

redundant information, avoid the noise disturbing, and

overcome the disadvantage of slowly processing speed

caused by classical SVM approach.

Motivated by the above studies, rough set theory [11,

12] is incorporated into the one class SVM, and a rough

margin-based one class SVM is proposed in this paper.

Thus, more data points are adaptively considered in

constructing the separating hyper-plane, and different

penalties are proposed to give the samples depending on

their positions. The optimal separating hyper-plane is

found by maximizing the rough margin from the origin [13,

14] rather than the margin in one class SVM. Therefore, the

proposed algorithm can avoid the over-fitting problem to a

certain extent.

The effectiveness of the proposed algorithm is demon-

strated with the experiments on one artificial dataset and

eight benchmark datasets. The experimental results show

that our algorithm achieves significant performance in

comparison with one class SVM. Moreover, our algorithm

does not increase elapsed time.

The paper is organized as follows. Section 2 outlines the

rough set theory and one class SVM. A rough margin-

based one class SVM is proposed in Sect. 3. Numerical

experiments are implemented in Sect. 4. The last section

concludes the paper.

2 Preliminaries

2.1 Rough set theory

Rough set theory [11, 12] is an effective tool in dealing

with vagueness and uncertainty information, and it deals

with information represented by a table called an infor-

mation system, which consists of objects (or cases) and

attributes. An information system is composed of a 4-tuple

as follows:

S ¼ hU;A;V; f i ð1Þ

where U is the universe, a finite set of n objects

fx1; x2; . . .; xng:A ¼ C
S

D;C is a set of condition attri-

butes, and D is a set of decision attributes. V is attribute

value. f : U � A �! V is the total decision function called

the information function.

Upper and lower approximations are the important

concepts in rough set theory, which are shown in Fig. 1.

For a given information system S, a given subset of

attributes R � A determines the approximation space

RS = (U, ind(A)) in S, and for a given R � A and X � U

(a concept X), the R-lower approximation RX of set X is

defined as follows:

RX ¼ fx 2 U : ½x�R � Xg: ð2Þ

RX is the set of all objects from U which can be certainly

classified as elements of X employing the set of attributes R.

The R upper approximation RX of set X is defined as

follows:

RX ¼ fx 2 U : ½x�R
\

X 6¼ /g ð3Þ

where RX is the set of objects of U which can be possibly

classified as elements of X using the set of attributes R, and

[x]R denotes an equivalence class of Ind(R) that contains x

(called the indiscernibility relation).

Given an information system S, condition attributes C

and decision attributes D;A ¼ C
S

D; and for a given

subset of condition attributes P � C; we can define a

positive region

pospðDÞ ¼
[

X2U=indðDÞ
PX: ð4Þ

The positive region posp (D) contains all objects in

U, which can be classified without error into distinct

classes defined by ind(D) based only on information in the

ind(P).

If RX 6¼ RX; then X is a rough set, and its boundary

region, BndðXÞ ¼ RX � RX; is correspondingly nonempty.

2.2 One class support vector machine

One class SVM was proposed by Schölkopf for estimating

the support of a high-dimensional distribution [6]. Given a

training set without any class information, one class SVM

constructs a decision function that takes the value ?1 in a

small region capturing most of the data points, and -1

elsewhere. The strategy in this technique is to map the

input vectors into a high-dimensional feature space corre-

sponding to a kernel and construct a linear decision func-

tion in this space to separate the dataset from the origin

with maximum margin. Via the freedom to utilize different

Upper approximation

Actual set

Lower approximation

An equivalence class

Fig. 1 Lower and upper approximations of a set in RST
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types of kernel, the linear decision functions in the feature

space are equivalent to a variety of nonlinear decision

functions in the input space. A parameter m 2 ð0; 1� was

introduced into the one class SVM to control the trade-off

between the fraction of data points in the region and the

generalization ability of the decision function.

Given a training dataset without any class information

T ¼ ðx1; x2; . . .; xlÞ; xi 2 Rn ð5Þ

To separate the dataset from the origin, which is illustrated

in Fig. 2, one class SVM solves the following QPP.

min
w;n;q

1

2
kwk2 � qþ 1

ml

Xl

i¼1

ni

s.t. ðw � /ðxiÞÞ� q� ni;

ni� 0; i ¼ 1; 2; . . .; l:

ð6Þ

Here, q is a threshold parameter, and ni is a slack variable.

m 2 ð0; 1� is a parameter chosen a priori, and it has the

following property.

Proposition 1 Assume the solution of QPP (6) satisfies

q = 0. The following statements hold:

(1) m is an upper bound on the fraction of outliers.

(2) m is a lower bound on the fraction of support vectors.

The proof can be found in [6]. The solution to the QPP

(6) is transformed into its dual problem by the saddle point

of the Lagrange function,

max
a

� 1

2

Xl

i¼1

Xl

j¼1

aiajKðxi; xjÞ

s.t.
Xl

i¼1

ai ¼ 1; 0� ai�
1

ml
; i ¼ 1; 2; . . .; l:

ð7Þ

Once the solution a ¼ ða1; a2; . . .; alÞT to the QPP (7) has

been found, the decision function can be expressed as

follows:

f ðxÞ ¼ sgn
Xl

i¼1

aiKðxi; xÞ � q

 !

: ð8Þ

We can recover threshold q by exploiting that for any such

0\aj\ 1
ml ; the corresponding pattern xj satisfies

q ¼ ðw � /ðxjÞÞ ¼
Xl

i¼1

aiKðxi; xjÞ: ð9Þ

Here, K(xi, xj) is a kernel function that gives the dot

product (/(xi)�/(xj)) in the higher-dimensional space.

3 A rough margin-based one class SVM

We know that the separating hyper-plane depends only on

a small proportion of the training samples (i.e. support

vectors) in one class SVM, and it is very sensitive to the

noises and outliers. In order to overcome the over-fitting

problem when noises and outliers exist in one class SVM,

we propose a rough margin-based one class SVM in this

section, where more data points are adaptively considered

in constructing the separating hyper-plane. Following the

rough set theory, the rough margin can be expressed as the

lower margin and the upper margin. The training samples

locating within the lower margin (corresponding to the

positive region) are considered as outliers, the samples

locating within the upper margin (corresponding to the

negative region) are not outliers and are regarded as target

class samples, and the samples staying at the boundary of

the rough margin (corresponding to the boundary region)

are possible outliers. It is more reasonable to give different

penalties to the points depending on their positions in the

process of learning the optimal hyper-plane. Specifically,

we give the major penalties to the training points that lie

within the lower margin and give the minor penalties to

the points that lie within the boundary of the rough

margin.

The rough margin is illustrated in Fig. 3. The blue line

denotes the hyper-plane ðw � /ðxÞÞ ¼ ql; and the red line

stands for the hyper-plane ðw � /ðxÞÞ ¼ ql: The region

satisfying ðw � /ðxÞÞ[ ql corresponds to the upper mar-

gin, the region satisfying ðw � /ðxÞÞ\ql corresponds to the

lower margin, and the region satisfying ql\ðw � /ðxÞÞ\ql

corresponds to the boundary region.

3.1 Rough one class supper vector machine

Motivated by the above studies, a rough margin-based one

class SVM is designed as follows [15],

0

p/||w||
w.x=p

Fig. 2 Illustration of the one class SVM
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min
w;n;q

1

2
kwk2 � ðql þ qlÞ þ

1

ml

Xl

i¼1

ðni þ rn	i Þ

s.t. ðw � /ðxiÞÞ� ql � ni � n	i ;

0� ni� ql � ql;

ql; ql� 0;

n	i � 0; i ¼ 1; 2; . . .; l;

ð10Þ

where ni and ni
* are slack variables. ql and ql are trade-off

parameters. Parameter r ([1) is chosen a priori, which

implies that larger penalty to the point locating in the rough

low margin, as it has larger effect on the separating hyper-

place than other points. In order to solve the QPP (10), we

first introduce the following Lagrangian function,

L ¼ 1

2
kwk2 � ðql þ qlÞ þ

1

ml

Xl

i¼1

ðni þ rn	i Þ

�
Xl

i¼1

aiððw � /ðxiÞÞ � ql þ ni þ n	i Þ

�
Xl

i¼1

biðql � ql � niÞ �
Xl

i¼1

cini � l1ql � l2ql

�
Xl

i¼1

gin
	
i ; ð11Þ

where ai C 0, bi C 0, ci C 0, gi C 0, l1 C 0, l2 C 0 are

Lagrangian multipliers. According to Karush–Kuhn–

Tucker (KKT) conditions, parameters satisfy the following

conditions:

oL

ow
¼ w�

Xl

i¼1

ai/ðxiÞ ¼ 0; ð12Þ

oL

oni

¼ 1

tl
� ai þ bi � ci ¼ 0; ð13Þ

oL

on	i
¼ r

tl
� ai � gi ¼ 0; ð14Þ

oL

oql

¼ �1þ
Xl

i¼1

bi � l1 ¼ 0; ð15Þ

oL

oql
¼ �1þ

Xl

i¼1

ai �
Xl

i¼1

bi � l2 ¼ 0; ð16Þ

aiððw � /ðxiÞÞ � ql þ ni þ n	i Þ ¼ 0; ð17Þ

biðql � ql � niÞ ¼ 0; ð18Þ

cini ¼ 0; gin
	
i ¼ 0; l1ql ¼ 0; l2ql ¼ 0: ð19Þ

We can derive the dual problem of the QPP (10) as

follows:

max
a

� 1

2

Xl

i¼1

Xl

j¼1

aiajKðxi; xjÞ

s.t.
Xl

i¼1

ai� 2;

0� ai�
r
ml
; i ¼ 1; 2; . . .; l:

ð20Þ

For the sake of convenience, we first give an equivalent

formulation of the QPP (20). The optimal trade-offs ql and

ql in the QPP (10) are actually larger than zero. On the

conditions of ql, ql [ 0, we give the following

Proposition.

Proposition 2 The QPP (20) can be transformed into the

following QPP.

max
a

� 1

2

Xl

i¼1

Xl

j¼1

aiajKðxi; xjÞ

s.t.
Xl

i¼1

ai ¼ 2;

0� ai�
r
ml
; i ¼ 1; 2; . . .; l:

ð21Þ

The QPPs (20) and (21) differ in the first constraint

condition. Namely, the inequality constraint
P

i=1
l ai C 2

in (20) becomes an equality constraint
P

i=1
l ai = 2 in

(21).

Proof According to assumptions ql, ql [ 0 and KKT

conditions l1ql = 0, l2ql = 0, we can obtain Lagrangian

multipliers l1 = 0 and l2 = 0. After combining (15) and

(16), we can get an equality constraint
P

i=1
l ai = 2. h

3.2 Lagrangian multiplier ai and support vector

Once the optimal solution a ¼ ða1; a2; . . .; alÞT to the QPP

(20) has been found, the position of a training point is

determined by the value of ai, and we can then draw the

following conclusions.

0

Rough boundary

Lower margin

pl/||w||

pu/||w||

Upper margin

Fig. 3 Illustration of the Rough one class SVM
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Proposition 3 Different values of ai are corresponding to

the different positions of the points. We can divide the

samples into five cases according to the values of ai.

(1) If ai = 0, then the point lies within the upper margin

and satisfies ðw � /ðxiÞÞ� qu: It is corresponding to a

point of the target class; namely, it is an usual point.

(2) If 0\ai\ 1
ml ; then the point lies on the border of the

upper margin and satisfies ðw � /ðxiÞÞ ¼ qu: It is

corresponding to a support vector on the border of

the upper margin.

(3) If ai ¼ 1
ml ; then the point lies inside the boundary of

the rough margin and satisfies ql\ðw � /ðxiÞÞ\qu: It

is corresponding to a support vector in the rough

boundary.

(4) If 1
ml \ai\ r

ml ; then the point lies on the border of the

lower margin and satisfies ðw � /ðxiÞÞ ¼ ql: It is

corresponding to a support vector on the border of

the lower margin.

(5) If ai ¼ r
ml ; then the point lies within the lower margin

and satisfies ðw � /ðxiÞÞ\ql: It is usually correspond-

ing to an outlier.

Proof

(1) If ai = 0, we can get Lagrangian multiplier ci [ 0 from

(13), and gi [ 0 from (14). We further obtain ni = 0

and ni
* = 0 from KKT condition (19). Finally, we can

achieve ðw � /ðxiÞÞ� qu when we substitute ni and ni
*

into constraint ðw � /ðxiÞÞ� ql � ni � n	i in (10).

(2) If 0\ai\ 1
ml ; we can get gi [ 0 from (14), and then

substitute it into gini
* = 0, we have ni

* = 0. In

addition, we can get ci [ 0 from (13), and then we

also get ni = 0 from KKT condition (19). Finally, we

can achieve ðw � /ðxiÞÞ ¼ qu when we substitute ai, ni

and ni
* into (17).

(3) If ai ¼ 1
ml ; we can get gi [ 0 from (14), and then

substitute it into gini
* = 0, we further get ni

* = 0. By

substituting ai [ 0 and ni
* = 0 into (17), we can

achieve ðw � /ðxiÞÞ ¼ qu � niðni [ 0Þ, that is

ql\ðw � /ðxiÞÞ\qu:

(4) If 1
ml \ai\ r

ml ; we can get gi [ 0 from (14), and then

substitute it into gini
* = 0, we further obtain ni

* = 0.

In addition, we can get bi [ 0 by substituting ai into

(13). We can get ql = qu - ni from (18), and then

substitute them into (17), we have ðw � /ðxiÞÞ ¼ ql:

(5) If ai ¼ r
ml ; we can get bi [ 0 from (13) and further

obtain ql = qu - ni from (18). When we substitute

them into (17), we can get ðw � /ðxiÞÞ ¼ ql � n	i ;
ðn	i [ 0Þ; that is ðw � /ðxiÞÞ\ql: Point xi is usually

corresponding to an outlier. h

3.3 Threshold q and decision rules

We can recover ql by exploiting that for any such

0\aj\ 1
ml ; the corresponding pattern xj satisfies

ql ¼ ðw � /ðxjÞÞ ¼
Xl

i¼1

aiKðxi; xjÞ: ð22Þ

We calculate ql by following formula to increase the

robustness of the proposed algorithm,

q0l ¼ ðw � /ðxjÞÞ ¼
1

l1

Xl1

j¼1

Xl

i¼1

aiKðxi; xjÞ; ð23Þ

where l1 denotes the number of support vectors lying on

the boundary of lower margin, which corresponds to

0\aj\ 1
ml :

In addition, we also recover qł by exploiting that for any

such 1
ml \aj\ r

ml ; the corresponding pattern xj satisfies

ql ¼ ðw � /ðxjÞÞ ¼
Xl

i¼1

aiKðxi; xjÞ: ð24Þ

We also calculate the robust ql according to the following

formula,

q
0

l ¼ ðw � /ðxjÞÞ ¼
1

l2

Xl2

j¼1

Xl

i¼1

aiKðxi; xjÞ; ð25Þ

where l2 denotes the number of support vectors that lying

on the boundary of upper margin, which satisfies
1
ml \aj\ r

ml :

Based on the above studies, we present the following

double decision functions,

f ðxÞ ¼ sgn
Xl

i¼1

aiKðxi; xÞ � q0u

 !

; ð26Þ

f 0ðxÞ ¼ sgn
Xl

i¼1

aiKðxi; xÞ � q0l

 !

: ð27Þ

Given a testing point xt, once f(xt) and f 0ðxtÞ are obtained

from (26) and (27), we determine its class label according

to the following proposition.

Proposition 4 Once f(xt) and f 0ðxtÞ are obtained from

(26) and (27) for a testing point xt, we determine its class

label by

(1) If f(xt) [ 0, then the testing point xt belongs accu-

rately to the target class; namely, it is an usual point.

(2) If f 0ðxtÞ\0; then the testing point xt belongs accu-

rately to an outlier.
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(3) If f 0ðxtÞ[ 0 and f(xt) \ 0, then the testing point xt

belongs to a possible outlier. Namely, the given

information is not sufficient to determine its class

label.

3.4 Property of parameters r and m

Like one class SVM, parameter m and the new introduced

parameter r in our proposed algorithm also have their

properties, and they are described as follows.

Proposition 5 Suppose there are l3 points that satisfy

0\ai� r
ml ; that is, l3 denotes the total number of support

vectors, then l3
l � 2m

r : That is to say, 2m
r is a lower bound on

the fraction of support vectors.

Proof Suppose there are l3 support vectors that satisfy

0\ai� r
ml ; then

Pl3
i¼1 ai� r

ml � l3; and
Pl3

i¼1 ai ¼
Pl

i¼1 ai ¼
2; hence r

ml � l3� 2; that is l3
l � 2m

r : Namely, 2m
r is a lower

bound on the fraction of support vectors. h

Proposition 6 Suppose there are l4 outliers that corre-

spond to ai ¼ r
ml ; then 2m

r is an upper bound on the fraction

of outliers.

Proof Suppose there are l4 outliers, and they satisfy ai ¼
r
ml ; then l4ai ¼ l4r

ml : Moreover l4ai B
P

i=1
l ai = 2. Then we

get l4r
ml � 2; that is 2m

r �
l4
l : That is to say, 2m

r is an upper

bound on the fraction of outliers. h

Both parameters m and r control the number of outliers

and the width of the boundary of the rough margin. The

smaller m value is, the narrower rough margin is, which

implies smaller proportion of points cannot be actually

determined their class labels.

4 Numerical experiments

In this section, we conduct experiments on one artificial

dataset and eight benchmark datasets. In the artificial

experiment, we verify the property of parameters m, r in

Rough one class SVM. In the eight benchmark experi-

ments, we investigate the validity of the proposed algo-

rithm from both accuracy and time aspects.

4.1 Experiment on artificial dataset

We randomly generate two classes data points, and they

follow Gaussian distributions. The first class samples

X1* N(3.5, 1), and the second class samples X2* N(1, 1).

There are 100 points in all in the first class and 8 points in

the second class. Their distributions are shown in Fig. 4. In

the process of learning, the 100 points are considered usual

points, and the other points are considered outliers.

In Fig. 5, the x-axis denotes the values of parameter

r, and the y-axis denotes the average accuracy of all of the

testing samples. From Fig. 5, we can find that Rough one

class SVM produces great generalization performance

when parameter r ranges from 2 to 128. However, the

proposed algorithm produces over-fitting problem when a

larger value is set to parameter r. It is helpful to the choice

of parameter r in our proposed algorithm. The relationship

between the average accuracy of the Rough one class SVM

and parameter r is shown in Fig. 5.

In Fig. 6, the x-axis denotes the values of parameter r.

The green curve denotes the changing curve between the

fraction of support vectors and parameter r. The red line

denotes the changing curve between the values of 2m
r and

−2 −1 0 1 2 3 4 5 6
−2

−1

0

1

2

3

4

5

6

Fig. 4 The distribution of artificial data
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Fig. 5 The relationship between the performance of the Rough one

class SVM and parameter r
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parameter r. The blue line denotes the changing curve

between the fraction of outliers and parameter r.

Figure 6 shows the correctness of Propositions 5 and 6.

That is to say, 2m
r is a lower bound on the fraction of support

vectors and an upper bound on the fraction of outliers.

4.2 Experiments on benchmark datasets

In this section, we conduct experiments on eight bench-

mark datasets to investigate the effectiveness of the Rough

one class SVM. The datasets come from UCI machine

learning repository,1 which are Breast Cancer1, Spectf

heart, Breast Cancer2, Ionosphere, Pima, Liver disorder,

heart, and Sonar showed in Table 1. For the experiment on

each dataset, we use fivefold cross-validation to evaluate

the performance of our proposed algorithm and one class

SVM. That is to say, the dataset is split randomly into five

subsets, and one of those sets is reserved as a test set; this

process is repeated five times. All of the algorithms are

implemented in Matlab 7.9 (R2009b).

From Table 1, we can find that most datasets exist the

class imbalance between the two classes samples; there-

fore, one class SVM is employed and Rough one class

SVM is researched in this paper. In all of the experiments,

we take the positive samples as target class samples and the

negative samples as outliers.

We know that the performance of the algorithm depends

heavily on the choices of parameters. In our experiments,

we only consider the Gaussian kernel function

kðxi; xjÞ ¼ expð�kxi � xjk2=p2Þ

for these datasets. We selected the optimal values for the

parameters by the grid search method. In our experiments,

the Gaussian kernel parameter p was selected from the

set f2iji ¼ �4;�3; . . .; 10g: The optimal values for m were

selected from the range i
10
ji ¼ 1; 2; . . .; 9

� �
: The penalty

parameter r was selected from the set f2iji ¼ 1; 2; . . .; 7g:
The experimental results are shown in Table 2. Where

‘‘Accuracy’’ denotes the mean value of five times testing

results and plus or minus the standard deviation, ‘‘Accu-

racy1’’ denotes the testing accuracy of all of the samples,

‘‘Accuracy2’’ denotes the testing accuracy of the target

samples, and ‘‘Accuracy3’’ denotes the testing accuracy of

the outliers, respectively. ‘‘Time’’ denotes the mean value

of five experimental times, each experimental time consists

of training time and testing time.

5 Result comparisons

We compare the performance of Rough one class SVM

with one class SVM and can easily draw the following

conclusions:

(1) From the perspective of prediction accuracy, we can

find that Rough one class SVM yields better predic-

tion performance than conventional one class SVM

except Breast Cancer1 dataset. They yield the com-

parable performance on Ionosphere dataset.

(2) In terms of computation time, although a new

parameter r was introduced into the Rough one class

SVM, it does not increase the CPU time. Namely, the

new parameter r does not increase the computational

complexity of our proposed algorithm.

(3) We also compare our experimental results with those

shown in [15], we find that our experimental results

are lower than those in [15]. The main reason lies in

that our experimental results are obtained under the

case of unsupervised learning, but the results in [15]

are obtained under the case of supervised learning.

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

1.2

1.4

σ

The fraction of the support vectors 
The bound 2ν/σ
The fraction of the outliers

Fig. 6 The red curve denotes a bound(2m
r ). The green curve denotes

the fraction of support vectors. The blue curve denotes the fraction of

outliers in Rough one class SVM (color figure online)

Table 1 Eight benchmark datasets

Dataset Feature Positive samples Negative samples

Breast Cancer1 33 148 46

Spectf heart 44 212 55

Breast Cancer2 31 357 212

Ionosphere 34 225 126

Pima 8 500 268

Liver disorder 6 200 145

Heart 13 150 120

Sonar 60 97 111

1 http://archive.ics.uci.edu/ml/datasets.html.
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6 Conclusion

A novel rough margin-based one class SVM is proposed to

avoid the over-fitting problem in this paper. More data

points are adaptively considered in constructing the sepa-

rating hyper-plane rather than few data points in one class

SVM. Moreover, different penalties are proposed to give

the samples depending on their positions since the points in

lower margin have more effects than those in the boundary

of rough margin. Finally, the proposed algorithm yields

higher prediction accuracy than one class SVM. Certainly,

the combination of rough set and SVM needs further

research.
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