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Abstract This paper proposes a modified ELM algorithm

that properly selects the input weights and biases before

training the output weights of single-hidden layer feed-

forward neural networks with sigmoidal activation function

and proves mathematically the hidden layer output matrix

maintains full column rank. The modified ELM avoids the

randomness compared with the ELM. The experimental

results of both regression and classification problems show

good performance of the modified ELM algorithm.

Keywords Feedforward neural networks � Extreme

learning machine � Moore–Penrose generalized inverse

1 Introduction

Feedforward neural networks have been deeply and sys-

tematically studied because of their universal approxima-

tion capabilities on compact input sets and approximation in

a finite set. Cybenko [1] and Funahashi [2] proved that any

continuous function could be approximated on a compact

set with uniform topology by a single-hidden layer feed-

forward neural network (SLFN) with any continuous sig-

moidal activation function. Hornik in [3] showed that any

measurable function could be approached with such net-

works. A variety of results on SLFN approximations to

multivariate functions were later established by many

authors: [4–9] by Cao, Xu et al. [10], [11] by Chen and

Chen, [12] by Hahm and Hong, [13] by Leshno et al., etc.

SLFNs have been extensively used in many fields due to

their abilities: (1) to approximate complex nonlinear map-

pings directly from the input samples; and (2) to provide

models for a large class of natural and artificial phenomena

that are difficult to handle with using classical parametric

methods.

It is known that the problems of density and complexity

in neural network are theoretical bases for algorithms. In

practical applications, it is paid close attention to the faster

learning algorithms of neural networks in a finite training

set.

Huang and Babri [14] showed that a single-hidden layer

feedforward neural network with at most N hidden nodes

and with almost any type of nonlinear activation function

could exactly learn N distinct samples. Although conven-

tional gradient-based learning algorithms, such as back-

propagation (BP) and its variant Levenberg–Marquardt

(LM) method, have been extensively used in training

multilayer feedforward neural networks, these learning

algorithms are still relatively slow and may also easily get

stuck in a local minimum. Support vector machines

(SVMs) have been extensively used for complex mappings

and famous for its good generalization ability. However, to

tune SVM kernel parameters finely is a time-intensive

business.

This paper is organized as follows. Section 2 gives

theoretical deductions of modified ELM algorithm with

sigmoidal activation function. Section 3 proposes a modi-

fied ELM algorithm. Section 4 presents performance eval-

uation. Section 5 consists of discussions and conclusions.
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2 Theoretical deductions of modified ELM algorithm

with sigmoidal activation function

Recently, a new learning algorithm for SLFN named

extreme learning machine (ELM) has been proposed by

Huang et al. in [15, 16]. Unlike traditional approaches

(such as BP algorithms, SVMs), ELM algorithm has a

concise architecture, no need to tune input weights and

biases. Particularly, the learning speed of ELM can be

thousands of times faster than traditional feedforward

network learning algorithms like BP algorithm. Compared

with traditional learning algorithms, ELM not only tends to

reach the smallest training error but also to obtain the

smallest norm of weights. According to Bartlett in [17],

the smaller training error the neural network reaches and

the smaller the norm of weights is, the better generalization

performance the networks tend to have. Therefore, the

ELM can have good generalization performance. So far

much work has been conducted on ELM and its related

problems, and some relevant results have been obtained in

[18–22].

The ELM algorithm of SLFNs can be summarized as the

following three steps:

Algorithm of ELM: Given a training set N ¼ fðXi; tiÞj
2 R

d; ti 2 R; i ¼ 1; 2; . . .; ng and activation function g,

hidden node number N.

Step 1: Randomly assign input weight Wi and bias bi

ði ¼ 1; 2; . . .;NÞ
Step 2: Calculate the hidden layer output matrix H.

Step 3: Calculate the output weight b by b ¼ HyT ; here

Hy is the Moore–Penrose generalized inverse of

H and T ¼ ðt1; t2; . . .; tnÞT :

Several methods, such as orthogonal projection method,

iterative method and singular value decomposition (SVD),

can be used to compose the Moore–Penrose generalized

inverse of H. The orthogonal projection, orthogonalization

method and iterative method have their limitations as

searching and iteration may consume extra training time.

The orthogonal project method can be used when the

hidden layer output matrix is a full column rank matrix.

SVD can be generally used to calculate the Moore–Penrose

generalized inverse of hidden layer output matrix in all

cases, but it costs plenty of time. This paper designs a

learning machine that first properly trains input weights

and biases such that the hidden layer output matrix is full

column rank, and then orthogonal project method will be

used to calculate the Moore–Penrose generalized inverse of

hidden layer output matrix.

For n arbitrary distinct sample (Xi, ti), where Xi ¼ ðxi1;

xi2; . . .; xidÞT 2 R
d and ti ¼ ðti1; ti2; . . .; timÞ 2 R

m, standard

SLFNs with N hidden nodes and activation function g(x)

are mathematically modeled as

GNðXÞ ¼
XN

i¼1

bigðWi � X þ biÞ; ð1Þ

where bi ¼ ðbi1; bi2; . . .; biNÞT is the output weight vector

connecting the ith nodes and the output nodes, Wi ¼
ðwi1;wi2; . . .;widÞT is the input weight vector connecting

the ith hidden nodes and the input nodes, and bi is the

threshold of the ith hidden node. The SLFNs GN(x) can

approximate these n samples with zero error means

GNðxjÞ ¼ tj; j ¼ 1; 2; . . .;N: ð2Þ

The above n equations can be written as

Hb ¼ T ; ð3Þ

where

H ¼ Hðw1;w2; . . .;wN ; b1; b2; . . .; bN ; X1;X2; . . .;XnÞ

¼

gðW1 � X1 þ b1Þ gðW2 � X1 þ b2Þ � � � gðWN � X1 þ bNÞ
gðW1 � X2 þ b1Þ gðW2 � X2 þ b2Þ � � � gðWN � X2 þ bNÞ

..

. ..
.

� � � ..
.

gðW1 � Xn þ b1Þ gðW2 � Xn þ b2Þ � � � gðWN � Xn þ bNÞ

0
BBBB@

1
CCCCA

n�N

;

ð4Þ

b ¼

bT
1

bT
2

..

.

bT
N

0

BBB@

1

CCCA

N�m

and T ¼

tT
1

tT
2

..

.

tT
n

0

BBB@

1

CCCA

n�m

: ð5Þ

As named in Huang et al. [14–23], H is called the hidden

layer output matrix of the neural network.

In most cases, the number of hidden nodes is much less

than the number of training samples, N � n. Then, there

may not exist wi; bi; biði ¼ 1; 2; . . .;NÞ such that Hb = T.

So, the least-square method is used to find the least-square

solutions of Hb = T. Furthermore, the special solution b̂
can be computed,

kHb̂� Tk ¼ min
b
kHb� Tk; ð6Þ

this b̂ is the minimum norm least-square solution. From

[24, 27],

b̂ ¼ HyT; ð7Þ

where Hy is called the Moore–Penrose generalized inverse

of matrix of H. Thus, the output weight of ELM algorithm is

b ¼ HyT: ð8Þ

Suppose X1;X2 2 R
d; Xi ¼ ðxi1; xi2; . . .; xidÞ; i ¼ 1; 2:

We say X1 � X2 if and only if there exists j0 2
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f1; 2; . . .; dg such that x1j0\x2j0 ; x1j ¼ x2j; j ¼ j0 þ 1; j0þ
2; . . .; d.

Lemma 2.1 For n distinct vectors X1 � X2 � � � � �
Xn 2 R

dðd� 2Þ, there exists a vector W 2 R
d such that

W � X1\W � X2\ � � �\W � Xn: ð9Þ

Proof For Xi ¼ ðxi1; xi2; . . .; xidÞ; i ¼ 1; 2; . . .; n, we set

w1
j :¼ 1

1þmaxifjxijjg
; j ¼ 1; 2; . . .; d; ð10Þ

then

x1
ij ¼ w1

j xij 2 ½�1; 1�; i ¼ 1; 2; . . .; n; j ¼ 1; 2; . . .; d:

ð11Þ

Let

y1
ij ¼ jx1

iþ1;j � x1
ijj; i ¼ 1; 2; . . .; n� 1; j ¼ 1; 2; . . .; d:

ð12Þ

For given j(1 B j B d), if yij
1 = 0 for all i ¼ 1; 2; . . .; n� 1;

let nj = 2d; otherwise,

nj ¼
4d

miny1
ij 6¼0fy1

ijg
: ð13Þ

Obviously,

nj� 2d; j ¼ 1; 2; . . .; d: ð14Þ

Define

w2
j :¼ w1

j P
j
i¼1ni; j ¼ 1; 2; . . .; d; ð15Þ

and

W ¼ ðw2
1;w

2
2; . . .;w2

dÞ: ð16Þ

For fixed i(1 B i B n - 1), owing to Xi � Xiþ1; there

exists k0 2 N such that

xik0
\xiþ1;k0

; xij ¼ xiþ1;j; j ¼ k0 þ 1; . . .; d: ð17Þ

Write

W � Xiþ1 �W � Xi ¼
Xk0�1

k¼1

ðx1
iþ1;k � x1

i;kÞPk
s¼1ns

þ ðx1
iþ1;k0

� x1
ik0
ÞPk0

s¼1ns

¼: I1 þ I2: ð18Þ

Since

jI1j 	 2ðn1 þ n1n2 þ � � � þ n1n2 � � � nk0�1Þ

¼ 2Pk0�1
s¼1 ns 1þ 1

nk0�2

þ � � � þ 1

n2 � � � nk0�1

� �

	 2Pk0�1
s¼1 ns �

1

1� 1
2d

\2dPk0�1
s¼1 ns: ð19Þ

And

I2 ¼ Pk0�1
s¼1 ns � nk0

ðx1
iþ1;k0

� x1
ik0
Þ

¼ Pk0�1
s¼1 ns � nk0

� y1
i;k0

�Pk0�1
s¼1 ns � y1

i;k0
� 4d

y1
ik0

¼ 4dPk0�1
s¼1 ns: ð20Þ

This gives W � Xiþ1 �W � Xi [ 0; that is, W � Xi\W � Xiþ1;

which completes the proof of Lemma 2.1. h

Remark 1 From Lemma 2.1, it is deduced that the

sequence of the samples is unchanged under the affine

transformation Xi 7!W � Xi: It is noteworthy that Lemma 2.1

also provides the method (10)–(16) to compute the weight W

of the transformation, and the method here is better than that

given in [22] as the weights in the Lemma 2.1 are much

smaller than those in [22]. With this property, it is possible to

make the hidden layer output matrix full column rank.

Suppose that r(x) is a bounded sigmoidal function, then

lim
x!þ1

rðxÞ ¼ 1; lim
x!�1

rðxÞ ¼ 0: ð21Þ

Set

drðAÞ :¼ sup
x�A

maxfj1� rðxÞj; jrð�xÞjg; ð22Þ

then

lim
A!þ1

drðAÞ ¼ 0: ð23Þ

Let ðx1; y1Þ; ðx2; y2Þ; . . .; ðxn; ynÞ be a set of samples, and

x1\x2\ � � �\xn: We have the following lemma.

Lemma 2.2 There exist numbers w1;w2; . . .;wn and

a1; a2; . . .; an such that the matrix

Gr ¼

rðw1x1 þ a1Þ rðw2x1 þ a2Þ � � � rðwnx1 þ anÞ
rðw1x2 þ a1Þ rðw2x2 þ a2Þ � � � rðwnx2 þ anÞ

..

. ..
.

� � � ..
.

rðw1xn þ a1Þ rðw2xn þ a2Þ � � � rðwnxn þ anÞ

0
BBB@

1
CCCA

ð24Þ

is nonsingular.

Proof Since

lim
A!þ1

drðAÞ ¼ 0; ð25Þ

there exists A [ 0 such that dr(A) \ 1/(4n). Hence,

j1� rðAÞj\ 1

4n
; jrð�AÞj\ 1

4n
; ð26Þ

and

jrðcÞj\ 1

4n
; j1� rð�cÞj\ 1

4n
; c\� A: ð27Þ
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Input weights and biases are chosen by the following

criteria.

w1 ¼ �
2A

x2 � x1

; w2 ¼ �
2A

x3 � x2

; . . .;

wn�1 ¼ �
2A

xn � xn�1

; wn ¼ �
2A

xn � xn�1

;

a1 ¼ Aþ 2Ax1

x2 � x1

; a2 ¼ Aþ 2Ax2

x3 � x2

; . . .;

an�1 ¼ Aþ 2Axn�1

xn � xn�1

; an ¼ Aþ 2Axn

xn � xn�1

;

it follows that

In turn, subtract the second row from the first row, the third

row from the third row, � � � � � �, and keep the last row

unchanged. Denote the matrix that has performed the above

row operations by eGr ¼ ðegijÞn:
Now for i ¼ 1; 2; . . .; n� 1; the elements of the ith row

can be estimated as follows. For j ¼ 1; . . .; i� 1; since

� 2Aðxi � xjÞ
xjþ1 � xj

þ A\� A; ð29Þ

egij

�� �� ¼ r � 2Aðxi � xjÞ
xjþ1 � xj

þ A

� �
� r � 2Aðxiþ1 � xjÞ

xjþ1 � xj
þ A

� �����

����

\
1

2n
: ð30Þ

For j = i,

egiij j ¼ rðAÞ � rð�AÞj j � 1� j1� rðAÞj þ jrð�AÞjð Þ

[ 1� 1

2n
: ð31Þ

For j ¼ iþ 1; . . .; n� 1,

� 2Aðxi � xjÞ
xjþ1 � xj

þ A [ A; ð32Þ

implies

jegijj ¼ r �2Aðxi� xjÞ
xjþ1� xj

þA

� �
� r �2Aðxiþ1� xjÞ

xjþ1� xj
þA

� �����

����

ð33Þ

	 1�r �2Aðxi�xjÞ
xjþ1�xj

þA

� �����

����þ 1�r �2Aðxiþ1�xjÞ
xjþ1�xj

þA

� �����

����

\
1

2n
: ð34Þ

For j = n, it can similarly be obtained that

jeginj ¼ r �2Aðxi� xnÞ
xn� xn�1

þA

� �
�r �2Aðxiþ1� xnÞ

xn� xn�1

þA

� �����

����

\
1

2n
; ð35Þ

In the nth row of eGr; for j¼ 1;2; . . .;n� 1,

� 2Aðxn � xjÞ
xjþ1 � xj

þ A\� A ð36Þ

which implies

egnj

�� ��\ 1

4n
ð37Þ

and

egnn ¼ rðAÞ[ 1� 1

4n
: ð38Þ

Therefore,

jegiij[
X

1	 i6¼j	 n

jegijj; i ¼ 1; 2; . . .; n; ð39Þ

that is, eGr is strictly diagonally dominant which guarantees

that eGr is nonsingular. This indicates the nonsingularity

of Gr. h

Remark 2 Lemma 2.2 gives the method to construct the

weights and biases of the single-hidden layer neural net-

work with the sigmoidal activation function such that the

hidden layer output matrix is a full column rank for any

given data. With Lemma 2.2, it is possible to construct the

algorithm to train the neural network.

For Xi 2 R
d; i ¼ 1; 2; . . .;N, and X1 � X2 � � � � � XN :

Lemma 1 illustrates that there exists W 2 R
d, such that

W � X1\W � X2\ � � �\W � XN : ð40Þ

Gr ¼

rðAÞ r � 2Aðx1�x2Þ
x3�x2

þ A
� �

� � � r � 2Aðx1�xn�1Þ
xn�xn�1

þ A
� �

r � 2Aðx1�xnÞ
xn�xn�1

þ A
� �

rð�AÞ rðAÞ � � � r � 2Aðx2�xn�1Þ
xn�xn�1

þ A
� �

r � 2Aðx2�xnÞ
xn�xn�1

þ A
� �

..

. ..
.

� � � ..
. ..

.

r � 2Aðxn�1�x1Þ
x2�x1

þ A
� �

r � 2Aðxn�1�x2Þ
x3�x2

þ A
� �

� � � rðAÞ r � 2Aðxn�1�xnÞ
xn�xn�1

þ A
� �

r � 2Aðxn�x1Þ
x2�x1

þ A
� �

r � 2Aðxn�x2Þ
x3�x2

þ A
� �

� � � rð�AÞ rðAÞ

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

: ð28Þ
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Let xi ¼ W � Xi; i ¼ 1; 2; . . .;N, and set

W1 ¼ �
2A

x2 � x1

W ; W2 ¼ �
2A

x3 � x2

W ; . . .;

WN�1 ¼ �
2A

xN � xN�1

W ; WN ¼ �
2A

xN � xN�1

W :

b1 ¼ Aþ 2Ax1

x2 � x1

; b2 ¼ Aþ 2Ax2

x3 � x2

; . . .;

bN�1 ¼ Aþ 2AxN�1

xN � xN�1

; bN ¼ Aþ 2AxN

xN � xN�1

;

where A satisfies dr(A) \ 1/(4N).

From Lemma 2.2, the following theorem is easily

obtained.

Theorem 2.1 Suppose r(x) is a bounded sigmoidal

function, Xi 2 R
d; i ¼ 1; 2; . . .;N, and X1 � X2 � � � � �

XN : Then, there exist Wi 2 R
d; bi 2 R; i ¼ 1; 2; . . .;N,

such that the matrix

H ¼

rðW1 � X1 þ b1Þ rðW2 � X1 þ b2Þ � � � rðWN � X1 þ bNÞ
rðW1 � X2 þ b1Þ rðW2 � X2 þ b2Þ � � � rðWN � X2 þ bNÞ

..

...
.
� � � ..

.

rðW1 � XN þ b1Þ rðW2 � XN þ b2Þ � � � rðWN � XN þ bNÞ

0

BBBBB@

1

CCCCCA

ð41Þ

is nonsingular.

Based on the knowledge of matrix and Theorem 2.1, we

have the following conclusion.

Corollary 2.1 Suppose Xi 2 R
d; i ¼ 1; 2; . . .; n are n

distinct vectors, N [ n. Then, there exist Wi 2 R
d; bi 2 R;

i ¼ 1; 2; . . .;N such that the matrix

H ¼

rðW1 � X1 þ b1Þ rðW2 � X1 þ b2Þ � � � rðWN � X1 þ bNÞ
rðW1 � X2 þ b1Þ rðW2 � X2 þ b2Þ � � � rðWN � X2 þ bNÞ

..

. ..
.

� � � ..
.

rðW1 � Xn þ b1Þ rðW2 � Xn þ b2Þ � � � rðWN � Xn þ bNÞ

0
BBB@

1
CCCA

n�N

ð42Þ

is full column rank.

3 A modified ELM using sigmoidal activation function

According to the discussion of Sect. 2 and based on ELM

algorithm, a new algorithm is proposed. It uses sigmoidal

function as its activation function and can make good use

of orthogonal projection method to calculate the output

weights. The modified extreme learning machine is stated

in the following algorithm.

Algorithm of Modified ELM: Given a training data set

N ¼ fðX
i ; t
i ÞjX
i 2 R
d; t
i 2 R; i ¼ 1; 2; . . .; ng; activation

function of sigmoidal function (for instance, g(x) =

1/(1 ? e-x)) and hidden node number N.

Step 1: Select weights Wi and biases bi ði ¼ 1; 2; . . .;NÞ:

Sort the former N samples ðX
i ; t
i Þ ði ¼ 1; 2; . . .;NÞ in terms

of W � X
1 ;W � X
2 ; . . .;W � X
N such that W � X
i1\W �
X
i2\ � � �\W � X
iN (ij = ik for j 6¼ k; j; k ¼ 1; 2; . . .;N and

ij ¼ 1; 2; . . .;N) and denote the sorted data as ðXi; tiÞ ði ¼
1; 2; . . .; nÞ and Xi ¼ ðxi1; xi2; . . .; xidÞ ði ¼ 1; 2; . . .; nÞ: For

j ¼ 1; 2; . . .; d; make following calculations.

w1
j ¼

1

maxi¼1;2;...;N jxijj
� � [ 0; ð43Þ

x1
ij ¼ w1

j xij 2 ½�1; 1�; ð44Þ

y1
ij ¼ x1

iþ1;j � x1
ij

���
��� ði ¼ 1; 2; . . .;N � 1Þ; ð45Þ

nj ¼
2d; if y1

ij ¼ 0 for all i ¼ 1; 2; . . .;N � 1;
4d

min
y1
ij
6¼0

y1
ijf g
; else;

8
<

:

ð46Þ

w2
j ¼ w1

j P
j
i¼1ni: ð47Þ

Set

W ¼ w2
1;w

2
2; . . .;w2

d

	 

: ð48Þ

Let ai ¼ W � Xi,

Wi ¼
2A

ai � ai
W ; i ¼ 1; 2; . . .;N � 1; ð49Þ

WN ¼ WN�1; ð50Þ

bi ¼ Aþ 2Aai

aiþ1 � ai
; i ¼ 1; 2; . . .;N � 1; ð51Þ

bN ¼ Aþ 2AaN

aN � aN�1

: ð52Þ

Step 2: Calculate output weights b ¼ ðb1; b2; . . .; bNÞ:

Let T ¼ ðt1; t2; . . .; tnÞT and

H ¼

rðW1 � X1 þ b1Þ rðW2 � X1 þ b2Þ . . . rðWN � X1 þ bNÞ
..
. ..

.
. . . ..

.

rðW1 � XN þ b1Þ rðW2 � XN þ b2Þ . . . rðWN � XN þ bNÞ
rðW1 � XNþ1 þ b1Þ rðW2 � XNþ1 þ b2Þ . . . rðWN � XNþ1 þ bNÞ

..

. ..
.

. . . ..
.

rðW1 � Xn þ b1Þ rðW2 � Xn þ b2Þ . . . rðWN � Xn þ bNÞ

0

BBBBBBBB@

1

CCCCCCCCA

n�N

:

ð53Þ

Then,

b ¼ HyT ¼ ðHT HÞ�1HT T: ð54Þ
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The ELM proves in practice to be an extremely fast

algorithm. This is because it randomly chooses the input

weights Wi and biases bi of the SLFNs instead of carefully

selecting. However, this big advantage makes the

algorithm less effective sometimes. As discussed in [22],

the random selection of input weights and biases is likely to

yield an unexpected result that the hidden layer output

matrix H is not full column rank, which might cause two

difficulties that cannot be overcome theoretically. First, the

SLFNs cannot approximate the training samples with zero

error, which relatively lowers the prediction accuracy.

Secondly, it is known that the orthogonal projection is

typically faster than SVD, and the algorithm proposed here

can make good use of the faster method which is unable to

be used in ELM due to the requirement of nonsingularity of

HTH.

4 Simulation results

This section measures the performance of the proposed

new ELM learning algorithm. The simulations for ELM

and modified ELM algorithms are carried out in the Matlab

7.10 environment running in AMD athlon(tm) II, X3, 425

processor with the speed of 2.71 GHz. The activation

function used in algorithm is sigmoid function g(x) =

1/(1 ? e-x). For classification problems, accuracy rates are

used as the measurement of the performance of learning

algorithms, that is, the ratio of the number of the testing

samples that are correctly classified to the number of all

samples. For regression problems, root-mean-square devi-

ation (RMSD) of the difference of target vectors and pre-

dicted target vectors by the SFLNs is used. We call this

RMSD the error of the algorithm for the testing data. The

RMSDs of the accuracy and the error of the algorithms are

used as the measurement of fluctuations in algorithms.

4.1 Benchmarking with a regression problem:

approximation of ‘SinC’ function with noise

First of all, the ‘SinC’ function is used to measure the

performance of ELM and the modified ELM algorithms.

The target function is as follows.

y ¼ f ðxÞ ¼ sinðxÞ=x; x 6¼ 0;
1; x ¼ 0:

�
ð55Þ

The training set (xi, yi) and testing set (ui, ti) with 5,000

samples are, respectively, created, where xi, ui in training

and testing data are distributed in [-10,10], respectively,

with uniform step length. Large uniform noise distributed

in [0.2, 0.2] has been used in all training data to obtain a

real regression problem. The experiment is carried out on

these data as follows. There are 20 hidden nodes assigned

for both ELM and modified ELM algorithms. Fifty trials

have been conducted for the ELM algorithm to eliminate

the random error and the results shown are the average

results. Results shown in Table 1 include training time,

testing time, training accuracy, testing accuracy and the

number of nodes of both algorithms. Plus, standard devi-

ation of time and accuracy in the process of training and

testing are recorded in Table 2.

It can be seen from Table 1 that the modified ELM

algorithm spends 0.0675, 0.0169 s CPU time training and

testing, respectively, whereas it takes 0.0541 and 0.0213 s

for the ELM algorithm to complete the same process.

Consider the accuracy of training and testing of both

algorithms. The original ELM performs better than the

modified ELM. However, the standard deviations of

training and testing time and the accuracy are all smaller

than those of ELM as shown in Table 2, which means the

modified algorithm is more stable than ELM.

Figure 1 shows the raw data and trained results of ELM

algorithm, and Fig. 2 shows the raw data and the approxi-

mated results based on the modified ELM algorithm, which

also demonstrates that the modified ELM algorithm has an

acceptable performance.

4.2 Benchmarking with practical problems applications

Performance comparison of the proposed modified ELM

and the ELM algorithms for four real problems is carried

out in this section. Classification and regression tasks are

included in four real problems that are shown in Table 3.

Two of them are classification tasks including Diabetes,

Glass Identification (Glass ID), and the other two are

regression tasks including Housing and Slump (Concrete

Slump). All the data sets are from UCI repository of

machine learning databases [28]. The speculation of each

database is shown in the Table 3. For the databases that

Table 1 Performance comparison for learning function: SinC

Algorithms Time Accuracy # Nodes

Training Testing Training Testing

ELM 0.0675 0.0169 0.1150 0.0090 20

Modified ELM 0.0541 0.0213 0.1393 0.0792 20

Table 2 Standard deviation comparison for learning function: SinC

Algorithms Time Accuracy

Training Testing Training Testing

ELM 0.0251 0.0202 8.5681 9 10-6 1.0723 9 10-4

Modified

ELM

0.0431 0.0211 5.6075 9 10-17 4.2056 9 10-17
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have only one data table, as conducted in [25, 26, 29, 30],

75 and 25% of samples in the problem are randomly

chosen for training and testing, respectively, at each trial.

In order to reduce the random error, for every database,

fifty trials for both two algorithms are conducted, then

taking the average of fifty times as final results. The results

are reported in Tables 4, 5 and 6, which show that in our

simulation, on the average, both of ELM and the modified

ELM algorithms have similar learning time which is

reported in Table 6 as well as fast learning rate.

However, the modified ELM has more stable accuracies

of training and testing, which can be seen from Table 5,

especially in cases of regression problems. From Table 4, it

can be observed that the modified ELM algorithm is better

than ELM in the accuracy of learning for the regression

cases. And detailed information is shown in Figs. 3, 4, 5, 6,

7, 8, 9 and 10.

In addition, it is worth mentioning that compared with

ELM algorithm, the modified ELM selects the input

weights and biases, which helps avoid the risk of the ran-

dom errors as we can see from Table 5 and Figs. 3, 4, 5, 6,

7, 8, 9 and 10.

Fig. 1 Outputs of ELM learning algorithm

Fig. 2 Outputs of modified ELM learning algorithm

Table 3 Speculations of real-world applications and the number of

nodes for each

Data

sets

# Observations #

Attributes

continuous

Associated

tasks

# Nodes

Training Testing

Diabetes 576 192 8 Classification 20

Glass ID 160 54 9 Classification 10

Housing 378 126 14 Regression 80

Slump 76 27 10 Regression 10

Table 4 Comparison training and testing accuracy/error of ELM and

modified ELM

Data sets ELM Modified ELM

Training Testing Training Testing

Diabetes 0.7784 0.7892 0.6974 0.7327

Glass ID 0.9485 0.4326 0.9375 0.4630

Housing 0.0691 0.0025 0.1214 0.0157

Slump 7.8446 3.4696 9 107 7.1422 12.2175

Table 5 Comparison of training and testing RMSD of accuracy/error

of ELM and modified ELM

Data

sets

ELM Modified ELM

Training Testing Training Testing

Diabetes 0.0068 0.0166 3.3645 9 10-16 5.6075 9 10-16

Glass ID 0.0027 0.0264 0 5.6075 9 10-17

Housing 0.0110 0.0043 9.3181 9 10-17 0

Slump 0.1995 2.4271 9 107 5.3832 9 10-15 1.2561 9 10-14

Table 6 Comparison of average training and testing time of ELM

and modified ELM

Data sets ELM Modified ELM

Training Testing Training Testing

Diabetes 0.0084 0.0013 0.0109 0.0037

Glass ID 0.0031 0.0019 0.0178 0.0037

Housing 0.0081 0.0053 0.0088 0.0028

Slump 0.0091 0.0028 0.0163 0.0019
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Fig. 3 Training accuracy of ELM for Diabetes
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Fig. 4 Training accuracy of modified ELM for Diabetes
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Fig. 6 Testing accuracy of modified ELM for Diabetes
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5 Conclusions

This paper proposes a modified ELM algorithm based on

the ELM for training single-hidden layer feedforward

neural networks (SLFNs) in an attempt to solve the least-

square minimization of SLFNs in a more effective way and

meanwhile solves the open problem in [22].

The learning speed of modified ELM is as fast as ELM.

The main difference between the modified ELM and ELM

algorithms lies in the selection of input weights and biases.

The modified algorithm selects the input weights and bia-

ses properly, which consumes little time compared with the

training time of output weights. The modified ELM algo-

rithm overcomes the shortcomings of EELM, the algorithm

proposed in [22], that is, it can use sigmoidal function as

activation function to train the networks but still keep the

qualities of ELM and EELM.
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