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Abstract In this paper, we propose an extreme learning

machine (ELM) with tunable activation function (TAF-

ELM) learning algorithm, which determines its activation

functions dynamically by means of the differential evolu-

tion algorithm based on the input data. The main objective

is to overcome the problem dependence of fixed slop of the

activation function in ELM. We mainly considered the

issue of processing of benchmark problems on function

approximation and pattern classification. Compared with

ELM and E-ELM learning algorithms with the same net-

work size or compact network configuration, the proposed

algorithm has improved generalization performance with

good accuracy. In addition, the proposed algorithm also has

very good performance in the TAF neural networks

learning algorithms.

Keywords Extreme learning machine � Single hidden

layer feed-forward neural networks � Tunable activation

function � Differential evolution algorithm

1 Introduction

Feed-forward neural networks have been attracted much

attention and been extensively used in many fields, such as

time series prediction, pattern classification and a variety of

real applications, due to their simple architecture and good

global approximation performance. In general, there are

few faster learning algorithms for feed-forward neural

networks, and the traditional learning methods are usually

much slower than required. It is not surprising to see that it

may take several hours and even more time to train neural

networks by using of the traditional methods [1].

A novel learning algorithm for single hidden layer feed-

forward neural networks (SLFNs) called extreme learning

machine (ELM) [1–3] was presented by Huang et al. for

improving the training time of SLFNs. Unlike traditional

neural networks approaches, the ELM learning algorithm

chooses randomly the input weights and biases of hidden

neurons, and the output weights of SLFNs are determined

analytically. The training speed of ELM learning algorithm

is extremely fast and has good generalization ability with

least human intervene, which has been applied in many

areas, such as nonlinear system identification [4] and

decision-making problems [5], etc.

However, the basis functions themselves influence the

performance of neural networks with respect to the same

training data, the choice of basis function is problem

dependent and has a significant effect on model perfor-

mance of neural networks. Especially, in the ELM learning

algorithm, the configuration of neural networks has quite

different approximation ability and generalization perfor-

mance for different basis functions on the same problem.

Consequently, the choice of activation (basis) functions

of ELM learning algorithm is problem dependent [6].

Generally, there are two approaches for solving the problem

dependence of neural networks. The first one is incorpo-

rating a priori information into ELM learning algorithm in

order to select the activation function of hidden neurons

[7, 8]. However, the priori knowledge of problems is
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difficult to acquire. The second method is to choice the

neural networks with tunable activation functions, that is,

the activation functions do not keep unchanged. They can

be adjusted adaptively to embed the information of prob-

lems in the training process in order to match the specific

task [9–11]. The learning algorithm previously proposed in

[9] is back propagation (BP) algorithm suffering from a

number of shortcomings which has lower convergence

speed and may easily converge to local minima. Further-

more, the algorithm presented in [10, 11] based on the RLS

algorithm is more sensitive to initial parameters.

In order to improve the performance of SLFNs and solve

the problem dependence of ELM learning algorithm, we

propose a novel learning algorithm for ELM called tunable

activation function extreme learning machine (TAF-ELM)

based on the idea of tunable activation function, which was

developed in [9, 10]. In terms of the learning algorithm, the

training parameters (input weights, hidden biases and TAF

parameters of variables) of neural networks can be assigned

randomly, and then the weights between hidden layer and

output layer can be solved using the least squares method by

the Moore–Penrose (MP) generalized inverse. Afterward,

the maximum iteration time of the TAF-ELM algorithm is

set. Based on the convergence criteria, the parameters of

neural networks are adjusted using differential evolutionary

algorithm [12]. Consequently, the parameters of variable of

tunable activation functions can be tuned dynamically, and

the values of TAF parameters represent the importance of

different activation functions. Moreover, the activation

functions of hidden neurons contain the information of

problems that should be solved self-adaptively.

Existing learning algorithms of neural networks can be

categorized into two classes, batch and on-line (or sequen-

tial). Sequential algorithms with less training time are

applicable to real-time systems. Nevertheless, the general-

ization ability and approximation accuracy are more

important than training time for batch algorithms. As the

new proposed learning algorithm is implemented with

respect to function approximation and pattern classification

benchmark problems, the proposed batch learning method

can be used to obtain better generalization performance

sometimes with more compact networks, although it takes

longer time for training process than ELM and E-ELM

learning algorithms. Meanwhile, in the Feigenbaum func-

tion approximation problem, the TAF-ELM performs much

better than the traditional TAF-BP [9] and TAF-MFNN [10]

learning algorithms.

The rest part of this paper is organized as follows.

Section 2 presents the TAF-ELM learning algorithm based

on the original ELM and the idea of tunable activation

function. Section 3 includes different simulation results and

analysis of the proposed algorithm for benchmark prob-

lems. Finally, the conclusion is summarized in Sect. 4.

2 The TAF-ELM learning algorithm

2.1 The TAF neural model

The activation functions simulating soma’s function of the

classical M-P model are fixed. The capability of neural

networks based on this simple model is limited and fails to

deal with many difficult problems. Actually, there are

many different kinds of biologic neurons. Different types

of neurons can be adapted and used effectively to deal with

different information. On the basis of this hypothesis, Wu

and Zhao have designed the tunable activation function

model [9].

Figure 1 gives the TAF neural model. In the model, a

neuron is divided into two parts: synapse and soma. The

function of the synapse is regarded as a multi-input and

multi-output mapping, denoted by S = g(X, W, b), which

includes the hidden bias (or impact factor) b in our

paper. Where S is called ‘‘inner activation’’, which is the

input of the soma. The function of the soma, called

activation function of neural networks, is to transform

the inner-activation nonlinearly and can be denoted as

O = G(S, a). Where Gð�; �Þ is the mapping function of

the soma model and is called TAF. In the function of

G, a is a tunable parameter, which enables the soma to

have the ability of adaptive training to suit specific input

signal [9–11].

Thus, the activation function of TAF model can be

generally written as

GðS; aÞ ¼ GðgðX;W ; bÞ; aÞ ¼ FðX;W ; b; aÞ ð1Þ

where W is a weight vector between input layer and hidden

layer, X is an input signal vector, b is the bias of the hidden

neuron, a is a parametric vector, which are used to control
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Fig. 1 The general TAF neural model
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the adjustability of TAF neurons. S is the output of syn-

apses or can be regraded as input of the soma, so it is

referred to as the internal stimulation or called total inner

simulation when S is a scalar quantity [9, 10].

In this paper, the TAF activation function represented by

a weighted summation of a finite number of basis functions

fj is as follows

GðS; aÞ ¼
Xk

j¼1

ai;jfjðSÞ i ¼ 1; 2; . . .; ~N ð2Þ

where ai;jði ¼ 1; 2; . . .; ~N; j ¼ 1; 2; . . .; kÞ are all real con-

stants, ~N is the number of hidden neurons. k is the com-

binatorial number of basis functions per hidden neuron.

ai ¼ ðai;1; ai;2; . . .; ai;kÞT is called the TAF parametric vec-

tor of the ith hidden neuron and represents the degree of

importance of corresponding activation function. fj (S) is

the jth TAF basis function, which always satisfied the

condition of infinite differentiability.

2.2 The TAF-ELM neural networks

The ELM with good performance has recently attracted the

attention from more and more researchers. But for the same

problem, the ELM learning algorithm has different per-

formance with different activation functions [6]. The

results indicate that the choice of activation function is data

set dependent, and evaluating the proper activation func-

tion for different problem is advantageous for improving

the generalization performance of neural networks. In order

to overcome the data dependence of ELM, the ELM

learning algorithm combined with TAF neural model is

proposed in this paper.

As is known, the activation function is strictly required

for neural networks model in the early research stage of

neural networks. The property of activation function ought

to be continuous, bounded and nonconstant. Hornik proved

that the continuous mappings can be learned uniformly

over compact input sets for the feed-forward neural net-

works on condition that the activation function is contin-

uous, bounded and nonconstant [13]. Afterward, the ELM

learning algorithm with infinitely differentiable activation

function is available for SLFNs [1, 2]. Such activation

functions include the sigmoid function as well as the radial

basis, sine, cosine, exponential and many other nonregular

functions as shown in [14]. Therefore, the theorems men-

tioned above extend the choosing space of activation

functions for neural networks, and the theoretic basis is

supported for constructing the TAF-ELM neural networks

learning algorithm.

In order to reduce the computational complexity, a

simple form of activation function is preferred exemplify-

ing by activation functions like the sigmoid function, sine,

cosine, cubic functions and all-order derivatives of sigmoid

functions. However, in order to enlarge the feasible region

of tunable activation functions and further to accommodate

to more conditions, many other combinational forms of

activation functions satisfying the theorems that proposed

by Huang et al. in [1, 2] are chosen to construct different

activation function types.

The construction of TAF-ELM neural networks with ~N
hidden neurons is shown in Fig. 2, which consists of one

input layer, one hidden layer with combination of different

activation functions and one output layer. The mathemat-

ical model of the TAF-ELM learning algorithm can be

written as follows

f ~NðXÞ ¼
X~N

i¼1

biFðWi; bi;X; aiÞ;

X 2 Rn; Wi 2 Rn; bi 2 Rm; ai 2 Rk

ð3Þ

where F(Wi, bi, X, a) is the output of ith hidden neuron

corresponding to the input X.

bi ¼ bi1; bi2; . . .; bim½ �T denotes the weight vector con-

necting the ith hidden neuron and the output neurons, Wi ¼
wi1;wi2; . . .;win½ � is the weight vector connecting the ith

hidden neuron and the input neurons, bi is the bias of the ith

hidden neuron. And ai ¼ ðai;1; ai;2; . . .; ai;kÞT is the TAF

parametric vector of the ith hidden neuron.

For N arbitrary input and output samples (Xi, Yi), where

Xj ¼ ½xi1; xi2; . . .; xin� 2 Rn; Yj ¼ ½yi1; yi2; . . .; yim� 2 Rm:

Based on the theorems proposed by Huang et al. in [1, 2],

the TAF-ELM learning algorithm can approximate these

N samples with zero error, if the parameter ~N of hidden

neurons and the activation function F(Wi, bi, Xj, a) are

given. Thus, there exist bi, Wi, a and bi such that

X~N

i¼1

biFðWi; bi;Xj; aÞ ¼ Yj j ¼ 1; . . .;N ð4Þ

The above N equations can be written compactly as

Hb ¼ Y ð5Þ

Fig. 2 The construction of TAF-ELM neural networks
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where

b ¼
bT
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H is called the hidden layer output matrix of the TAF-ELM

learning algorithm [1, 2, 15]. The details presentation form

of H is shown in formula (6).

H W1; . . .;W ~N ; b1; . . .; b ~N ;X1; . . .;XN ; a1;1; . . .; a1;k; . . .; a ~N;1; . . .; a ~N;k

� �

¼
hðX1Þ

..

.

hðX1Þ

2
64

3
75

¼

F W1; b1;X1; a1;1; . . .; a1;k

� �
. . .F W ~N ; b ~N ;X1; a ~N;1; . . .; a ~N;k

� �

..

.
. . . ..

.

F W1; b1;XN ; a1;1; . . .; a1;k

� �
. . .F W ~N ; b ~N ;XN ; a ~N;1; . . .; a ~N;k

� �

2
6664

3
7775

N� ~N

;

ð6Þ

where

hðXÞ ¼ F W1; b1;X; a1;1; . . .; a1;k

� �
. . .

F W ~N ; b ~N ;X; a ~N;1; . . .; a ~N;k

� �
ð7Þ

is called the hidden layer feature mapping. The ith column

of H is the ith hidden neuron output with respect to inputs

X1;X2; . . .;XN : The ith of H is the hidden layer feature

mapping with respect to the ith input Xi: h(Xi).

The training process of TAF-ELM learning algorithm is

equivalent to finding a least squares solution b̂ of the linear

system Hb = Y. However, in most cases, the number of hid-

den neurons is much less than the number of training samples

of neural networks, ~N � N: Therefore, only the smallest

norm least squares solution of linear system mentioned above

can be solved and the formula can be represented by

b̂ ¼ HþY ð8Þ

where H? is the MP generalized inverse of matrix H [1, 2].

In general, two types of training methods are involved in

the TAF-ELM learning algorithm. The first one is that the

weight vector that connects the hidden layer neurons with

the output layer neurons, and the parameters of TAF are

tuned simultaneously in each iterative time. Contrarily, the

second one is that the weights between the input layer

neurons and the hidden layer neurons, the biases of hidden

neurons and the TAF parametric vector are determined

firstly, and then the smallest norm least squares solution of

linear system mentioned above is solved. After that, the

parameters of TAF are adjusted by means of some opti-

mization methods such as differential evolution and parti-

cle swarm optimization. In other words, the weight vector

in the second method of connecting hidden layer neurons

with output layer neurons is invariable, while the biases of

hidden neurons, TAF parametric vector and the weights

between input layer neurons and hidden layer neurons are

adjusted simultaneously. Consequently, the minimum error

of the neural networks can be obtained, and the neural

networks constructed by the TAF-ELM learning algorithm

is adaptive to the problems to be solved.

As the ELM learning algorithm is concerned, the input

weights and hidden biases are tuned randomly. Therefore,

much of learning time traditionally spent in tuning these

parameters is saved. However, in this algorithm, the parame-

ters of input weights and hidden biases are not optimal, and

besides, the ELM learning algorithm may require more hidden

neurons for improving the performance of neural networks.

Unfortunately, the high complexity of neural networks may

reduce the generalization performance and also make it

respond slowly to unknown testing data. In reference [12], a

hybrid approach named E-ELM learning algorithm is proposed

using differential evolution (DE) and MP generalized inverse

for expecting more compact neural networks in the applica-

tions which requires faster response of the trained networks.

In this work, based on the idea of tunable activation

function and the ELM learning algorithm, a novel neural

networks learning algorithm called TAF-ELM is proposed.

In this algorithm, the activation function of hidden neuron

is changeable and can be adjusted adaptively to embed the

information of the learning task in the training process. The

intelligent optimization algorithms including differential

evolution and particle swarm optimization can be used to

optimize the parameters of ELM neural networks with

different activation functions. Generally, the differential

evolution algorithm is better than the particle swarm

optimization in the parameter optimization process of ELM

learning algorithm [12, 16]. Therefore, in this paper, the

parameters of the TAF-ELM are optimized through the DE

algorithm used in [12]. However, the individual in the

population of the proposed algorithm is composed of a set

of input weights, hidden biases and TAF parametric vector.

The individual of the proposed algorithm is different from

that in the E-ELM learning algorithm and is defined as

h ¼ ½w11;w12; . . .;w1k;w21;w22; . . .;w2k; . . .;

w ~N1;w ~N2; . . .;w ~Nk; . . .;

b1; b2; . . .; b ~N ; a1;1; . . .; a1;k; . . .; a ~N;1; . . .; a ~N;k� ð9Þ

The weight vector of input layer, hidden biases and the

TAF parametric vector are adjusted adaptively based on the

DE algorithm. Therefore, the optimal parameters of input

weights and hidden biases can be obtained, and also the

TAF coefficients of activation functions can be tuned

dynamically for adapting to the problem. Consequently, an

optimal SLFNs can be achieved for real applications.

Based on the ELM and E-ELM learning algorithms and

the tunable activation function, the TAF-ELM learning

algorithm is derived as the following.
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Given a training set fðXj; YjÞjXj 2 Rn; Yj 2 Rm; j ¼
1; 2; . . .;Ng; the combinational form and the number of

basis functions of hidden layer neurons k, the number of

hidden neurons ~N are set experientially.

Step 1 Generate the initial generation composed of

parameter vectors hp;Gj
�

p ¼ 1; 2; . . .;NPg as the popula-

tion, where NP is the population size, G ¼ ~N � ðNþ
1þ kÞ:
Step 2 The hidden layer output matrix H and the output

weights b are computed analytically by using the MP

generalized inverse. Then, the root mean squared error

(RMSE) of each individual of population is evaluated as

the fitness function val(p).

Step 3 At each generation G, mutation, crossover and

selection operations are performed, respectively, and

then one new generation hp,G is generated.

Step 4 The step 2 and the step 3 are iterated repetitively

until the maximal iteration time is satisfied.

Step 5 The TAF parameters, wij and bi can be

determined, and then the optimal hp,G are found. Then,

based on the above parameter values, the hidden layer

output matrix H is computed.

Step 6 Determine the final output weights b in terms of

Eq. 7.

3 Simulations and performance verification

3.1 Performance of the TAF-ELM learning algorithm

In the aspect of function approximation as well as pattern

classification benchmark problems, the performance of

TAF-ELM learning algorithm is compared with the ELM

and E-ELM algorithms. All the simulations for TAF-ELM,

ELM and E-ELM learning algorithms are carried out in

MATLAB 7.1 environment running in a Pentium 4, 3.2

GHZ CPU. The average results of 10 trials with different

training and testing sets are shown for increasing the per-

suasion of the proposed algorithm. The root mean square

error (RMSE) is used to measure the training error and the

testing error of the function approximation problems. The

performance of pattern classification problems is justified

by classification rate. Moreover, the accuracy of the algo-

rithms is also evaluated by the standard deviation (SD) of

10 trials. For convenience in discussion, except for the

maximal iteration time, other parameters of DE algorithm

are the same as the parameters in [12], the population size

NP is set to 200, crossover constant is set to 0.8, etc. In

addition, the performance of ELM [1] and E-ELM [12]

algorithms is evaluated with additive hidden neurons

(which chooses a simple sigmoid function) and radial basis

function (RBF) hidden neurons with characteristic of

localized receptive fields. The ELM and E-ELM learning

algorithms based on the RBF neural networks cases were,

respectively, presented by Huang and Siew in [17] and our

previous paper [16].

The simulation data sets mainly come from the UCI

repository [18]. Two function approximation (regression)

and two pattern classification benchmark problems are

used for verifying the performance of TAF-ELM learning

algorithm. The specification of benchmark problems divi-

ded of data sets for the training and testing sets is described

in Table 1. All the inputs of data sets have been normalized

into [-1, 1].

In order to obtain convincing performance comparison

of the complexity of the neural networks, the number of

hidden neurons and the added tunable parameters of the

TAF-ELM, ELM and E-ELM learning algorithms are used

simultaneously. In the TAF-ELM learning algorithm, the

added tunable parameters are the number of the TAF

parametric vector. In the ELM and E-ELM learning algo-

rithms with additive hidden neurons, the added tunable

parameters denoted as the weights of input layer, hidden

biases and the weights connecting hidden layer and output

layer with increasing of the hidden neurons. While in these

algorithms with RBF hidden neurons, the added tunable

parameters are the centers and impact factors of RBF

neurons and the weights connecting the hidden neurons to

the output neurons.

Performance comparison between TAF-ELM learning

algorithm and the ELM, E-ELM algorithms on function

approximation problems is illustrated in Table 2. The

maximal iteration time (abbrevd. max.) of the TAF-ELM

learning algorithm in Table 2 is 20. The activation function

of the proposed algorithm is the combination of sigmoid

function, sine function and linear function, k = 3. The

experiment results show that the performance of TAF-ELM

learning algorithm proposed here has improved signifi-

cantly under the prerequisite condition of the same neural

network size. Based on the maximal iteration time, dif-

ferential evolution algorithm is used to adjust the TAF

parametric vector adaptively in order to match the specific

task. Thus, the TAF-ELM learning algorithm embedded

the information of the learning task in the training process

demonstrates better generalization performance and good

convergence accuracy. As shown in Table 2, the perfor-

mance of TAF-ELM learning algorithm is better than ELM

and E-ELM learning algorithms on function approximation

problems in most cases. Especially in the Box and Jenkins

gas furnace data, the preferable performance of proposed

algorithm illustrates that the selection of activation func-

tions in these specific problems is suitable. In conclusion,

the simulation results demonstrate that the TAF-ELM

learning algorithm has better generalization ability with
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fewer parameters and compact network configuration

comparing to ELM and E-ELM learning algorithms in

regression problems.

The sigmoid function has the nonlinear and continuous

differentiable properties, which is good gain control for the

input signal. Therefore, the combination of the sigmoid

functions and the first, second and third derivative of sig-

moidal type functions is chosen in the TAF-ELM learning

algorithm in solving the pattern classification problems,

that is, k = 4. Seen from Table 3, the TAF-ELM learning

algorithm in the aspect of testing classification rate greatly

improved in most cases when compared to ELM and

E-ELM learning algorithms.

As is known, generalization performance which has been

widely studied in [19, 20] is the most important property of

the feed-forward neural networks. Both the accuracy of

training data sets and the complexity of network structure

which matters more play significant roles in the general-

ization performance. As for the Wine classification prob-

lem, the TAF-ELM learning algorithm has better

generalization performance for the fewer tunable parame-

ters of neural networks. There are 5 times to 100% in the 10

trials of testing classification rate. However, the E-ELM

learning algorithm just has 2 times to 100%. It can also be

observed that the ELM and E-ELM learning algorithms

have different performance with different activation func-

tions based on the simulation results in Tables 2 and 3. And

the E-ELM algorithm with RBF hidden neurons runs slower

than TAF-ELM learning algorithm.

Figures 3 and 4 show the relationship between the

testing performance and the number of hidden neurons on

Box and Jenkins gas furnace data and Iris, respectively. As

seen in the figures, the TAF-ELM learning algorithm has

better generalization ability in most cases. Especially in the

function approximation problem, the generalization per-

formance of TAF-ELM learning algorithm almost

unchanged with increasing of the number of hidden neu-

rons. Consequently, the TAF-ELM learning algorithm can

improve the generalization performance significantly with

good accuracy.

3.2 Sensitivity analysis of the TAF-ELM neural

networks

Based on the DE algorithm, the TAF parameter a, input

weights and hidden biases in the TAF-ELM learning

algorithm are adjusted adaptively for improving the per-

formance of neural networks. However, this algorithm is

relatively slow in learning process compared to ELM

learning algorithm in most cases. Therefore, for increasing

Table 1 Specification of

benchmark data sets
Types of problems Data sets Input

attributes

Output

attributes

Training

data

Testing

data

Function Auto-Mpg 7 1 320 79

Approximation B. J. gas furnace 10 1 200 90

Pattern Wine 13 3 150 28

Classification Iris 4 3 110 27

Table 2 Performance comparison on function approximation problems

Algorithm Auto-Mpg Box and Jenkins gas furnace data

CPU

time (s)

Training

err. SD

Testing

err. SD

Size of

complexity

CPU

time (s)

Training

err. SD

Testing

err. SD

Size of

complexity

TAF-ELM (max. = 20) 35.8875 0.0860 0.0891 3 (9) 26.4985 0.0181 0.0185 3 (9)

0.0054 0.0042 9.1318e-004 7.9924e-004

E-ELM (sigmoid) 3.7828 0.0855 0.0905 4 (9) 3.3859 0.0299 0.0309 4 (12)

0.0057 0.0066 0.0041 0.0060

ELM (sigmoid) 0.0031 0.1014 0.1192 4 (9) 0 0.0567 0.0510 4 (12)

0.0444 0.0444 0.0234 0.0185

E-ELM (RBF) 56.2297 0.0841 0.0876 4 (9) 39.7891 0.0203 0.0226 4 (12)

0.0027 0.0051 8.6210e-004 0.0029

ELM (RBF) 0.0109 0.3077 0.3043 4 (9) 0.0031 0.4345 0.4770 4 (12)

0.0897 0.0846 0.0679 0.0654
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the learning speed and evaluating the influence of TAF

parameter on the TAF-ELM learning algorithm, perhaps

one does not need to adjust the TAF parameters because of

the configuration of TAF-ELM neural networks already

including different activation functions.

After the input weights, the hidden biases and the TAF

parametric vector are chosen randomly, the TAF-ELM can

be simply considered as a linear system and the output

weights can be analytically determined. In this part, the

performance of the TAF-ELM learning algorithm is com-

pared in two different cases: without iteration and the

maximum iteration time is set as 10. Tables 4 and 5 show

the average performance of 10 trials on benchmark prob-

lems in function approximation and pattern classification.

As observed from the tables, it is obvious that the testing

RMSE is decreasing in the function approximation and the

testing rate is increasing in the pattern classification with

the increase in iteration time. But, the performance of the

proposed algorithm is not obviously improved with the

increasing of iteration time, which means that the TAF-

ELM neural networks are not much sensitive to input

parameters. Moreover, as observed from the standard

deviation and generalization performance in tables, the

accuracy of the proposed algorithm without iteration is

generally better than the ELM learning algorithm.

3.3 Performance comparison of different TAF neural

networks

In this section, the performance of TAF-ELM learning

algorithm is compared with TAF-BP [9] and TAF-MFNN

[10] learning algorithms. The nonlinear Feigenbaum

function coming from the references [9, 10] is used to

validate the performance of TAF neural networks.

Table 3 Performance comparison on pattern classification problems

Algorithm Iris Wine

CPU

time (s)

Training

rate SD

Testing

rate SD

Size of

complexity

CPU

time (s)

Training

rate SD

Testing

rate SD

Size of

complexity

TAF-ELM (max. = 20) 15.0375 0.9473 0.9385 3 (12) 19.3375 0.8507 0.9429 5 (20)

0.0119 0.0324 0.0616 0.0738

E-ELM (sigmoid) 4.5328 0.9582 0.9385 5 (12) 5.2094 0.9200 0.9214 7 (30)

0.0130 0.0324 0.0406 0.0527

ELM (sigmoid) 0 0.8836 0.8593 5 (12) 0 0.8900 0.9179 7 (30)

0.0417 0.0600 0.0502 0.0715

E-ELM (RBF) 21.6250 0.9318 0.8692 5 (12) 35.0969 0.8353 0.8714 7 (30)

0.0351 0.0633 0.0594 0.0940

ELM (RBF) 0.0172 0.7436 0.7259 5 (12) 0.0125 0.5940 0.6178 7 (30)

0.0923 0.1148 0.1015 0.1011
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Fig. 3 Relation between testing error and the number of hidden

neurons on Box and Jenkins gas furnace data
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Fig. 4 Relation between testing accuracy and the number of hidden

neurons on Iris
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The Feigenbaum function is defined by

xðt þ 1Þ ¼ cxðtÞð1� xðtÞÞ ð10Þ

where parameter c is equal to 4. The data used to train and

test the TAF neural networks are xðtÞ; xðt þ 1Þf g; and the

initial value of x(t) is 1.004 9 10-2. The number of

training data in the TAF neural networks N is 200 [9, 10],

and the number of testing data in the TAF-ELM is 100. For

the convenience of comparative analysis, the training and

testing error are given by

10 lg
XN

i¼1

oi � Yið Þ2
,

XN

i¼1

Y2
i

 ! !
ðdBÞ ð11Þ

where oi is the output of the neural network, and Yi is the

desired output.

Performance comparison among TAF-ELM, TAF-BP

and TAF-MFNN is given in Table 6. In the table, the data

of TAF-BP and TAF-MFNN are taken from [9, 10] and the

average results of 10 trials of TAF-ELM are shown. The

parameter k is the combinatorial number of basis func-

tions per hidden neuron, and the convergence speed of

algorithms is indicated by the number of iterations. The

combination of TAF is the same as that of the above two

function approximation problems. As shown in Table 6,

The TAF-ELM learning algorithm achieves much better

approximation performance and has simpler network con-

struction than the TAF-BP and TAF-MFNN algorithms

with much less number of iterations or without iteration

cases. In this special Feigenbaum function approximation

problem, the TAF-ELM learning algorithm without itera-

tion can also achieve very good generalization perfor-

mance. Moreover, the performance cannot be improved

significantly by increasing the iteration time, which means

the TAF-ELM is an accurate algorithm and not sensitive to

the input parameters in this specific problem.

4 Conclusion

In this work, a novel training algorithm, TAF-ELM, has

been developed based on the ELM. In this algorithm, the

combination of different activation functions is embedded

into the ELM, and the parameters of input weights, hidden

Table 4 Sensitivity analysis of the TAF-ELM neural networks on function approximation

Algorithm Auto-Mpg Box and Jenkins gas furnace data

CPU

time (s)

Training

err. SD

Testing

err. SD

Size of

complexity

CPU

time (s)

Training

err. SD

Testing

err. SD

Size of

complexity

TAF-ELM (no iter.) 1.4766 0.0916 0.0970 3 (9) 1.0703 0.0393 0.0398 3 (9)

0.0056 0.0061 0.0040 0.0056

TAF-ELM (max. = 10) 16.1969 0.0891 0.0946 3 (9) 11.5688 0.0250 0.0246 3 (9)

0.0047 0.0060 0.0104 0.0091

Table 5 Sensitivity analysis of the TAF-ELM neural networks on pattern classification

Algorithm Iris Wine

CPU

time (s)

Training

rate SD

Testing

rate SD

Size of

complexity

CPU

time (s)

Training

rate SD

Testing

rate SD

Size of

complexity

TAF-ELM (no iter.) 0.6297 0.9255 0.8846 3 (12) 0.9094 0.8760 0.9000 5 (20)

0.0417 0.0748 0.0623 0.0603

TAF-ELM (max. = 10) 6.9797 0.9445 0.8923 3 (12) 10.1656 0.8840 0.9214 5 (20)

0.0357 0.0649 0.0626 0.0626

Table 6 Performance

comparison among different

TAF neural networks on

Feigenbaum function

Algorithm CPU

time (s)

Training

error

Testing

error

No. of

iterations

No. of hidden

neurons

k

TAF-ELM (no iter.) 1.1453 -120.45 -98.41 0 3 3

TAF-ELM (max. = 20) 24.566 -135.43 -99.00 20 3 3

TAF-MFNN - -35.03 - 24 6 4

TAF-BP - -45 - 20,000 6 4
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biases and tunable TAF parametric vector are adjusted by

the differential evolution algorithm instead of constant

activation function of ELM and E-ELM learning algo-

rithms. The combination of activation functions can be

adjusted adaptively, and then the TAF-ELM learning

algorithm is adaptive to the information of problem to be

solved, provided that the domain of activation function is

suitable.

However, how to choose a suitable combination of

activation functions is still an unresolved theoretic prob-

lem. When the number of basis functions k increases, the

algorithm is suggested to be more suitable to the problems,

whereas the training time increases and thus the learning

speed of algorithm is reduced, which consequently result-

ing in unsuited for resolution of real-time problems with

this algorithm.
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