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Abstract In today’s economy, manufacturing sectors are

challenged by high costs, low revenues. As part of the

managerial activities, scheduling plays an important role in

optimizing cost, revenue, profit, time, and efficiency by

optimization of available resources. The objective of this

research is to evaluate the existing artificial immune system

(AIS) principles, models, and applications, and to develop

an algorithm applicable to job shop scheduling problems.

The developed algorithm was based on the theories of the

positive selection algorithm and the clonal selection prin-

ciple. To test the algorithm, ten job shop scheduling

problems were evaluated using the new AIS model. To

validate the results, the same job scheduling problems were

evaluated using a genetic algorithm (GA) model. The

results of the two evaluations were compared against each

other using the dimensions of optimality and robustness.

The testing revealed that the AIS model was slightly less

competitive than the GA model in the optimality test but

beat the GA in robustness. Another key finding was that the

robustness of the model increased as the best solutions

produced by the model were closer to the known optimal.

Keywords Artificial immune systems � Genetic

algorithms � Job shop � Scheduling

1 Introduction

Scheduling is the process of optimizing the assignment of a

set of tasks to a group of finite resources. The final aim of

scheduling is, generally, to optimize one particular dimen-

sion or more, such as cost, revenue, profit, time, or efficiency.

These dynamics imply that tasks, as well as resources, have

different constraints, which make scheduling a complex

process. Thus, a schedule has to be developed so that an

optimum result is obtained by taking limitations and con-

straints into consideration.

Since scheduling is essentially an optimization-under-

constraints problem, it comes under the broad scope of

operations research. For each of the different objectives,

many traditional and non-traditional techniques and rules

have been developed [15]. All of the approaches can be

broadly classified under two categories: exact methods and

approximation techniques. The most significant exact

method used for the job shop scheduling problem is called

the branch-and-bound method. This method was developed

by Land and Doig [22] for the primary purpose of ‘opti-

mization of problems which could be formulated as linear

programming problems with additional constraints’. This

method first finds a feasible region in which the solution

exists and then tries to narrow down the search to find the

exact value within that region. Though not guaranteed,

exact methods are more likely to determine optimal solu-

tions, but require considerable more time than approxi-

mation techniques.

Approximation techniques are also used to determine

solutions for non-deterministic polynomial (NP) problems.

These techniques do not always reach the optimal solution,

but often determine solutions within 5% of the optimal in

less time than exact methods. Some of the approximation

techniques used on job shop problems include priority
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dispatch rules, bottleneck based heuristics, opportunistic

scheduling, and artificial intelligence.

The Job Shop Scheduling Problem (JSSP) is a special

type of scheduling problem. The JSSP pertains to the

allocation of jobs to machines in a job shop environment. A

job shop is a production center where all of the machines

possessed by the center are placed in the same area and all

jobs entering the center share the same machines. It is

possible that a particular job entering the system may not

need all of the machines that are in the center, and it is also

possible to have more than one of the same type machine.

This makes the process of scheduling the most difficult as

all jobs that enter the system use most of the machines.

Therefore, there is a high probability of jobs waiting for

busy machines (or vice versa if improper scheduling pro-

cedures are followed), resulting in poor productivity within

the production system.

Artificial intelligence (AI) refers to evolutionary algo-

rithms like genetic algorithms (GA), artificial immune

systems (AIS), artificial neural networks (ANN), Tabu

search techniques (TS), and simulated annealing (SA), and

others are generally based on the working of some natural

occurrence. For instance, GAs are based on how chromo-

somes are built from genes using the process of selection,

mutation, and crossover. Computer programs imitate these

natural processes and can be applied to different optimi-

zation problems.

The JSSP is a good representation, or generalization, of

many types of scheduling problems. Even the most sim-

plified version of the JSSP is considered to be NP, making

it difficult to find an optimal solution. In some situations, it

is unknown whether or not a NP problem even has an

optimal solution. GAs, TSs, and ANNs are arguably among

the most popular of all AI algorithms and have the

advantage of requiring less computation time than tradi-

tional scheduling techniques. However, their performance

cannot be guaranteed for a particular problem, but are often

used in practice due to their high-quality solution at low

computation times. The uses of AIS have received little to

no attention for the JSSP.

1.1 Objective

Although some of the past approaches have proved to be

adept at solving complicated JSSP, shortcomings have

been noted. For example, some approaches may be capable

of finding optimal solutions, but take a very long compu-

tational time, while others reach near-optimal solutions in a

shorter computational time frame. Overcoming these

shortcomings and at the same time testing a novel algo-

rithm in the field of JSSP made this topic an attractive

proposition. The basic approach used in this research was

to garner an understanding of the theory behind AIS and

devise an algorithm that would not only best suit the needs

of the scheduling problem but also introduce unique fea-

tures as compared to methods already applied. The

approach can be summarized as follows:

• Understanding the underlying principles of AISs,

analyzing their potential to be applied to JSSPs, and

developing a suitable algorithm;

• Testing the performance of this algorithm on a set of

JSSPs and evaluating its performance by comparing it

to that of a GA. The GA was used as a good basis for

comparison since it is routinely used to generate

optimal solutions to JSSP problems.

2 Job shop scheduling problem

The JSSP is a special type of scheduling problem where it

pertains to the allocation of jobs to machines in a job shop

environment. A Job Shop is a production center where all

of the machines possessed by the center are collocated and

all jobs entering the center sequentially compete for the

machines. It is possible that a particular job entering the

system may not need all of the machines in the center, and

it is also possible to have more than one of the same type

machine. The example in Fig. 1 gives an idea of what a Job

Shop looks like and how jobs entering the system move

between machines in their respective processing orders for

specified processing time periods. This example considers

a 6 Machine 3 Job problem. The jobs enter the system, and

the illustration describes the operation sequence flow for

each job. Job 1, for instance, starts with Machine 1, goes on

to Machine 4 then Machine 5, Machine 2, Machine 3, and

finally Machine 6. Similarly, the sequence of the other jobs

is also illustrated. The complications involved in any job

shop problem would address the following issues:

Fig. 1 An example of a job shop
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• Reducing conflicts—assigning two jobs to the same

machine at the same time

• In case of conflicts, determining which job gets the

machine first and which job waits

• Final aim, in our case, is reducing time required to

process all of the jobs in the system.

In general, job shops can have any number of machines,

machine types, and number of jobs entering the system.

Also, as mentioned earlier, each job may or may not utilize

all of the machines in the system producing of the product.

However, the type of job shop problem considered in this

paper is a particular type of the general problem that has a

few unique characteristics:

• All of the jobs have to be processed using all of the

machines. Hence, if there are 10 machines and 4 jobs,

each of the jobs will be processed on all 10 machines.

• Although each job has to be processed on all of the

machines, the order in which each job is routed on the

machines may vary according to the processing spec-

ifications for each job. For example, Job 1 may go to

Machine 1 first and then continue to Machine 2, but Job

2 may go to Machine 2 first and then go to Machine 1.

• There are no constraints on the processing times of each

job on each machine.

• All jobs arrive at the same time period (t = 0).

• There is no consideration for any job’s due date. All of

the jobs are simply required to complete all of their

assigned operations.

• The main objective is to minimize makespan, which is

defined as the time difference between the start and

finish of a sequence of jobs. Thus, the aim of developing

the schedule is to organize jobs on machines so as to

minimize the total time that all of the jobs take in the job

shop system.

• The only constraint in this problem is that of the

precedence order of the operations of each job. A job

has to follow the order of operations assigned to it

and cannot violate that one constraint. For example,

consider an example of a 6 9 6 Job Shop Scheduling

problem. A 6 9 6 problem refers to a problem of 6

jobs being scheduled on 6 machines where each job

needs to be machined on each of the 6 machines only

once for the job to transform raw material to the final

product. The sequence in which the job is scheduled

on the 6 machines and its operation time on that

machine is also needed. This information is pre-

sented in Table 1 for a common problem called the

FT06.

The reason a Job Shop Problem was chosen to analyze

this problem is that it is a good representation of all

scheduling problems in general. Also, the problem is

considered to be an NP problem, making it highly difficult

to be solved optimally.

3 Artificial immune systems

A basic understanding of the human immune system is

essential to understand the AIS model. The human immune

system is characterized by its adaptive and robust nature.

This can be illustrated by considering a simple example of

an infection attacking the body. The infection (or antigen)

attacking the body is countered by the defense mechanism

called the antibody. The antibody consists of a varied

combination of T-cells and B-cells, which can adapt

themselves to counter the antigen.

For example, if an antigen has a particular configuration,

the T-cells and B-cells will attack the antigen with different

configurations until they determine the one match that is

capable of destroying the antigen. Further, B-cells have the

property of cloning the configuration that kills the antigen

so that a healthy population of antibody will be created,

which destroys the infection.

Theoretical immunology has been adapted by others into

an artificial system by developing a number of problem-

solving algorithms such as the Positive Selection, Negative

Selection, and the Clonal Selection Algorithms. Much work

continues in seeking useful aspects of the human immune

system and developing them into artificial immune algo-

rithms. The areas of practical applications of AIS have

been used in diverse areas such as computer security, data

mining, machine learning, and scheduling.

3.1 AIS application

AISs originated with the work by Farmer et al., and

Hoffman. Farmer et al. [10] proposed a dynamical model

based on the theory of the immune network, showing how

immune system can be applied to the field of artificial

intelligence. The proposed model became very popular and

became the basis for applying it to different applications.

Table 1 The routing and machining times of the FT06 problem

Jobs Operations

1 2 3 4 5 6

1 3.1 1.3 2.6 4.7 6.3 5.6

2 2.8 3.5 5.10 6.10 1.10 4.4

3 3.5 4.4 6.8 1.9 2.1 5.7

4 2.5 1.5 3.5 4.3 5.8 6.9

5 3.9 2.3 5.5 6.4 1.3 4.1

6 2.3 4.3 6.9 1.10 5.4 3.1
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Hoffman [19] proposed a comparison of the nervous and

immune system and built a model incorporating some

aspects of the immune system into a neural network model.

However, the scope of this model in terms of applications

was limited and not as useful as that proposed by Farmer

et al. [10]. However, the unique idea of combining the two

promoted more research into the area, and numerous

models have since been generated. Ishida [20, 21] devel-

oped models of the immune system and applying these

models to areas like process diagnosis. His work deals with

a model built on the recognition capabilities of the immune

system and how it learns through recognition. Further, this

model was used to diagnosing and eliminating computer

viruses. His research focused on the fields of process

diagnosis, robotics, and computer intrusion detection.

Additional application-oriented research was presented by

Bersini and Varela [3, 4] and Bersini [5] where they

developed new models on the immune system to address

machine learning, optimization, and adaptive control

problems.

Research attempts were made to use GAs for pattern

recognition in binary immune system models. This

research was reported in Forrest and Perelson [12] and

Forrest et al. [13] and mainly applied to protection of

computers from viruses and network intrusions. These

models became successful enough for computer companies

like IBM to develop their own immune-based anti-virus

software. This is still the most popular applications of AIS

research.

After 1995, AISs were applied to diverse areas such as

pattern recognition, anomaly detection, optimization, and

scheduling. In one attempt to give a general overview of

artificial immune systems, Dasgupta [7] states that the

immune system’s qualities of learning, memory, and

adaptation make it ideal in modeling recognition and

classification tasks. Timmis [27] developed a data analysis

system based on the principles of artificial immune systems

where he used an antibody network to represent the diverse

nature of a data set and then used cloning and mutation. De

Castro and Von Zuben [8, 9] proposed an artificial immune

network named AiNet for data analysis, especially clus-

tering and filtering of unlabeled numerical data sets. This

method reduced data redundancy and successfully descri-

bed data structures in terms of their spatial distribution and

cluster interrelations. AiNet is used for automating

knowledge discovery, mining of redundant data and auto-

matic data clustering.

Nasaroui et al. [24] addressed the shortcomings of pre-

vious methods by developing fuzzy algorithms to identify

patterns in observed data to make predictions in unseen

data. The main area of improvement was in the matching of

antibodies to antigens. This fuzzy AIS helps websites

process requests. The experimentation done revealed that

the system performs more efficiently using the new algo-

rithm. Neal [25] also developed an artificial immune sys-

tem used for data clustering. The model is stable, adaptive,

and dynamic and can handle a very large number of data

presentations. The approach uses artificial recognition balls

and is self-stabilizing. The algorithm was tested on two

data sets. First, a 2D data set consisting of 50 dimensions

each was tested for clustering. Next, it was tested on the

well-known Fisher Iris data set for ease comparison to

other algorithms. The long-term stability of the model was

comprehensively demonstrates by analyzing over

1,000,000 data items. The results obtained from this

comprehensive experimentation revealed that the model

was effectively applied to the analysis of continuously

changing data sets without hindering its learning process.

3.2 Scheduling

The first attempt at solving a scheduling problem using an

AIS was by Fukuda et al. [14] where an expression in terms

of multi-agent nets was developed. The immune agents

follow a three-step procedure starting with a sensing mode,

progressing to a decision mode and ending with a con-

trolling mode. The authors employed this procedure to

dispatch material with the aim of minimizing work in

progress (WIP) as well as the product cycle time. The

framework of the AIS is the multi-agents, which are

comprised of detector agents, mediator agents, inhibitor

agents, and restoration.

Hart et al. [18] also studied the JSSP using AISs, where

they produced robust schedules for dynamic environment.

With the aim of minimizing maximum lateness, the authors

used their system to develop antigen, antibody, and gene

libraries. The lateness of a job is defined as its completion

time minus its due date. Hart and Ross [17] developed an

algorithm capable of scheduling jobs using historical

environments. Their algorithm was tested extensively with

10 test scenarios generated from a base problem of 15 jobs.

The results demonstrated that their method of recreating a

schedule from previous patterns is effective. Hart [16]

applied AIS theories to the areas of job shop scheduling

and data clustering. She justified the suitability of applying

AIS to these areas by arguing that the problem character-

istics are very similar to those of the human immune sys-

tem. In total, she developed four models, two for each area

of application and tested them on relevant benchmark

artificial data sets, showing the relevance and utility of the

models.

In 2004, Aickelin et al. [2] stated that schedules devel-

oped using AIS are more robust than those obtained by

GAs. Previous results show that increasing the number of

antigens in AISs improves the optimality of schedules

obtained, but also decreases fitness. The fitness function is
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defined as a particular type of objective function that

defines the optimality of a solution. Thus, it is suggested

that rescheduling the same problem is preferable to

increasing the number of antigen. As suggested by previous

research, this method exposes the schedules to more anti-

gens, while at the same time, not adversely affecting fit-

ness. Consequently, the system becomes more robust.

Coello et al. [6] combined the Clonal Selection Algorithm

with hypermutation principles into a unique mechanism in

order to solve the JSSP. The features of their method include

exploring the vicinity of the reference solution, a search

technique that eliminates gaps in the schedule, and incor-

porating this into the decoding strategy. The authors take up

a 6 9 4 (i.e. 6 jobs and 4 machines) JSSP that has previ-

ously been solved. Gaps are then sought in the current

schedule with the aim of reducing makespan (the time dif-

ference between the start and finish of a sequence of jobs)

and increasing the optimality of the solution.

4 Hybrid AIS methodology

The algorithm developed in this research makes use of two

theories of theoretical immunology, namely, the clonal

selection algorithm and the positive selection principle.

Based primarily on these theories, the algorithm aims to

build schedules for jobs being processed on certain

machines while minimizing the system makespan.

Schedules are built randomly by combining different

genes into one complete antibody. The antibodies are first

evaluated to determine the system makespan and then

mutated, in an attempt to improve it. There are two types of

mutations involved—those within a particular chromosome

and those within the antibody. When this process repeats

itself up to a specified number of iterations, the best

solution is the minimum makespan observed. Figure 2

explains the algorithm in flowchart form.

4.1 Building an antibody

The libraries, components, and genes of the components

are used to build an antibody representing an ordered

schedule of the jobs. In order to build such an antibody, the

procedure has to:

1. Randomly select a library

2. Randomly select a component with that library

3. Copy the genes from that component into the antibody

4. Randomly select another library (a library once

selected cannot be selected again)

5. Randomly select a component and add the genes from

that component into the schedule starting from a

position after the end of the previous gene string

6. Go to Step 4 and continue the process until the entire

antibody is filled.

4.2 Deciphering an antibody

After building an antigen by combining components from

different libraries, the next step is to decipher an antibody

and build a schedule by assigning jobs onto machines in the

specific order of precedence. The objective of building the

schedule is to obtain the makespan of that schedule.

The makespan is the characteristic that is chosen to eval-

uate the optimality of a schedule and comparing it to other

schedules. The Positive Selection Algorithm, as derived

from the human immune system, selects only those anti-

bodies that are useful in fighting the infection. In this case,

the infection is a solution that is considered a ‘bad’ solu-

tion. Similarly, the algorithm seeks out those antibodies

that show potential in finding good solutions to the JSSP. In

order to recognize potentially good solutions, a threshold is

specified for makespan values, and those solutions that are

below the defined threshold are retained in the system,

while the others are completely discarded from the system.

Thus, a threshold is a specified value that forms the line of

separation between ‘good and bad’ solutions. This value

should be carefully specified to preserve as many good

solutions as possible, but at the same time, not unneces-

sarily retain solutions that ultimately have no chance to

reaching optimality.

4.3 Antigen library

Those schedules that are below the threshold create a new

set of solutions called the antigen library, while the others

are discarded. These solutions are now converted to

antigens because future solutions have to better these

solutions in order to be retained in the system. It is called

a library since it contains all the solutions that pass the

threshold barrier. Thus, the Antigen Library is a collection

of good solutions, which set a standard for future solu-

tions to attain and overcome, similar to how antibodies

overcome the infections that attack the human body.

There is no constraint on the total number of antibodies

that can fit into the Antigen Library as all of those that

qualify will be selected. Figure 3 presents a theoretical

representation of what an Antigen Library would look

like. Figure 3 shows a relatively small problem of three

jobs being scheduled on two machines. The strings of

numbers are those antibodies that were below the

threshold and are now considered to be antigens. The

labels A1 through A7 are the identifiers of each antigen.

The total numbers of antigen that can be stored in an

Antigen Library are fixed by definition. If new antibodies
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with makespan less than any antigen in the library are

created, they are inducted into the library as an antigen,

and it will replace that antigen that has the highest

makespan (or worst value) in the library.

The process of generating antibodies, evaluating them,

and including selected ones, which are below the threshold,

into the antigen library is performed as many times as the

specified number of iterations.

Specify Parameters 

Randomly Populate Libraries 

Set i = 0

Build Antibody 

i = i + 1

Calculate Fitness 

(Makespan)

i > No. of 

iterations

For j = 1 to (# of chromosomes in Antigen Library) 

Fitness < 

Threshold 

Discard 

chromosome 

Evaluate Antigen Library 

Display chromosome with minimum fitness 

No 

Discard 

chromosome 

Yes

Add into Antigen Library 

Yes

No

No 

Yes

Replace Mutated chromosome in Antigen Library- Next j 

Fitness < 

Threshold 

Fig. 2 Flowchart of the algorithm
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4.4 Mutation

Once an absolute antigen library is formed, the newly

created antigens undergo the process of mutation. In AIS,

the process of mutation is emulated by randomly swapping

the position of two genes of an antigen as shown in Fig. 4.

The process of mutation is carried out only on those

solutions, which show potential, (i.e. on those antibodies

that are converted into antigen and included in the antigen

library). The function of the mutation operator is to modify

the solutions with the aim of identifying the optimal

solution and to make the entire process more logical, less

time-consuming, and incorporate a high level of efficiency.

The mutation operator is carried out only on good solu-

tions, which have high probabilities of reaching optimal or

near-optimal.

The process of mutation is implemented by randomly

choosing two genes and interchanging their respective

values. The number of times this process is executed

depends upon the number of mutations specified. The use

of mutation is to exploit a solution, that is, make a good

solution even better. The process is illustrated in Fig. 4

where A1 is an antigen, which will undergo mutation.

Now, two random genes are selected. In this case, Gene 2

and Gene 6, and their values are exchanged. Thus, the

value 2 in Gene 2 is exchanged with value 3 in Gene 6. A1

is the new mutated antigen.

All of the antigens in the Antigen Library undergo

mutation. After each antigen is mutated, the new antigen is

deciphered, evaluated, and compared to the original anti-

gen. If the makespan produced by the new antigen is better

than the original, this new antigen replaces the original one

in the system. The original antigen is discarded from the

Antigen Library. The process of mutation is an adaptation

of the Clonal Selection Algorithm with the slight modifi-

cation in that the clones are not exactly the same but

slightly mutated in nature. The purpose of this is to

improve the optimality of solutions by taking good ones

and slightly modifying them in a random manner with the

hope of further minimizing the fitness value.

4.5 Final evaluation

After the entire set of antigen in the Antigen Library

undergo mutation, the antigen now present in the library

are a group of the best solutions that can be obtained by the

algorithm developed. The final step in this process is to

now analyze the antigen library and display it as the final

result with one solution that has the least value of make-

span among all antigens within the antigen library. The

solution may not be the absolute optimal solution to the

problem, but is just the optimal solution reached by this

algorithm. Further, taking another run of the same problem

might drastically change the results due to the random

nature of the algorithm. Generally, it takes multiple runs of

the problem to get to the best results.

5 Foundation for comparison

The hybrid algorithm was tested on a total of basic 10

JSSPs that were obtained from the literature. To test and

prove the feasibility of the proposed algorithm, it was

developed into a program using the Visual Basic pro-

graming language. The VB 6.0 version was used since it

provided all of the features required to successfully build,

run, and test the algorithm. The tested problems were FT06

and FT10 [11], ABZ5 and ABZ6 [1], LA01–LA05, and

LA16 [23]. A summary of the problems being tested and

the best solution posted (optimal to date) of each problem

are listed in Table 2. A general methodology was applied

to quickly disembark on the most feasible solution. A

backward approach starting with the knowledge of the

known optimal allowed for greater ease and flexibility in

the choice of input parameters such as the number of

mutations, the number of iterations, and others. With the

A2 

A3 

A4 

A5 

A7 

A1 

1 1 2 3 2 3 

3 1 2 2 3 1 

2 3 1 1 3 2 

2 3 3 1 2 1 

2 1 2 3 1 3 

1 2 3 1 2 3 

Fig. 3 The antigen library

A1’

A1 1 2 1 3 2 3 

1 3 1 3 2 2 

Fig. 4 Mutation of an antigen
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approach for this analysis being based on a trial and error

method, this approach will help reduce the number of

program runs required to get to the best solution. The

methodology followed for the testing of each problem is

described below:

• For each problem being tested, the known optimal

solution was obtained from the literature (as noted

above)

• With the aim of attaining this known optimal, the fitness

threshold was set only slightly higher than the known

optimal solution. This had no advantage in solving the

solutions, only aided in reducing the computation time

for the computer.

• Based on the results obtained, the parameters were then

adjusted

• Case 1: If the known optimal solution were to be

obtained in the first run itself, the number of

mutations and number of iterations would be reduced

with the aim of determining the lowest number of

total iterations required to get to the optimal solution

• Case 2: If a solution is obtained but it is higher than

the known solution, then the number of mutations

and the number of iterations would be raised slowly

until the known optimal is reached; if the known

optimal is not reached, the best solution chosen is

the solution that is closest to the best solution

• Case 3: If a solution is not obtained (i.e. no schedule

can be generated within the specified fitness

threshold), the fitness threshold is raised, while the

number of mutations and the number of iterations

remains unchanged

• Based on the results of each run, one of the above 3

cases were chosen to fine tune the solution obtained

• The lowest minimum makespan obtained through the

testing process for each problem is chosen as the best

solution; so far, the optimality as well as efficiency of

the program will have been tested

• The next step is to test the reliability of the solution

obtained; in order to do this, the parameters with which

the best solution was obtained will be run 20 times to

test the number of times the optimal solution is reached

Finally, the results were compared to GA solutions. The

same problems were run on the GA Software developed in

JAVA for 20 times in order to test robustness. The same

parameters that are optimality and robustness were deter-

mined and then used for comparison. The purpose of

comparing the solutions obtained with the AIS algorithm to

the GA is to evaluate the results obtained with the AIS

against a known benchmark.

6 AIS results and discussions

There are many ways of judging the optimality of solutions

for a JSSP such as minimum makespan, lateness, tardiness,

and number of late jobs. However, the problems considered

are of the minimum makespan type, and thus, the primary

concern in testing the viability of the algorithm is to verify

whether the algorithm attains the known values of opti-

mality. In this research, optimality is defined as closeness

of the best known solution with the AIS algorithm to the

known optimal solution for each of the problems. Along-

side with optimality, the robustness is another key

parameter that will test the performance of the algorithm.

Robustness is the number of times that the best solution

will be reached out of the total number of iterations for

each of the problems being tested. Other areas of consid-

eration of analyzing the results may be how the algorithm

performs at solving problems of different sizes and how the

results obtained in each case vary.

Further, if optimal solutions are obtained, then the sec-

ondary areas of investigation are the time and number of

iterations taken to get to the solution. Each test followed

the methodology listed in the previous section. The results

from testing the AIS algorithm are listed in Table 3 for

each of the problems tested. For example, for problem #1:

The FT 10 9 10 job shop scheduling problem the known

optimal makespan is 930. The known optimal solution of

930 was not obtained. The best solution reached with the

AIS algorithm was 1,208 that was reached with 96,100

iterations.

7 Comparison conclusions

Based on this comparison, some meaningful conclusions

can be drawn in terms of the quality of the results obtained,

Table 2 List of problems being tested

Problem # Name of problem

(jobs 9 machines)

Optimal solution

1 FT10 (10 9 10) 930

2 FT6 (6 9 6) 55

3 ABZ5 (10 9 10) 1,234

4 ABZ6 (10 9 10) 943

5 LA01 (10 9 5) 666

6 LA02 (10 9 5) 655

7 LA03 (10 9 5) 597

8 LA04 (10 9 5) 590

9 LA05 (10 9 5) 593

10 LA16 (10 9 10) 945
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the strengths and weaknesses of the AIS algorithm and

some opportunities for improvement can be scoped out.

The results obtained with the AIS were compared with

those obtained with the GA. The same ten job shop prob-

lems that were used for testing AIS were also run on a GA.

There were performed 20 simulations for each problem to

test robustness. The GA used for this comparison was

devised by Shah [26] that created a distributed type GA

model where the algorithm applied an order-based cross-

over methodology so that the offspring chromosome

receives a random substring from the parent chromosome.

The selection strategy used was the Roulette Wheel-based

selection strategy.

In general, the GA had more solutions closest to the

optimal solution, and the AIS algorithm had more robust

solution than the GA. A summary of the results is shown in

Table 3. The two attributes compared are the best solution

based on lowest makespan and the number of best solutions

that is an indicator of robustness. The best solution may or

may not be equal to the optimal solution. The optimal

solution of each problem is also listed for reference. The

number of best solutions refers to the number of times the

best solution was reached as a percent of the total 20 iter-

ations that were run for each problem for each algorithm.

Overall, the GA produced better solutions than AIS

algorithm. Not only did the GA get more optimal solutions

that the AIS, it also, in almost all non-optimal solutions,

got closer to the optimal solution than the AIS did. The GA

obtained the optimal solution in 30% of the cases, while the

AIS algorithm reached the optimal makespan in 20% of the

cases. The genetic algorithm also obtained the optimal

solution for both the problems for which the AIS reached

optimality (i.e. FT06 and LA05). However, the AIS

obtained the same solutions for 90 and 100% of the itera-

tions, respectively, where the GA obtained the same solu-

tion only for 15 and 100%, respectively. The LA01

problem was the only other problem for which the GA got

the optimal solution of 666 makespan units with a

robustness of 25%.

For the rest of the problems that were tested, the results

generated by the GA were closer to the optimal solution

than those generated by the AIS algorithm. While com-

paring the 7 problems that did not arrive at the optimal

solution, it should be noted that the GA produced better

results than the AIS in 6 cases (85.7%). The only case

where the AIS had a better result than the GA was with the

LA02 (10 9 5) problem. In addition, the closest that the

AIS reached to the GA in the case on non-optimal results

was within 25 makespan units for the LA04 (10 9 5) job

shop problem, while the farthest was a difference of 109

makespan units for the FT10 (10 9 10) job shop problem.

It should be noted that the difference in makespan between

AIS and GA solutions increases with the number of

machines (Table 4).

The robustness of the results produced by the two

algorithms was estimated by the number of times the best

solution was reached out of the total 20 times that each

problem was run by each algorithm. While it was observed

in the previous section that the GA produced better opti-

mality results, in this case, the AIS was observed to have

more robust solutions. Figure 5 compares the degree of

robustness between the two techniques. The only exception

was with the LA05 (10 9 5) problem where both AIS and

GA obtained the optimal solution 100% of the time. For the

FT06 problem, even though both techniques reached the

optimal solution, the AIS was more robust as it reached

optimality 90% of the time compared to the GA reaching

optimality 15% of the time.

Another measure of comparison was looking at the

interaction between the degree of optimality of the solution

and the robustness as shown in Fig. 6. This Figure depicts

this relationship for AIS and GA, respectively. Linear

Table 3 Summary of results with the AIS and GA

Problem # Name of problem

(jobs 9 machines)

Optimal solution AIS GA

Best solution No. of best

solutions (%)

Best solution No. of best

solutions (%)

1 ft10 (10 9 10) 930 1,208 10 1,099 5

2 ft06 (6 9 6) 55 55 90 55 15

3 abz5 (10 9 10) 1,234 1,434 15 1,339 5

4 abz6 (10 9 10) 943 1,084 15 1,043 5

5 la01 (10 9 5) 666 702 65 666 25

6 la02 (10 9 5) 655 708 55 716 5

7 la03 (10 9 5) 597 672 40 638 5

8 la04 (10 9 5) 590 644 35 619 10

9 la05 (10 9 5) 593 593 100 593 100

10 la16 (10 9 10) 945 1,124 20 1,033 5
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regression lines were calculated for both the AIS and GA.

For both algorithms, the two variables have an inverse

relationship so that the robustness of the algorithm

increases as the variation of the best solution from the

optimal solution decreases. These linear lines are used to

illustrate that both the algorithms have the same general

trend. Even though these lines may not be the best fit by

using a higher degree polynomial function, it does illustrate

that the AIS has a higher slope. This further supports the

conclusion that the AIS algorithm is more robust than the

GA.

In conclusion, the comparison of the AIS algorithm with

the GA revealed that while the AIS matched up well to the

GA on the relatively simple or smaller problems, the GA

provided solutions that were closer to the optimal. So, there

is still scope for fine-tuning the AIS algorithm. On the

positive side, the AIS solutions were more robust and

reliable. Although this would require further testing, the

implication of getting robust solutions could mean that

lesser iterations would be required to determine the best

Table 4 Comparison of results between AIS and GA

FT10 FR06 ABZ5 ABZ6 LA01

OS AIS GA OS AIS GA OS AIS GA OS AIS GA OS AIS GA

Optimal solution 930 55 1,234 934 666

Best solution 1,208 1,099 55 55 55 1,234 1,434 1,339 943 1,084 1,043 666 702 666

Robustness – 2 1 – 18 3 – 3 1 – 3 1 – 13 5

Optimality (difference) -278 -169 0 0 -200 -105 -141 -100 -36 0

Robustness (%) 10 5 90 15 15 5 15 5 65 25

LA02 LA03 LA04 LA05 LA16

OS AIS GA OS AIS GA OS AIS GA OS AIS GA OS AIS GA

Optimal solution 655 597 590 593 945

Best solution 655 708 716 597 672 638 590 644 619 593 593 593 945 1,124 1,033

Robustness – 11 1 – 8 1 – 7 2 – 20 20 – 4 1

Optimality (difference) -53 -61 -75 -41 -54 -29 0 0 -179 -88

Robustness (%) 55 5 40 5 35 10 100 100 20 5

Fig. 5 Relationship between optimality and robustness for GA and

AIS

Fig. 6 Interaction between

quality of solution and

robustness for GA and AIS
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solution with the AIS algorithm under the hypothesis that

as the best solution is reached, that particular solution will

appear more frequently. On the other hand, it could take

more scenario runs, and hence, more time to reach the best

solution with the GA.
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