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Abstract In the conventional recursive least square (RLS)

algorithm for multilayer feedforward neural networks, con-

trolling the initial error covariance matrix can limit weight

magnitude. However, the weight decay effect decreases

linearly as the number of learning epochs increases.

Although we can modify the original RLS algorithm to

maintain a constant weight decay effect, the computational

and space complexities of the modified RLS algorithm are

very high. This paper first presents a set of more compact

RLS equations for this modified RLS algorithm. Afterwards,

to reduce the computational and space complexities, we

propose a decoupled version for this algorithm. The effec-

tiveness of this decoupled algorithm is demonstrated by

computer simulations.

Keywords Weight decay � Regularization �
Recursive least square

1 Introduction

In the past two decades, the recursive least square (RLS)

algorithm and the extended Kalman filter (EKF) algorithm

in training multilayered feedforward neural networks

(MFNNs) have been extensively investigated [1–5]. RLS

or EKF algorithms belong to the online mode approach in

which the weights are updated immediately after the pre-

sentation of a training pattern. The advantages of the online

mode training approach are that it does not require the

storage of the entire input output history and that in

conjunction with the use of a weight decay factor, it can

be used to estimate processes which are ‘‘mildly’’ non-

stationary. RLS and EKF algorithms are efficient second-

order gradient descent training methods. Compared to

first-order methods, such as the backpropagation (BP)

algorithm [6], they have a faster convergence rate. More-

over, in the RLS and EKF algorithms, fewer parameters are

required to be tuned during the training.

Leung et al. [1, 2] found that the RLS algorithm has an

implicit weight decay term [7–9] by controlling the initial

value of the error covariance matrix. With the weight decay

term, the magnitudes of the trained weights are constrained

to be small. Hence, the network output function is smooth

and the generalization ability is improved. Besides, when

magnitudes of the trained weights are small, the effect of

weight faults can be suppressed [10, 11].

However, the weight decay effect in the standard RLS is

not substantial and decreases when the number of training

cycles increases. That means, the generalization ability of

the network trained with this algorithm is not fully con-

trollable. By tackling this problem, a constant true weight

decay RLS algorithm, namely true weight decay RLS

(TWDRLS), was proposed [12]. The TWDRLS algorithm

is able to make the weights decay effect more effective.

Consequently, a network trained with this algorithm

exhibits a better generalization ability. However, the

computational complexity of the TWDRLS algorithm is

equal to O(M3) which is much higher than that of the

standard RLS, i.e., O(M2), where M is the number of

weights in the network. Therefore, it is necessary to reduce

the complexity of this algorithm so that the TWDRLS

algorithm can be applied to large scale practical problems.

This paper first derives a set of concise equations for the

TWDRLS algorithm and discusses the decay effect of the

algorithm in this form. The main contribution of this paper
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is to propose a decoupled version for the TWDRLS algo-

rithm. The goal is to reduce both the computational com-

plexity and storage requirement. In this decoupled version,

instead of using one set of TWDRLS equations to train all

weights, each neuron, except input neurons, is associated

with a set of decoupled TWDRLS equations, which is used

for training its corresponding input weights only. The

overall complexity of all decoupled sets of TWDRLS

equations is very low.

The rest of the paper is organized as follows. In Sect. 2,

we give a brief review on the RLS and TWDRLS algo-

rithms. We describe the decoupled TWDRLS algorithm in

Sect. 3. The computer simulation results are presented in

Sect. 4. Finally, we summarize our findings in Sect. 5.

2 TWDRLS algorithm

Since a MFNN with a single hidden layer that has sufficient

hidden neurons is able to approximate any function [13],

we consider that the MFNN model has no output nodes, nh

hidden nodes, and nin input nodes. The output of the ith

neuron in the output layer is denoted by yi
o. The output of

the jth element of the hidden layer is denoted by yj
h. The kth

element of the input x of the network is denoted by yi
in.

The connection weight from the jth hidden neuron to the

ith output neuron is denoted by wi,j
o . Output biases are

implemented as weights and are denoted by wo
i;nhþ1: The

connection weight from the kth input to the jth hidden

neuron is denoted by wj,k
in . Input biases are implemented as

weights and are denoted by wo
j;ninþ1: The total number of

weights in the network is equal to

M ¼ noðnh þ 1Þ þ nhðnin þ 1Þ: ð1Þ

Using the conventional notation, in the RLS approach

[14, 15], we arrange all weights in a M-dimensional vector,

given by

w ¼ win
1;1; . . .;win

nh;ðninþ1Þ;w
o
1;1; . . .;wo

no;ðnhþ1Þ

h iT

: ð2Þ

In the RLS approach, the objective function at the tth training

iteration is to minimize the following energy function:

EðwÞ ¼
Xt

s¼1

dðsÞ � hðw; xðsÞÞ½ �T dðsÞ � hðw; xðsÞÞ½ �

þ w� ŵð0Þ½ �TP�1ð0Þ w� ŵð0Þ½ � ð3Þ

where {x(s), d(s)} is the training input-out pair at the sth

training iteration, hð�; �Þ is an no-dimensional nonlinear

function describing the network. The matrix P(0) is the

initial error covariance matrix in the RLS algorithm and

it is usually set to d-1 IM9M, where IM9M is an M 9 M

identity matrix. The magnitude of the initial weight vector

ŵð0Þ should be small.

The minimization of (3) results in the following recur-

sive equations [14, 15]:

KðtÞ ¼ Pðt� 1ÞHTðtÞ InL�nL
þHðtÞPðt� 1ÞHTðtÞ

� ��1 ð4Þ

PðtÞ ¼ Pðt � 1Þ � KðtÞHðtÞPðt � 1Þ ð5Þ
ŵðtÞ ¼ ŵðt � 1Þ þ KðtÞ dðtÞ � hðŵðt � 1Þ; xðtÞÞ½ �; ð6Þ

where

HðtÞ ¼ ohðw; xðtÞÞ
ow

����
w¼ŵðt�1Þ

" #T

; ð7Þ

is the gradient matrix of h(w, x(t)) with size no9M; and

K(t) is the so-called Kalman gain matrix (with size

M 9 no). The matrix P(t) is the so-called error covariance

matrix and is symmetric positive definite.

From (3), the standard RLS algorithm has a weight

decay term wTP-1(0)w. However, as mentioned in [1, 2],

the standard RLS algorithm only has the limited weight

decaying effect which is equal to d
to

per training iteration,

where to is the number of training iterations. That is,

the effect of the weight decay term in each training

iteration decreases linearly as the number of training

iterations increases. Hence, the more training presenta-

tions take place, the less smoothing effect would have

in the data fitting process. When the number of presen-

tations cannot be determined a priori, using the value

of d to control the generalization ability becomes

impractical.

In [12], the TWDRLS algorithm was proposed to

enhance the weight decay effect. In this algorithm, a new

energy function was considered, given by

EðwÞ¼
Xt

s¼1

dðsÞ�hðw;xðsÞÞ½ �T dðsÞ�hðw;xðsÞÞ½ �þawT w
� �

þ w� ŵð0Þ½ �T ~P�1ð0Þ w� ŵð0Þ½ � ð8Þ

where a is a regularization parameter, the matrix ~Pð0Þ is

the initial error covariance matrix is usually set to d-1

IM9M. In (8), there is a constant decay term awTw, and the

decay effect per each training iteration does not decrease as

the number of training iterations increases.

The gradient of this energy function in (8) is given by

oEðwÞ
ow

� 2~P�1ð0Þ w� ŵð0Þ½ �

þ 2
Xt

s¼1

aw�HTðsÞ dðsÞ �HðsÞw� nðsÞ½ �
� �

: ð9Þ

In the above, we use the common linearization technique in

RLS [4, 5]. That is, we linearize h(w, x (s)) around the

estimate ŵðs� 1Þ; given by

hðw; x~ðsÞÞ ¼ HðsÞwþ nðsÞ ð10Þ
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where

HðsÞ ¼ ohðw; xðsÞÞ
ow

����
w¼ŵðs�1Þ

" #T

; ð11Þ

nðsÞ ¼ hðŵðs� 1Þ; xðsÞÞ �HðsÞŵðsÞ þ qðsÞ ð12Þ

is the residual in the expansion of h(w, x (s)), and qðsÞ
consists of higher order residual. In the derivation, we

assume that the higher order residual is not a function of w.

This assumption is commonly used in the derivation of the

RLS or EKF equations [4, 5].

To minimize the energy function, we set the gradient to

zero. Hence, we have

ŵðtÞ ¼ ~PðtÞrðtÞ ð13Þ

where

~P�1ðtÞ ¼ ~P�1ð0Þ þ
Xt

s¼1

HTðsÞHðsÞ þ aIM�M

� �
ð14Þ

¼ ~P�1ðt � 1Þ þHTðtÞHðtÞ þ aIM�M ð15Þ

rðtÞ ¼ ~P�1ð0Þŵð0Þ þ
Xt

s¼1

HTðsÞ dðsÞ � nðsÞ½ � ð16Þ

¼ rðt � 1Þ þHTðtÞ dðtÞ � nðtÞ½ �: ð17Þ

Furthermore, define

P�ðtÞ ¼D IM�M þ a~Pðt � 1Þ
� ��1~Pðt � 1Þ: ð18Þ

Hence, we have

P��1ðtÞ ¼ ~P�1ðt � 1Þ þ aIM�M: ð19Þ

Note that

IM�M þ a~Pðt � 1Þ
� ��1~Pðt � 1Þ
h i

~P�1ðt � 1Þ þ aIM�M

� �

¼ IM�M:

ð20Þ

Employing the matrix inversion lemma:

ðA�1 þ BC�1BTÞ�1 ¼ A� ABðC þ BT ABÞ�1BT A; ð21Þ

in the recursive calculation of P(t), (13) becomes the

following recursive equations:

P�ðt � 1Þ ¼ IM�M þ a~Pðt � 1Þ
� ��1~Pðt � 1Þ ð22Þ

KðtÞ ¼ P�ðt � 1ÞHTðtÞ Ino�no
þHðtÞP�ðt � 1ÞHTðtÞ

� ��1

ð23Þ
~PðtÞ ¼ P�ðt � 1Þ � KðtÞHðtÞP�ðt � 1Þ ð24Þ

ŵðtÞ ¼ ŵðt � 1Þ � a~PðtÞŵðt � 1Þ
þ KðtÞ d~ðtÞ � h ŵðt � 1Þ; xðtÞð Þ

h i
: ð25Þ

(22)–(25) are the general global true weight decay recur-

sive equations. They are more compact than the equations

presented in [12].

In (22)–(25), we can easily observe that when the reg-

ularization parameter a is set to zero, the term a~PðtÞŵðt�1Þ
vanishes in (25), and (22)–(25) reduce to the standard RLS

equations. We note that the main difference between the

standard RLS equations and the TWDRLS equations is the

introduction of a weight decaying term �a~PðtÞŵðt�1Þ in

(25). The inclusion of this term guarantees that the mag-

nitude of the updating weight vector decays an amount

proportional to a~PðtÞ: It should be notice that from the

definition, ~PðtÞ is positive definite. Therefore, the magni-

tude of the weight vector would not be too large. So the

generalization ability of the trained networks would be

better.

We can also explain the weight decay effect from the

energy function, given by (8). Clearly, when the regulari-

zation parameter a is set to zero, the energy function of the

TWDRLS in (8) becomes the energy function of the

standard RLS, given by (3).

From the energy function point of view, the objective of

the TWDRLS is the same as that of batch model weight

decay methods. Hence, existing heuristic methods [7, 16–

18] for choosing the value of a can be used for the

TWDRLS’s case. Those methods can be applied to any

training algorithms whose cost function contains a qua-

dratic weight decay term. The most simple method is the

test set validation method [7], in which we use a test set to

select the most suitable value of the regularization

parameter. Since the aim of this paper is to develop the

RLS equations for the weight decay regularizer rather than

to develop some Bayesian theories for model selection

[19–22], in this paper we suggest that we train a number of

networks with different values of a and then we select a

network based on a test set.

A drawback of the TWDRLS algorithm is the require-

ment in computing the inverse of the M-dimensional matrix

ðIM�M þ a~Pðt � 1ÞÞ: This complexity is equal to O(M3)

which is much higher than that of the standard RLS,

O(M2). The TWDRLS algorithm is computationally pro-

hibitive even for a network with moderate size. In the next

Section, a decoupled version of the TWDRLS algorithm

will be proposed to solve this high complexity problem.

3 Decouple the TWDRLS algorithm

3.1 Derivation

In order to decouple the TWDRLS algorithm, we first

divide the weight vector into several smaller local groups.

Neural Comput & Applic (2012) 21:1709–1716 1711

123



For the ith output neuron, we use a decoupled weight

vector

wo
i ¼ wo

i;1; . . .;wo
i;ðnhþ1Þ

h iT

ð26Þ

to represent those weights connecting hidden neurons to

the ith output neuron. For the jth hidden neuron, we use a

decoupled weight vector

win
j ¼ win

j;1; . . .;win
j;ðninþ1Þ

h iT
ð27Þ

to represent those weights connecting inputs to the jth

hidden neuron.

In the decoupled version of the TWRLS algorithm, we

consider the estimation of each decoupled weight vector

separately. When we consider the weight vector of a neu-

ron, we assume that other decoupled weight vectors are

constant vectors1.

For the ith output neuron, it is associated with a

decoupled weight vector wi
o. Since we assume that other

decoupled weight vectors are constant vectors, the energy

function of that decoupled weight vector is given by

Eðwo
i Þ ¼

Xt

s¼1

diðsÞ � hiðw; xðsÞÞ½ �2þawo
i

T wo
i

h i

þ wo
i � ŵo

i ð0Þ
� �T

Po�1
i ð0Þ wo

i � ŵo
i ð0Þ

� �
: ð28Þ

Utilizing a derivative process similar to the previous

analysis, we obtain the following recursive equations for

the output neurons:

Po�
i ðt � 1Þ ¼ Iðnhþ1Þ�ðnhþ1Þ þ aPo

i ðt � 1Þ
� ��1

Po
i ðt � 1Þ

ð29Þ

Ko
i ðtÞ ¼ Po�

i ðt � 1ÞHo
i

TðtÞ 1þHo
i ðtÞPo�

i ðt � 1ÞHo
i

TðtÞ
� ��1

ð30Þ
Po

i ðtÞ ¼ Po�
i ðt � 1Þ � Ko

i ðtÞHo
i ðtÞPo�

i ðt � 1Þ ð31Þ

ŵo
i ðtÞ ¼ ŵo

i ðt � 1Þ � aPo
i ðtÞŵo

i ðt � 1Þ
þ Ko

i ðtÞ diðtÞ � hi ŵðt � 1Þ; xðtÞð Þ½ �; ð32Þ

where

Ho
i ðsÞ ¼

ohiðw; xðsÞÞ
owo

i

����
w¼ŵðs�1Þ

" #T

; ð33Þ

is the 1 9 (nh ? 1) decoupled gradient matrix, Ki
o (t) is the

(nh ? 1) 9 1 decoupled Kalman gain, and Pi
o (t) is the

(nh ? 1) 9 (nh ? 1) decoupled error covariance matrix.

Similarly, for the jth hidden neuron, it is associated with

a decoupled weight vector wj
in. The energy function of this

decoupled weight vector wj
in is given by

Eðwin
j Þ

¼
Xt

s¼1

dðsÞ�hðw;xðsÞÞ½ �T dðsÞ�hðw;xðsÞÞ½ �þawin
j

T
win

j

h i

þ win
j � ŵin

j ð0Þ
h iT

Pin
j

�1ð0Þ win
j � ŵin

j ð0Þ
h i

: ð34Þ

With the energy function, the recursive equations are given

by

Pin�
j ðt � 1Þ ¼ Iðninþ1Þ�ðninþ1Þ þ aPin

j ðt � 1Þ
h i�1

Pin
j ðt � 1Þ

ð35Þ

Kin
j ðtÞ ¼ Pin�

j ðt � 1ÞHin
j

TðtÞ

� Iðnoþ1Þ�ðnoþ1Þ þHin
j ðtÞPin�

j ðt � 1ÞHin
j

TðtÞ
h i�1

ð36Þ

Pin
j ðtÞ ¼ Pin�

j ðt � 1Þ � Kin
j ðtÞHin

j ðtÞPin�
j ðt � 1Þ ð37Þ

ŵin
j ðtÞ ¼ ŵin

j ðt � 1Þ � aPin
j ðtÞŵin

j ðt � 1Þ
þ Kin

j ðtÞ dðtÞ � h ŵðt � 1Þ; xðtÞð Þ½ �; ð38Þ

where

Hin
j ðsÞ ¼

ohðw; xðsÞÞ
owin

j

�����
w¼ŵðs�1Þ

2
4

3
5

T

; ð39Þ

is the no9(nin ? 1) decoupled gradient matrix, Kj
in (t) is

the (nin ? 1)9no decoupled Kalman gain, and Pj
in (t) is

the (nin ? 1)9(nin ? 1) decoupled error covariance

matrix.

The training process of the decoupled TWDRLS algo-

rithm is as follows. We first train the output decoupled

weight vectors wi
o’s. Afterwards, we update the hidden

decoupled weight vectors wj
in’s. At each training stage,

only the concerned weight vector is updated and all other

weights remain unchanged.

3.2 Complexity

In the global TWDRLS, the complexity mainly comes from

computing the inverse of the M-dimensional matrix

(IM9M ? aP(t - 1)). This complexity is equal to O(M3).

So, the computational complexity is equal to

TCCglobal ¼ OðM3Þ ¼ O noðnhþ1Þ þ nhðnin þ 1Þð Þ3
� �

:

Since the size of the matrix is M 9 M, the space

complexity (storage requirement) is equal to

TCSglobal ¼ OðM2Þ ¼ O noðnhþ1Þ þ nhðnin þ 1Þð Þ2
� �

:

1 It should be noticed that such a technique is usually used in many

numerical methods [15, 23, 24]. That means, at each training

iteration, we update each decoupled weight vector separately.
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From (29), for each output neuron, the computational

cost of the decoupled TWDRLS algorithm mainly comes

from the inversion of an (nh ? 1) 9 (nh ? 1) matrix. In

this way, the computational complexity for each output

neuron is O((nh ? 1)3) and the corresponding space

complexity is equal to O((nh ? 1)2). From (35), for each

hidden neuron, the computational cost of the decoupled

TWDRLS algorithm mainly comes from the inversion

of an (nin ? 1) 9 (nin ? 1) matrix. In this way, the

computational complexity for each hidden neuron is

O((nin ? 1)3) and the corresponding space complexity is

equal to O((nin ? 1)2).

Hence, the total computational complexity of the

decoupled TWDRLS algorithm is equal to

TCCdecouple ¼ O no nh þ 1ð Þ3þnh nin þ 1ð Þ3
� �

and the space complexity (storage requirement) is equal to

TCSdecouple ¼ O no nh þ 1ð Þ2þnh nin þ 1ð Þ2
� �

:

They are much smaller than the computational and space

complexities of the global case. Some examples related to

the complexity issue will be given in the next section.

4 Computer simulations

The proposed decoupled TWDRLS algorithm is applied to

two problems: the generalized XOR problem and the

sunspot data prediction problem. Its performance is com-

pared with that of the global version. The first problem is a

typical nonlinear classification problem while the second

one is a standard nonlinear time series prediction problem.

The initial weights are small zero-mean independent

identically distributed Gaussian random variables. The

activation function for hidden neurons is the hyperbolic

tangent function. Since the generalized XOR problem is a

classification problem, the output neuron of the generalized

XOR problem is with the hyperbolic tangent activation

function. Since the sunspot data prediction problem is a

regression problem, the output neuron of the sunspot data

prediction problem is with the linear activation function.

The training for each problem is performed 10 times with

different random initial weights.

4.1 Generalized XOR problem

The generalized XOR problem is formulated as

d = sign(x1x2) with inputs in the range [-1, 1]. The

desired output is either -1 (corresponding to logical zero)

or 1 (corresponding to logical one). The network has two

input neurons, ten hidden neurons, and one output neuron.

As a result, there are 41 weights in the network. The

training set and test set, shown in Fig. 1, contain 50 and

2,000 samples, respectively. The total number of training

cycles is set to 200. It is because after 200 training cycles,

the decreasing rate of training errors is very slow. In each

cycle, 50 randomly selected training samples from the

training set are fed to the network one by one.

Since the generalized XOR problem is a classification

problem, the criterion used to evaluate the model perfor-

mance is the false rate (misclassification rate). A test pat-

tern is misclassified when the sign of the network output is

not the same as that of the desired one. Figure 2 summa-

rizes the average test set false rates in the ten runs. The

average test set false rates obtained by global and decouple

TWDRLS algorithms are usually lower than those obtained

by the standard RLS and decouple RLS algorithms over

a wide range of regularization parameters. This means

that both global and decouple TWDRLS algorithms can

improve the generalization ability. In terms of average

false rate, the performance of the decouple TWDRLS

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x1

x 2

Training Set of Generalized XOR problem

−1  −0.5 0   0.5 1   
−1

−0.5

0

0.5

1

x1

x 2

Test Set of Generalized XOR problem

(b)(a)

Fig. 1 Training and test

samples for the generalized

XOR problems. a Training

samples. b Test samples
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algorithm is quite similar to that of the global ones. The

computational and space complexities for global and

decouple algorithms are listed in Table 1. From Fig. 2 and

Table 1, we can conclude that the performance of the

decouple TWDRLS algorithm is comparable to that of the

global ones and that its time and space complexities are

much smaller.

The decision boundaries obtained from typical trained

networks are plotted in Fig. 3. From Figs. 1 and 3, the

decision boundaries obtained from the trained networks

with TWDRLS algorithms are closer to the ideal ones.

Also, the performance of decouple TWDRLS is very close

to that of the global TWDRLS algorithm.

From Fig. 2, the average test set false rate first

decreases with the regularization parameter a and then

increases with it. This shows that a proper selection of a
indeed improves the generalization ability of the network.

On the other hand, we observe that the test set false rate

becomes very high when the decay parameter a is very

large. This is due to the fact that when the decay

parameter is very large, the weight decay effect is very

10
−4

10
−3

10
−2

10
−1

0

0.02
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0.06

0.08

0.1

0.12

α

fa
ls

e 
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te
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 s
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)

RLS
Decouple RLS
TWDRLS
Decouple TWDRLS

Average test set false rate

Fig. 2 Average test set false rate of 10 runs for the generalized XOR

problem

Table 1 Computational and space complexities of the global and

decouple TWDRLS algorithms for the generalized XOR problem

Algorithm Computational

complexity

Space

complexity

Global O(6.89 9 104) O(1.68 9 103)

Decouple O(1.60 9 103) O(2.21 9 102)

x
1

x 2

Standard RLS

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
Decouple RLS

(b)
(a)

−1 −0.5 0 0.5 1
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0

0.5

1

x
1

x 2

Global TWRLS

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x
1

x 2

Decouple TWDRLS

(c) (d)

Fig. 3 Decision boundaries of

various trained networks for the

generalized XOR problem. Note

that when a = 0, the TWDRLS

is identical to RLS. a RLS.

b Decouple RLS. c Global

TWDRLS, a = 0.00562.

d Decouple TWDRLS,

a = 0.00178
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substantial and the trained network cannot learn the target

function. In order to further illustrate this, we plot in

Fig. 4 the decision boundary of the network trained with

a = 0.0178. The figure shows that the decision boundary

is quite far from the ideal one. This is because when the

value of a is too large, the weight decay effect is too

strong and then the trained network cannot capture the

desired decision boundary.

4.2 Sunspot data prediction

The sunspot data from 1700 to 1979, shown in Fig. 5, are

taken as the training and the test sets. Following the

common practice, we divide the data into a training set

(1700–1920) and two test sets, namely, Test-set 1

(1921–1955) and Test-set 2 (1956–1979). The sunspot

series is rather non-stationary and Test-set 2 is atypical.

In the simulation, we assume that the series is generated

from the following auto-regressive model, given by

dðtÞ ¼ uðdðt � 1Þ; . . .; dðt � 12ÞÞ þ �ðtÞ ð40Þ

where �ðtÞ is noise and uð�; . . .; �Þ is an unknown nonlinear

function. A network with 12 input neurons, 8 hidden

neurons, and one output neuron is used for approximating

uð�; . . .; �Þ: There are 113 weights in the MFNN model. The

total number of training cycles is equal to 200. As this is a

time series problem, the criterion to evaluate the model

performance is the mean squared error (MSE) of the

test set.

Figure 6 summarizes the average MSE in the 10 runs.

From Fig. 6, over a wide range of the regularization

parameter a, both global and decouple TWDRLS algo-

rithms can greatly improve the generalization ability of the

trained networks, especially for Test-set 2 that is quite

different from the training set. However, the test MSE

becomes very large at large values of a. This is because at

large value of a, the weight decay effect is too strong and

then the network cannot learn the target function. In most

cases, the performance of the decouple training is compa-

rable to that of the global ones. Also, Table 2 shows that

those complexities of the decouple training are much

smaller than those of the global one.
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0
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x
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x 2
Decouple TWDRLS wiith a large regularization parameter

Fig. 4 Decision boundary of a trained network (decouple TWDRLS)

with too large regularization parameter, where a = 0.0178. Since the

regularization parameter is too large, the trained network cannot form

a good decision boundary

Fig. 5 Sunspot data
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Fig. 6 MSE of networks

trained by global and decouple

TWDRLS algorithms. Note that

when a = 0, the TWDRLS is

identical to RLS. a Test-set 1

average MSE. b Test-set 2

average MSE
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5 Conclusion

We have investigated the problem of training the MFNN

model using the TWDRLS algorithms. We derive a set of

concise equations for the decouple TWDRLS algorithm.

Computer simulations indicate that both decouple and

global TWDRLS algorithms can improve the generation

ability of MFNNs. The performance of the decouple

TWDRLS algorithm is comparable to that of the global

ones. However, when the decouple approach is used, the

computational complexity and the storage requirement are

greatly reduced. In the decoupled version, each neuron has

its own set of RLS equations. Hence, the decoupled version

is suitable for the parallel computing [25, 26]. Hence, one

of the future works is to develop a parallel implementation

of the decoupled version, in which each processor is used

for the computation of one set of RLS equations.
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