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Abstract This paper deals with the H? control problem

of neural networks with time-varying delays. The system

under consideration is subject to time-varying delays and

various activation functions. Based on constructing some

suitable Lyapunov–Krasovskii functionals, we establish

new sufficient conditions for H? control for two cases of

time-varying delays: (1) the delays are differentiable and

have an upper bound of the delay-derivatives and (2) the

delays are bounded but not necessary to be differentiable.

The derived conditions are formulated in terms of linear

matrix inequalities, which allow simultaneous computation

of two bounds that characterize the exponential stability

rate of the solution. Numerical examples are given to

illustrate the effectiveness of our results.

Key words Neural networks � H? control � Stabilization �
Time-delay systems � Lyapunov function � Linear matrix

inequalities

1 Introduction

In the area of control, signal processing, pattern recognition

and image processing, delayed neural networks have many

useful applications. Some of these applications require that

the equilibrium points of the designed network be stable. In

both biological and artificial neural systems, time delays

due to integration and communication are ubiquitous and

often become a source of instability. The time delays in

electronic neural networks are usually time-varying, and

sometimes vary violently with respect to time due to the

finite switching speed of amplifiers and faults in the elec-

trical circuitry. Therefore, stability and control of delayed

neural networks is a very important issue, and various sta-

bility criteria have been reported in the literature (see, for

example, [1–6]). In conducting a periodicity or stability

analysis of a neural network, the conditions to be imposed

on the neural network are determined by the characteristics

of various activation functions as well as network parame-

ters. When neural networks are designed for problem

solving, it is desirable for their activation functions to be

general. To facilitate the design of neural networks, it is

important that the neural networks with various activation

functions and time-varying delays are studied. On the other

hand, the problem of H? control of dynamical time-delay

systems are of practical and theoretical interest due to their

useful applications in image processing, especially in

classification of patterns, associative memories and other

areas (see, for example, [7–14]). For the H? control prob-

lem, appropriate methods for linear time-delay systems

usually make use of the Lyapunov functional approach,

whereby the H? conditions are obtained via solving either

matrix inequalities or algebraic Riccati-type equations [15–

17]. Regarding H? control of neural networks, the papers

[18–20] proposed a state feedback H? control law for the

asymptotic stabilization of neural networks with constant

time delays. To the best of our knowledge, the H? control

problem of neural networks with time-varying delays has

not been fully studied yet, which are important in both

theories and applications. This motivates our research.

In this paper, we investigate the H? control with

exponential stability for neural networks with time-varying
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delays. The novel features here are that the time-varying

delay is present in the observation output with various

activation functions, and the controllers to be designed

must satisfy some exponential stability constraints on the

closed-loop poles. Based on constructing a set of aug-

mented Lyapunov–Krasovskii functionals, a H? controller

is designed to achieve exponential stabilization of the

neural networks for two cases of time-varying delays:

the delays are differentiable and have an upper bound of

the delay-derivatives and the delays are bounded but not

necessary to be differentiable. The conditions are obtained

in terms of LMIs, which allow simultaneous computation

of two bounds that characterize the exponential stability

rate of the solution and can be easily determined by uti-

lizing MATLABs LMI Control Toolbox.

This paper is organized as follows. Section 2 presents

notations, definitions and auxiliary propositions required for

the proof of the main results. H? control design for delayed

neural networks for two cases of time-varying delays: (1) the

delays are differentiable and have an upper bound of the

delay-derivatives and (2) the delays are bounded but not

necessary to be differentiable, and numerical examples of

the results are presented in Sects. 3 and 4, respectively.

2 Preliminaries

The following notations will be used throughout this paper.

R? denotes the set of all real non-negative numbers; Rn

denotes the n-dimensional space with the scalar product h�; �i
and the vector norm k � k; Rn�r denotes the space of all

matrices of (n 9 r)-dimension. Matrix A is symmetric if

A = AT, where AT denotes the transpose of A. In denotes the

identity matrix in Rn; k(A) denotes the set of all eigenvalues

of A; kmaxðAÞ ¼ maxfRe k : k 2 kðAÞg; kminðAÞ ¼ minfRe

k : k 2 kðAÞg; Cð½a; b�;RnÞ denotes the set of all Rn-valued

continuous functions on ½a; b�; L2ð½0;1�;RrÞ denotes the set

of all square-integrable Rr-valued functions on ½0;1�.
Matrix A is semi-positive definite (A C 0) if hAx; xi� 0 for

all x 2 Rn; A is positive definite (A [ 0) if hAx; xi[ 0 for all

x = 0; A C B means A - B C 0. Let us denote xt :¼
fxðt þ sÞ; s 2 ½�h; 0�g the segment of the trajectory x(t) with

the norm kxtk ¼ supt2½�h;0� kxðt þ sÞk.
Consider the following delayed neural networks with

control input and observation output

_xðtÞ ¼ �AxðtÞ þW0f ðxðtÞÞ þW1gðxðt � s1ðtÞÞÞ
þ BuðtÞ þ B1wðtÞ;

zðtÞ ¼ CxðtÞ þW2hðxðt � s2ðtÞÞÞ þ DuðtÞ;
xðtÞ ¼ /ðtÞ; t 2 ½�s; 0�;

ð2:1Þ

where s ¼ maxfs1; s2g; xðtÞ 2 Rn is the state vector of the

neural networks; uðtÞ 2 L2ð½0; sÞ;RmÞ; s [ 0;m� n; is the

control input; wðtÞ 2 L2ð½0;1Þ;RrÞ; r� n; is the uncertain

input of the neural networks; zðtÞ 2 Rl; l� n; is the

observation output; n is the number of neurals; f ðxðtÞÞ ¼ ½f1

ðx1ðtÞÞ; f2ðx2ðtÞÞ; . . .; fnðxnðtÞÞ�T ; gðxðtÞÞ ¼ ½g1ðx1ðtÞÞ; g2ðx2ðtÞÞ;
. . .; gnðxnðtÞÞ�T ; hðxðtÞÞ ¼ ½h1ðx1ðtÞÞ; h2ðx2ðtÞÞ; . . .; hnðxnðtÞÞ�T
are the neural activation functions; the diagonal matrix A ¼
diagða1; a2; . . .; anÞ; ai [ 0; represents the self-feedback

term; the matrices W0;W1 2 Rn�n;W2 2 Rl�n denote,

respectively, the connection weights; B 2 Rn�m;D 2 Rl�m

denote the control input matrices; B1 2 Rn�r denotes the

uncertain/perturbation input matrix; C 2 Rl�n denotes

the observation output matrix; the initial functions /ðtÞ 2
Cð½�s; 0�;RnÞ with the uniform norm jj/jj ¼ maxt2½�s;0�
k/ðtÞk; the time-varying delay functions s1(t), s2(t) satisfy

either (H1) or (H2):

(H1) 0� s1ðtÞ� s1; _s1ðtÞ� d1\1; 8t 2 Rþ;

0� s2ðtÞ� s2; _s2ðtÞ� d2\1; 8t 2 Rþ;

(H2) 0� s1ðtÞ� s1; 0� s2ðtÞ� s2; 8t 2 Rþ:

In this paper, we consider various activation functions

f(x), g(x), h(x), f(0) = h(0) = g(0) = 0, which are glob-

ally Lipschitzian with the Lipschitz constants ni [ 0,

ri, [ 0, gi [ 0 such that

jfiðx1Þ� fiðx2Þj�nijx1� x2j; i¼ 1;2; . . .;n; 8x1;x2 2 R

jgiðx1Þ� giðx2Þj�rijx1� x2j; i¼ 1;2; . . .;n; 8x1;x2 2 R

jhiðx1Þ� hiðx2Þj�gijx1� x2j; i¼ 1;2; . . .;n; 8x1;x2 2 R:

ð2:2Þ

Definition 2.1 Given b[ 0. The system (2.1), where

w(t) = 0, is b-stabilizable if there is a feedback control law

u(t) = Kx(t) such that every solution x(t, /) of the closed-

loop system

_xðtÞ ¼ �ðA� BKÞxðtÞ þW0f ðxðtÞÞ þW1gðxðt � s1ðtÞÞÞ;
xðtÞ ¼ /ðtÞ; t 2 ½�s; 0�; ð2:3Þ

satisfies

9N [ 0 : kxðt;/Þk�Nk/ke�bt; 8t 2 Rþ:

Definition 2.2 Let the numbers b[ 0, c[ 0 be given.

The H? control problem for system (2.1) has a solution if

there exists a memoryless state feedback controller

u(t) = Kx(t) satisfying the following two requirements:

1. The system (2.1) is b-stabilizable.

2. There is a number c0 [ 0 such that

sup

R1
0
kzðtÞk2

dt

c0k/k2 þ
R1

0
kwðtÞk2

dt
� c; ð2:4Þ

where the supremum is taken over all /ðtÞ 2
Cð½�s; 0�;RnÞ and the nonzero uncertainty wðtÞ 2
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L2ð½0;1Þ;RrÞ: In this case, we say that the feedback H?

control u(t) = Kx(t) exponentially stabilizes the system.

The following lemmas are essential for the proofs in the

subsequent section.

Proposition 2.1 Let P, Q be matrices of appropriate

dimensions and Q is symmetric positive definite. Then

2hPy; xi � hQy; yi� hPQ�1PT x; xi; 8ðx; yÞ:

The proof of the above proposition is easily derived from

completing the square:

0�hQðy� Q�1PT xÞ; y� Q�1PT xi:

Proposition 2.2 (Schur complement lemma [21]) Given

constant symmetric matrices X, Y and Z, where Y [ 0.

Then X ? ZTY-1Z \ 0 if and only if

X ZT

Z �Yx

� �

\0:

Proposition 2.3 (Razumikhin stability theorem [22])

Consider the time-delay system _xðtÞ ¼ f ðt; xtÞ; xðtÞ ¼ /ðtÞ;
t 2 ½�h; 0�: Assume that u; v;w : Rþ ! Rþ are nonde-

creasing, and u(s), v(s) are positive for s C 0, v(0) =

u(0) = 0, and q [ 1. If there is a function Vðt; xÞ : Rþ �
Rn ! Rþ such that

1. uðkxkÞ�Vðt; xÞ� vðkxkÞ; t 2 Rþ; x 2 Rn

2. _Vðt; xðtÞÞ� � wðkxðtÞkÞ if Vðt þ s; xðt þ sÞÞ
� qVðt; xðtÞÞ; 8s 2 ½�h; 0�; t 2 Rþ;

then the zero solution of system is asymptotically stable.

3 Main results

As in [9, 11] we assume that

DT ½C W2� ¼ 0; DT D ¼ Im: ð3:1Þ

Let us denote

l1¼ð1�d1Þ�1; l2¼ð1�d2Þ�1;

WI
2¼W2WT

2 þ Il; w¼kmaxðWI
2Þ;

T1ðA;PÞ¼�0:5ðAT PþPAÞþbPþCT WI
2Cþl2we2bs2 HH;

T2ðA;PÞ¼�0:5ðAT PþPAÞþbPþl1GGþ2FD1þFD2F;

F¼diagðn1;n2; . . .;nnÞ; G¼diagðr1;r2; . . .;rnÞ;
H¼diagðg1;g2; . . .;gnÞ;
a1¼kminðPÞ; r2¼maxfr2

i ;i¼1;2. . .;ng;
g2¼maxfg2

i ; i¼1;2. . .;ng;

a2¼kmaxðPÞþr2l1s1þkmaxðWI
2Þg2l2s2e2bs2 ; N¼

ffiffiffiffiffi
a2

a1

r

:

Theorem 3.1 Assume the condition (H1). Given b[ 0,

the H? control of system (2.1) has a solution if there exist

a symmetric positive definite matrix P2Rn�n; and two

diagonal positive definite matrices Di2Rn�n; i¼1;2; such

that the following LMIs hold:

T1ðA;PÞ PB PW1 PB1

BT P � 4
5

In 0 0

WT
1 P 0 �e�2bs1 In 0

BT
1 P 0 0 �cIn

0

B
B
@

1

C
C
A\0; ð3:2Þ

T2ðA;PÞ PW0 þ D1

WT
0 Pþ D1 �D2

� �

\0: ð3:3Þ

The feedback H? control law is defined by

uðtÞ ¼ 1

2
BT PxðtÞ; t 2 Rþ: ð3:4Þ

Proof Consider the following time-varying Lyapunov–

Krasovskii functional for the closed-loop system (2.3):

Vðt; xtÞ ¼ V1 þ V2 þ V3

where

V1ðt; xtÞ ¼ hPxðtÞ; xðtÞi

V2ðt; xtÞ ¼ l1

Z t

t�s1ðtÞ

e2bðs�tÞhgðxðsÞÞ; gðxðsÞÞids

V3ðt; xtÞ ¼ l2e2bs2

Z t

t�s2ðtÞ

e2bðs�tÞhWI
2hðxðsÞÞ; hðxðsÞÞids:

It is easy to verify that

a1jjxðtÞjj2�Vðt; xtÞ� a2jjxtjj2; t 2 Rþ: ð3:5Þ

Taking the time derivative of V(�) in t along the solution we

obtain

_Vðt; xtÞ ¼ 2hP _xðtÞ; xðtÞi þ l1hgðxðtÞÞ; gðxðtÞÞi
� l1e�2bs1ð1� _s1ðtÞÞhgðxðt � s1ðtÞÞ; gðxðt � s1ðtÞÞi
� 2bV2ðt; xtÞ þ l2e2bs2hWI

2hðxðtÞÞ; hðxðtÞÞi
� l2ð1� _s2ðtÞÞhWI

2hðxðt � s2ðtÞÞ; hðxðt � s2ðtÞÞi
� 2bV3ðt; xtÞ

� h�2PAxðtÞ; xðtÞi þ 2hPW0f ðxðtÞ; xðtÞi
þ 2hPW1gðxðt � s1ðtÞÞ; xðtÞi
þ hPBBT PxðtÞ; xðtÞi þ 2hPB1wðtÞ; xðtÞi
þ l1hgðxðtÞÞ; gðxðtÞÞi þ l2e2bs2hWI

2hðxðtÞÞ; hðxðtÞÞi
� e�2bs1hgðxðt � s1ðtÞÞ; gðxðt � s1ðtÞÞi � 2bV2ðt; xtÞ
� hWI

2hðxðt � s2ðtÞÞ; hðxðt � s2ðtÞÞi � 2bV3ðt; xtÞ:

Using Proposition 2.1 for the estimation

2hPW1gð�Þ; xðtÞi � e�2bs1hgð�Þ; gð�Þi
� e2bs1hPW1WT

1 PxðtÞ; xðtÞi;

we have
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_Vðt; xtÞ þ 2bVðt; xtÞ� h�2PAxðtÞ; xðtÞi þ 2bhPxðtÞ; xðtÞi
þ hPBBT PxðtÞ; xðtÞi þ 2hPB1wðtÞ; xðtÞi
þ e2bs1hPW1WT

1 PxðtÞ; xðtÞi þ 2hPW0f ðxðtÞ; xðtÞi
þ l1hgðxðtÞÞ; gðxðtÞÞi þ l2e2bs2hWI

2hðxðtÞÞ; hðxðtÞÞi
� hWI

2hðxðt � s2ðtÞÞ; hðxðt � s2ðtÞÞi: ð3:6Þ

By adding and substituting into the right-hand side of the

inequality (3.6) four items

hCT WI
2CxðtÞ; xðtÞi; 1

c
hPB1BT

1 PxðtÞ; xðtÞi;

2hD1f ðxðtÞÞ; xðtÞi; hD2f ðxðtÞÞ; f ðxðtÞÞi;

and using the condition (2.2) and the diagonal matrices

G [ 0, H [ 0, F [ 0 for the following estimations

�hD1f ðxðtÞÞ; xðtÞi� hFD1xðtÞ; xðtÞi;
hD2f ðxðtÞÞ; f ðxðtÞÞi� hFD2FxðtÞ; xðtÞi;
hgðxðtÞÞ; gðxðtÞÞi� hGGxðtÞ; xðtÞi;

hWI
2hðxðtÞÞ; hðxðtÞÞi�whHHxðtÞ; xðtÞi;

we have

_Vðt; xtÞ þ 2bVðt; xtÞ� hð�2AT Pþ 2bPþ CT WI
2C þ 2FD1

þ l1GG þ FD2F þ l2we2bs2 HHÞxðtÞ; xðtÞi

þ 1

c
hPB1BT

1 PxðtÞ; xðtÞi þ e2bs1hPW1WT
1 PxðtÞ; xðtÞi

þ 2hD1f ðxðtÞÞ; xðtÞi � hD2f ðxðtÞÞ; f ðxðtÞÞi
þ 2hPB1wðtÞ; xðtÞi
þ hPBBT PxðtÞ; xðtÞi þ 2hPB1wðtÞ; xðtÞi
þ 2hPW0f ðxðtÞ; xðtÞi
� hCT WI

2CxðtÞ; xðtÞi � hWI
2hðxðt � s2ðtÞÞ; hðxðt � s2ðtÞÞi

� 1

c
hPB1BT

1 PxðtÞ; xðtÞi:

Then, using the Schur complement lemma and Proposition

2.2, we obtain

_Vðt; xtÞ þ 2bVðt; xtÞ� hð�2AT Pþ 2bPþ CT WI
2CÞxðtÞ; xðtÞi

þ 5

4
hPBBT PxðtÞ; xðtÞi þ 2hPB1wðtÞ; xðtÞi

þ hðl2we2bs2 HH þ 2FD1 þ l1GGþ FD2FÞxðtÞ; xðtÞi
þ 2hðPW0 þ D1Þf ðxðtÞÞ; xðtÞi � hD2f ðxðtÞÞ; f ðxðtÞÞi

þ 1

c
hPB1BT

1 PxðtÞ; xðtÞi þ e2bs1hPW1WT
1 PxðtÞ; xðtÞi

þ 2hPB1wðtÞ; xðtÞi � 1

4
hPBBTPxðtÞ; xðtÞi

� hCT WI
2CxðtÞ; xðtÞi � 1

c
hPB1BT

1 PxðtÞ; xðtÞi

� hWI
2hðxðt � s2ðtÞÞ; hðxðt � s2ðtÞÞi:

Therefore, we obtain

_Vðt;xtÞ þ 2bVðt;xtÞ�hNxðtÞ;xðtÞi þ hMzðtÞ; zðtÞi
þ 2hPB1wðtÞ;xðtÞi � hCT WI

2CxðtÞ;xðtÞi
� hWI

2hðxðt� s2ðtÞÞ;hðxðt� s2ðtÞÞi

� 1

4
hPBBT PxðtÞ;xðtÞi � 1

c
hPB1BT

1 PxðtÞ; xðtÞi: ð3:7Þ

where z(t) = [x(t), f(x(t))] and

N ¼ T1ðA;PÞ þ e2bs1 PW1WT
1 Pþ 5

4
PBBT Pþ 1

c
PB1BT

1 P;

M¼
T2ðA;PÞ PW0 þ D1

WT
0 Pþ D1 �D2

� �

:

Letting w(t) = 0, and noting that

1

4
hPBBT PxðtÞ; xðtÞi� 0; hCT WI

2CxðtÞ; xðtÞi� 0;

hWI
2hðxðt � s2Þ; hðxðt � s2Þi� 0; hPB1BT

1 PxðtÞ; xðtÞi� 0;

and that N \ 0 is, by Schur complement lemma, equivalent

to N\0; where

N ¼

T1ðA;PÞ PB PW1 PB1

BT P � 4
5

In 0 0

WT
1 P 0 �e�2bs1 In 0

BT
1 P 0 0 �cIn

0

B
B
B
@

1

C
C
C
A
;

we obtain from (3.2), (3.3) that

_Vðt; xtÞ þ 2bVðt; xtÞ� 0: ð3:8Þ

Therefore, from differential inequality (3.8), it follows that

Vðt; xtÞ�Vð0; x0Þe�2bt; 8t� 0:

Using the condition (3.5), we have

kxðt;/Þk�Nk/ke�bt; 8t� 0:

To complete the proof of the theorem, it remains to show

the c-optimal level condition (2.4). For this, we consider

the relation

Zs

0

½kzðtÞk2 � ckwðtÞk2�dt

¼
Zs

0

h
kzðtÞk2 � ckwðtÞk2 þ _Vðt; xtÞ

i
dt

�
Zs

0

_Vðt; xtÞdt:

Since V(t, xt) C 0, t C 0, we have
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�
Zs

0

_Vðt; xtÞdt ¼ Vð0; x0Þ � Vðs; xsÞ�Vð0; x0Þ; 8s� 0;

and hence

Zs

0

½kzðtÞk2 � ckwðtÞk2�dt�
Zs

0

h
kzðtÞk2 � ckwðtÞk2

þ _Vðt; xtÞ
i
dt þ Vð0; x0Þ: ð3:9Þ

Observe that the value of kzðtÞk2
is defined due to (2.1) and

(3.1) as

kzðtÞk2 ¼ hCT CxðtÞ; xðtÞi þ 2hCT W2hðxðt � s2ðtÞÞÞ; xðtÞi
þ hWT

2 W2hðxðt � s2ðtÞÞÞ; hðxðt � s2ðtÞÞÞi

þ 1

4
hPBBT PxðtÞ; xðtÞi

Using Proposition 2.1, we have

2hCTW2hðxðt � s2ðtÞÞÞ; xðtÞi� hCT W2WT
2 CxðtÞ; xðtÞi

þ khðxðt � s2ðtÞÞÞk2;

then

kzðtÞk2�hCT WI
2CxðtÞ; xðtÞi

þ hWI
2hðxðt � s2ðtÞÞÞ; hðxðt � s2ðtÞÞÞi

þ 1

4
hPBBT PxðtÞ; xðtÞi ð3:10Þ

Submitting the estimation of _Vðt; xtÞ and kzðtÞk2

respectively defined from (3.7) and (3.10) into (3.9), we

obtain

Zs

0

½jjzðtÞjj2 � cjjwðtÞjj2�dt

�
Zs

0

�

� 1

c
PB1BT

1 PwðtÞ; xðtÞ
� �

þ2 PB1wðtÞ; xðtÞh i � cjjwðtÞjj2�dt þ Vð0; x0Þ:

Applying Proposition 2.1 for the estimation

hPB1wðtÞ; xðtÞi � ckwðtÞk2� 1

c
hPB1BT

1 PwðtÞ; xðtÞi;

we have

Zs

0

½kzðtÞk2 � ckwðtÞk2�dt�Vð0; x0Þ� a2k/k2;

equivalently,

Zs

0

kzðtÞk2
dt� c

Zs

0

kwðtÞk2
dt þ a2k/k2:

Letting s!1; and setting c0 ¼ a2

c [ 0; we obtain that

R1
0
kzðtÞk2

dt

c0k/k2 þ
R1

0
kwðtÞk2

dt
� c;

for all nonzero wðtÞ 2 L2ð½0;1Þ;RrÞ; /(t) [ C([ - h,

0], Rn). This completes the proof of the theorem.

Remark 3.1 Theorem 3.1 provides sufficient conditions

for solving the H? control problem of the Hopfield delayed

neural network (2.1) in terms of LMIs, which allows for an

arbitrary prescribed stability degree b. The LMI feasibility

will depend on parameters of the system under consider-

ation as well as some upper limits for the Lipschitz con-

stants and the time delays. The feasibility of the LMIs

(3.2)–(3.3) can be tested by the reliable and efficient

MATLABs LMI Control Toolbox [23].

In the sequel, the H? control problem for the system (2.1)

will be solved further with no restriction on the derivative of

the time-varying delay function. For this, we set

s¼maxfs1; s2g; WI
2 ¼W2WT

2 þ Il;

T1ðA;PÞ ¼ �0:5½ATðPþ e�sInÞ þ ðPþ e�sInÞA�
þ r2ðPþ e�sIÞ þCT WI

2C;

T2ðA;PÞ ¼ �0:5½ATðPþ e�sInÞ þ ðPþ e�sInÞA�
þ g2wesðPþ e�sIÞ þ 2FD1þFD2F;

F ¼ diagðn1;n2; . . .;nnÞ; p¼ kmaxðPÞ; w¼ kmaxðWI
2Þ;

r2 ¼maxfr2
i ; i¼ 1;2. . .;ng; g2 ¼maxfg2

i ; i¼ 1;2. . .;ng:

Theorem 3.2 Assume the condition (H2). The H? control

of system (2.1) has a solution if there exist a symmetric positive

definite matrix P and two diagonal positive definite matrices

Di 2 Rn�n; i¼ 1;2; such that the following LMIs hold:

T1ðA;PÞ PBþe�sB PWþe�sW1 PB1þe�sB1

BT Pþe�sBT �4
5
In 0 0

WT
1 Pþe�sWT

1 0 �e�sIn 0

BT
1 Pþe�sBT

1 0 0 �cIn

0

B
B
@

1

C
C
A\0;

ð3:11Þ

T2ðA;PÞ PW0 þ e�sW0 þ D1

WT
0 Pþ e�sWT

0 þ D1 �D2

� �

\0:

ð3:12Þ

The feedback H? control law is defined by

uðtÞ ¼ 1

2
BTðPþ e�sInÞxðtÞ; t� 0: ð3:13Þ

Proof Let us set Ps = P ? e-s In. We consider the

following Lyapunov–Krasovskii functional
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VðxðtÞÞ ¼ hPsxðtÞ; xðtÞi; ð3:14Þ

Taking the time derivative of V(�) in t along the solution

and using the feedback control (3.13), we obtain

_VðxðtÞÞ ¼ 2hPs _xðtÞ; xðtÞi
¼ �2hPsAxðtÞ; xðtÞi þ hPsBBT PsxðtÞ; xðtÞi
þ 2hPsW0f ðxðtÞÞ; xðtÞi þ 2hPsW1gðxðt � s1ðtÞÞÞ; xðtÞi
þ 2hPsB1wðtÞ; xðtÞi:

Using Proposition 2.1, we have

2hPsW1gðxðt � s1ðtÞÞÞ; xðtÞi� eshPsW1WT
1 PsxðtÞ; xðtÞi

þ e�skgðxðt � s1ðtÞÞk2:

Then, we have

_VðxðtÞÞ ¼ �2hPsAxðtÞ; xðtÞi þ hPsBBT PsxðtÞ; xðtÞi
þ eshPsW1WT

1 PsxðtÞ; xðtÞi þ e�skgðxðt � s1ðtÞÞÞk2

þ 2hPsW0f ðxðtÞÞ; xðtÞi þ 2hPsB1wðtÞ; xðtÞi: ð3:15Þ

By adding and substituting into the right-hand side of the

inequality (3.15) five items

hCT WI
2CxðtÞ; xðtÞi; 1

c
hPB1BT

1 PxðtÞ; xðtÞi; 2hD1f ðxðtÞÞ; xðtÞi;

hD2f ðxðtÞÞ; f ðxðtÞÞi; hWI
2hðxðt� s2ðtÞÞÞ; hðxðt� s2ðtÞÞÞi;

and using the condition (2.2) and the diagonal

matrices D1 [ 0, D2 [ 0, H [ 0, F [ 0 for the following

estimations

� hD1f ðxðtÞÞ; xðtÞi� hFD1xðtÞ; xðtÞi;
hD2f ðxðtÞÞ; f ðxðtÞÞi� hFD2FxðtÞ; xðtÞi;
hgðxðt � s1ðtÞÞÞ; gðxðt � s1ðtÞÞÞi
� r2hxðt � s1ðtÞÞ; xðt � s1ðtÞÞi;

hWI
2hðxðt � s2ðtÞÞÞ; hðxðt � s2ÞÞÞi
� g2whxðt � s2ðtÞÞ; xðt � s2ðtÞÞÞi;

we have

_VðxðtÞÞ� �2PsAþ
5

4
PsBBT Psþ

1

c
PsB1BT

1 Ps

� �

xðtÞ;xðtÞ
� 	

þhðCT WI
2Cþ2FD1þFD2DÞxðtÞ;xðtÞi

þ2hD1f ðxðtÞÞ;xðtÞiþ2hPsW0f ðxðtÞÞ;xðtÞi
�hD2f ðxðtÞÞ;f ðxðtÞÞi
þeshPsW1WT

1 PsxðtÞ;xðtÞiþe�sr2kxðt�s1ðtÞÞk2

þg2whxðt�s2ðtÞÞ;xðt�s2ðtÞÞi�
1

c
hPsB1BT

1 PsxðtÞ;xðtÞi

�1

4
hPsB1BT

1 PsxðtÞ;xðtÞi�hCT WI
2CxðtÞ;xðtÞi

�hWI
2ðhðxðt�s2ðtÞÞÞ;hðxðt�s2ðtÞÞÞiþ2hPsB1wðtÞ;xðtÞi:

ð3:16Þ

In the light of the Razumikhin theorem, Proposition 2.3, we

assume that for any �[0; such that

Vðt þ s; xðt þ sÞÞ\ð1þ �ÞVðt; xðtÞÞ; 8s 2 ½�2h; 0�;

and using the condition (3.14), we have

e�skxðt � s1ðtÞk2�Vðt � s1ðtÞ; xðt � s1ðtÞÞÞ
� ð1þ �ÞVðt; xðtÞÞ ¼ ð1þ �ÞhPsxðtÞ; xðtÞi;

e�skxðt � s2ðtÞk2�Vðt � s2ðtÞ; xðt � s2ðtÞÞÞ
� ð1þ �ÞVðt; xðtÞÞ ¼ ð1þ �ÞhPsxðtÞ; xðtÞi:

Therefore, from (3.16) it follows that

_VðxðtÞÞ� �2PsAþ
5

4
PsBBT Ps þ

1

c
PsB1BT

1 Ps

� �

xðtÞ; xðtÞ
� 	

þ hðCT WI
2C þ 2FD1 þ FD2DÞxðtÞ; xðtÞi

þ ðr2 þ g2wesÞð1þ �ÞhPsxðtÞ; xðtÞi
þ eshPsW1WT

1 PsxðtÞ; xðtÞi
þ 2hD1f ðxðtÞÞ; xðtÞi þ 2hPsW0f ðxðtÞÞ; xðtÞi
� hD2f ðxðtÞÞ; f ðxðtÞÞi

� 1

c
hPsB1BT

1 PsxðtÞ; xðtÞi þ 2hPsB1wðtÞ; xðtÞi

� hCTWI
2CxðtÞ; xðtÞi � 1

4
hPsB1BT

1 PsxðtÞ; xðtÞi

� hWI
2ðhðxðt � s2ðtÞÞÞ; hðxðt � s2ðtÞÞÞi:

ð3:17Þ

Now letting �! 0þ; and w(t) = 0 in (3.17), we obtain

_VðxðtÞÞ� hNxðtÞ; xðtÞi þ hMzðtÞ; zðtÞi
� hCT WI

2CxðtÞ; xðtÞi
� hWI

2hðxðt � s2ðtÞÞ; hðxðt � s2ðtÞÞi

� 1

4
hPsBBT PsxðtÞ; xðtÞi

� 1

c
hPsB1BT

1 PsxðtÞ; xðtÞi;

ð3:18Þ

where z(t) = [x(t), f(x(t))] and

N ¼ T1ðA;PsÞ þ esPsW1WT
1 Ps þ

5

4
PsBBT Ps þ

1

c
PsB1BT

1 Ps;

M¼
T2ðA;PsÞ PsW0 þ D1

WT
0 Ps þ D1 �D2

� �

:

Note that N \ 0 is, by Schur complement lemma,

equivalent to N\0; where

N ¼

T1ðA;PsÞ PsB PsW1 PsB1

BT Ps � 4
5

In 0 0

WT
1 Ps 0 �e�sIn 0

BT
1 Ps 0 0 �cIn

0

B
B
B
@

1

C
C
C
A
:

Since
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hCT WI
2CxðtÞ; xðtÞi� 0;

hWI
2hðxðt � s2ðtÞÞ; hðxðt � s2ðtÞÞi� 0;

hPsBBT PsxðtÞ; xðtÞi� 0; hPsB1BT
1 PsxðtÞ; xðtÞi� 0;

the conditions (3.18) gives

_VðxðtÞÞ� hNxðtÞ; xðtÞi þ hMzðtÞ; zðtÞi; 8t� 0;

and hence taking the conditions (3.11), (3.12) into account,

there is a[ 0 such that

_VðxðtÞÞ� � akxðtÞk2; 8t� 0:

Hence, the zero solution of the closed-loop system, by

using the Razuminkhin-type stability theorem, Proposition

2.3, is asymptotically stable. The exponential estimation of

the solution, as in the proof of Theorem 3.1, follows from

the differential inequality

_Vðt; xðtÞÞ� � a
pþ e�s

Vðt; xðtÞÞ; t� 0;

and hence

kxðt;/Þk�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ e�s

kminðPÞ

s

k/ke�
a

2ðpþe�sÞt; 8t� 0:

The condition (2.4) is proved by the same arguments used

in Theorem 3.1. This completes the proof of the theorem.

Remark 3.2 Note that by using the Razumikhin stability

theorem, only knowledge of the upper bound of the time-delay

function is required in condition (H2) and no additional

information of the delay is necessary, which is of particular

interest for many practical processes. However, unlike the LMI

conditions obtained in Theorem 3.1 that allow for an arbitrary

prescribed stability degree b, the exponential rate of the sys-

tem (2.1) obtained in Theorem 3.2 depends on the solution P of

the LMIs (3.11) and (3.12) as well as on the time delay.

4 Numerical examples

Example 4.1 Consider the system (2.1) with the delay

function s1ðtÞ ¼ sin2ð0:25tÞ; s2ðtÞ ¼ cos2ð0:4tÞ and

A ¼
28 0

0 29

� �

; B ¼
0:3

0:1

� �

; B1 ¼
0:3 0

�0:9 0

� �

;

W0 ¼
�8 0

�9 0

� �

; W1 ¼
�0:1 0

�0:1 �0:1

� �

; W2 ¼
0 0

0 2

� �

;

C ¼
0 0

1 0

� �

; D ¼
1

0

� �

;

n1 ¼ 1:2; n2 ¼ 1:3; r1 ¼ 1:3; r2 ¼ 0:9; g1 ¼ 0:7; g2 ¼ 1:3:

Given b = 0.5, d1 = 0.5, d2 = 0.8, c = 100, by using

LMI toolbox of MATLAB, we have both the LMI (3.2),

(3.3) feasible with

P ¼
4:4236 �0:0313

�0:0313 2:9222

� �

;

D1 ¼
22:5359 0

0 4:9215

� �

;D2 ¼
30:8554 0

0 19:3603

� �

:

The feedback H? control is defined by (3.4) as

uðtÞ ¼ 0:6620x1ðtÞ þ 0:1414x2ðtÞ; t� 0;

and the solution x(t, /) satisfies

kxðt;/Þk� 5:3830e�0:5tk/k; 8t� 0:

Figure 1 shows the trajectories of solutions x1(t) and

x2(t) of the closed-loop system (2.1) with the initial con-

dition /ðtÞ ¼ ð1; 0:2Þ; t 2 ½1; 0�:

Example 4.2 Consider the system (2.1) with the time-

delay functions

s1ðtÞ¼ 2sin2 t; if t2 I¼ ½2kp;ð2kþ1Þp�; k¼ 0;1;2; . . .;
s1ðtÞ¼ 0 if t2Rþ n I;




s2ðtÞ ¼ bðtÞ; if t 2 ½0; 1�
s2ðtÞ ¼ bðt � kÞ; if t 2 ½k; k þ 1�; k ¼ 1; 2; . . .;




where bðtÞ ¼ t; t 2 ½0; 0:5�;¼ �t þ 1; t 2 ð0:5; 1�:

A ¼
120 0

0 180

� �

; B ¼
0:4

0:6

� �

; B1 ¼
0:3 0

�0:9 0

� �

;

W0 ¼
�2 0

�3 0

� �

; W1 ¼
�0:12 0

�0:13 �0:014

� �

;

W2 ¼
0 0

0 2

� �

; C ¼
0 0

3 4

� �

; D ¼
1

0

� �

;

n1 ¼ 1:1 n2 ¼ 1:3; r1 ¼ 1:2; r2 ¼ 0:7;

g1 ¼ 0:7; g2 ¼ 1:3:
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(t)

Fig. 1 The trajectories of x1(t), and x2(t) of (2.1)
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It is worth noting that the delay functions s1(t),s2(t) are

bounded s1 = 2, s2 = 1, but non-differentiable, and

therefore, the methods used in [11–14] are not applicable

to this system. Given b = 0.5, c = 1000, by using LMI

toolbox of MATLAB, we have both the LMI (3.11), (3.12)

feasible with

P ¼
5:2819 0:0525

0:0525 3:4978

� �

; D1 ¼
26:0699 0

0 35:2669

� �

;

D2 ¼
111:9514 0

0 129:8264

� �

:

The feedback H? control is defined by (3.13) as

uðtÞ ¼ 12:1419x1ðtÞ þ 10:1327x2ðtÞ; t� 0:

Figure 2 shows the trajectories of solutions x1(t) and

x2(t) of the closed-loop system (2.1) with the initial con-

dition /ðtÞ ¼ ð�1; 0:6Þ; t 2 ½�2; 0�:

5 Conclusion

The H? control problem with exponential stability for

neural networks with time-varying delays has been studied.

Based on constructing a set of augmented Lyapunov–

Krasovskii functionals, new sufficient conditions for H?

control have been established for two cases of time-varying

delays: the delays are differentiable and have an upper

bound of the delay-derivatives; and the delays are bounded

but not necessary to be differentiable. The derived condi-

tions are formulated in terms of LMIs. Upon the feasibility

of the LMIs, all the control parameters can be easily

computed and the design of a H? controller can be

accomplished.
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