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Abstract Roof fall is one of the serious hazards associ-

ated with underground coal mining. Roof fall can cause

fatal and non-fatal injuries on miners, stoppages in mining

operations and equipment breakdowns. Therefore, accurate

prediction of roof fall rate is very important in controlling

and eliminating of related problems. In this study, the fuzzy

logic was applied to predict roof fall rate in coal mines. The

predictive fuzzy model was implemented on fuzzy logic

toolbox of MATLAB� using Mamdani algorithm and was

developed based on experts’ knowledge and also a data-

base including 109 datasets of roof performance from US

coal mines. 22 datasets of this database were used to assess

the performance of this fuzzy model. The comparison

between obtained results from model and actual roof fall

rate showed that the fuzzy model can predict roof fall rate

very well.

Keywords Coal mining � Roof fall � Safety � Fuzzy logic �
Mamdani algorithm

1 Introduction

There are several reasons that make underground coal

mining one of the most hazardous activities, and the most

important one is roof fall. Roof fall is the greatest safety

hazard that underground coal miners deal with. Roof fall

can cause detrimental effects on workers in the form of

injury, disability or fatality and also on mining companies

because of downtimes, interruptions in the mining opera-

tions, equipment breakdowns, etc. The hazardous nature of

roof fall can be illustrated by the statistics of mine acci-

dents. For example, US mine accident statistics indicated

that during 10 years, 1996–2005, 7,738 miners were

injured from roof falls in underground coal, metal, non-

metal and stone mines [1]. Coal mines showed the highest

injury rate, 1.75 injuries per 200,000 h underground work.

Fatal injury trends from 1996 to 2005 were equally trou-

bling, with 100 roof fall fatalities, while coal mines had the

highest number of 82 (0.021 fatalities per 100,000 miners).

In 1998, a total of 2,232 unplanned roof falls occurred in

884 US underground coal mines. These falls resulted in

419 injuries and 13 fatalities [2].

Unplanned roof failures in coal mines can be created by

a number of different factors. These include geologic

defects in the roof rock, moisture degradation of shales,

extreme loading conditions under high cover, multiple

seam mining and inadequate support to name just a few.

Using statistical analysis of roof fall database from 37 coal

mines in US, Molinda et al. [2] found relationships among

the roof fall rate and coal mine roof rating (CMRR), pri-

mary roof support (PRSUP), intersection span and depth of

cover. van der Merve et al. [3] investigated roof falls in

South Africa coal mines carefully, and in their point of

view, poor design of support systems, poor performance of

support elements, poor mining conditions, unknown nature

of the stress regime and weak roof rock were dominant

causes. Molinda [4] found that the main reason of roof fall

in coal mines is weak and defective roof and then explained

the role of geological deficiencies on the occurrence of roof

falls. Deb [5] used an extensive database of roof perfor-

mance from US coal mines and fuzzy reasoning tech-

niques to determine the relationships between coal mine

roof rating (CMRR), primary roof support (PRSUP) and
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intersection diagonal span with roof fall rate. Furthermore,

recently extensive researches have been conducted to

control and assess roof fall risk in coal mines. For example,

Duzgun and Einstein [6] proposed a risk and decision

analysis methodology for the assessment and management

of roof fall risk in underground coal mines. In this study,

they computed the probability of roof fall risk using sta-

tistical analysis of available roof fall data from mines in the

Appalachian region, in the US, and also they computed the

consequence of roof fall risk using relative cost criterion.

Duzgun [7] proposed a risk assessment and management

methodology for roof fall hazard in underground mines of

the Zonguldak coal region, in Turkey. She computed the

probability of roof fall by fitting a distribution function to

the annual roof fall, while the consequence of roof fall was

quantified based on a cost model. Palei and Das [8]

collected geotechnical data from 14 roof fall incidents in an

underground coal mine and conducted sensitivity analysis

to examine the effects of the contributing parameters on

support safety factor and the probability of roof fall.

Shahriar and Bakhtavar [9] collected roof fall data from

five coal regions, in Iran, and assessed and managed roof

fall risk in these regions using a method that previously

was applied in landslide risk assessment. Using roof fall

data from five bord and pillar mines in India, Palei and Das

[10] predicted the severity of roof fall accidents based on

some major contributing parameters by the binary logistic

regression model.

Roof fall is a complex issue in mining industry and its

prediction is very difficult because of the complexity of

geological conditions and variability in mining parameters.

Correct prediction of roof fall rate can result in develop-

ment of preventive and controlling measures for roof fall

reduction. In this paper, using US roof fall database com-

piled by Molinda et al. [2], a fuzzy model for the prediction

of roof fall rate in coal mines is presented.

2 Fuzzy logic

The details of fuzzy logic can be found in numerous liter-

atures [11–13], but it is explained briefly in the following.

Most of the world’s knowledge is uncertain and imprecise,

and thus, the description of all actual systems inherently

contains incomplete and imprecise information. In order to

deal with such situations, a fuzzy approach based on fuzzy

logic seems to be the most appropriate. Fuzzy logic or fuzzy

set theory was first presented by Zadeh [11] that provides a

mechanism for representing linguistic constructs such as

‘‘many,’’ ‘‘low,’’ ‘‘medium,’’ ‘‘often’’ and ‘‘few.’’ In gen-

eral, the fuzzy logic provides an inference structure that

enables appropriate human reasoning capabilities. A fuzzy

set is an extension of a crisp set but does not have any sharp

and precise boundaries, unlike crisp set. A crisp set only

allows full membership or no membership to every element

of a universe of discourse, whereas a fuzzy set allows the

degree of membership for each element to range over the

unit interval between 0 and 1.

Block diagram of a typical fuzzy logic system is pre-

sented in Fig. 1. As outlined in this figure, a fuzzy logic

system consists of four parts [14]: (1) fuzzification process,

(2) knowledge base, (3) fuzzy inference system and

(4) defuzzification process. In the following, each one of

these parts is described briefly.

2.1 Fuzzification process

Fuzzy set performs numerical computation by using lin-

guistic labels. So, in first part of fuzzy logic system, crisp

values of input and output variables should be converted to

fuzzy values or linguistic information. This is called

fuzzification and is done by membership functions. The

shape of the membership functions can be either linear

(trapezoidal or triangular) or various forms of nonlinear

(Gaussian, bell-shaped, S-shaped, etc.). The type of the

membership function depends on the modeled problem,

experts’ knowledge and contexts [16].

2.2 Knowledge base

As presented in Fig. 1, knowledge base includes database

and rule base. The database defines the membership func-

tions of the fuzzy sets used in the fuzzy rules, whereas the

rule base contains a number of fuzzy if–then rules. The if–

then rules, also known as the fuzzy rules, provide a system

for describing complex (uncertain, vague) systems by

relating input and output parameters using linguistic vari-

ables. Generally, the fuzzy rules are extracted from experts’

judgments, engineering knowledge and experience.

The if–then rule is generally made up of a premise

(antecedent) and a consequent (conclusion) part. A fuzzy

if–then rule assumes the form ‘‘if x is A then y is B’’ in

which ‘‘x is A’’ is premise part and ‘‘y is B’’ is consequent

Fig. 1 A typical architecture of a fuzzy model [15]

S312 Neural Comput & Applic (2013) 22 (Suppl 1):S311–S321

123



part. Also, A and B are linguistic values defined by fuzzy

sets or more specifically by membership functions. Most

rule-based systems involve more than one rule. The process

of obtaining the overall consequent from the individual

consequents contributed by each rule in the rule base is

known as the aggregation of rules. In determining an

aggregation strategy, two simple extreme cases exit,

namely conjunctive and disjunctive system of rules by

using ‘‘and’’ and ‘‘or’’ connectives, respectively.

2.3 Fuzzy inference system

The fuzzy inference system (FIS), also known as the

decision-making unit, performs the inference operations on

the rules. In fact, fuzzy inference is the process of formu-

lating an input fuzzy set map to an output fuzzy set using

fuzzy logic. The core section of a fuzzy logic system is the

FIS part, which combines the facts obtained from the

fuzzification with the rule base and conducts the fuzzy

reasoning process. There are several FISs that have been

employed in various applications, and the most commonly

used include the following: the Mamdani fuzzy model, the

Takagi–Sugeno–Kang (TSK) fuzzy model, the Tsukamoto

fuzzy model and the Singleton fuzzy model. The differ-

ences between these FISs lie in the consequents of their

rules, and thus, aggregation and defuzzification procedures

differ accordingly.

Among different FISs, the Mamdani fuzzy model is one

of the most commonly used in fuzzy logic for solving many

real-world problem. The Mamdani FIS was proposed by

Mamdani to control a steam engine and boiler combination

by set of linguistic control rules obtained from experienced

human operators [17]. The general ‘‘if–then’’ rule structure

of the Mamdani algorithm is given in the following equation:

If x1 is Ai1 and x2 is Ai2 and . . . xr is Air then y is Bi

ðfor i ¼ 1; 2; . . .; kÞ ð1Þ

where k is the number of rules, xi is the input variable, Air

and Bi are linguistic terms, and y is the output variable.

Figure 2 is an illustration of a two-rule Mamdani FIS

that derives the overall output z when subjected to two

crisp inputs x and y [18]. As can be seen in the figure, the

fuzzy output is the aggregation (max) of the two truncated

fuzzy sets in Mamdani FIS model. The outputs are obtained

after defuzzification by using the centroid of area (COA)

method.

2.4 Defuzzification process

The output generated by the FIS is always in the fuzzy

(linguistic) form, but most of the time, the need to a crisp

and representative value leads to usage of the defuzzifier.

The application of the defuzzifier is to receive the fuzzy

input and provide crisp output. In fact, it works opposite to

the fuzzifier. There are a number of defuzzification meth-

ods in the literature such as centriod of area (COA) or

center of gravity, mean of maximum (MOM), smallest of

maximum (SOM), largest of maximum (LOM) and bisec-

tor of area (BOA). Figure 3 shows various defuzzification

schemes for obtaining a crisp output.

3 Application of fuzzy logic

During the past two decades, fuzzy logic has been

successfully applied to many real-world problems especially

in modeling complex and imprecise systems in the science

and engineering field especially mining, rock mechanics

and engineering geology. For example, Nguyen and

Ashworth [19], Habibagahi and Katebi [20], Sonmez et al. [21]

Fig. 2 Mamdani fuzzy inference system (FIS) scheme [18]

Fig. 3 Various defuzzification schemes for obtaining a crisp output
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and Aydin [22] used fuzzy approaches for rock mass

classification. Jiang et al. [23] and Deb [5] evaluated the

performance of roof in coal mines using fuzzy set theory.

Bascetin et al. [24] used fuzzy technique for the selection

of surface mine equipments. Karadogan et al. [25] applied

fuzzy set theory for the selection of underground mining

method. Grima et al. [16], Acaroglu et al. [26], Khademi

Hamidi et al. [27] and Acaroglu [28] employed fuzzy set

theory for the prediction of TBM performance and trench

excavation machines. Dodagoudar and Venkatachalam

[29] employed fuzzy set theory for the assessment of rock

slope stability. Tzamos and Sofianos [30] applied the fuzzy

logic concept for the prediction of support system in tun-

nels. Fisne et al. [31], Monjezi et al. [32] and Rezai et al.

[33] developed fuzzy models for the analysis and predic-

tion of the effects of blasting operation such as ground

vibration, flyrock and backbreak. Li et al. [34] and Li et al.

[35] applied fuzzy models for the analysis of rock dis-

placement and ground subsidence due to underground

mining. Azimi et al. [15] applied fuzzy sets to predict the

blastability of rock masses. Iphar and Goktan [36] devel-

oped a fuzzy model to predict rock mass diggability for

surface mine equipment selection. Ataei et al. [37] used

fuzzy logic for the determination of coal mine mechani-

zation. Fuzzy set theory has been used for the prediction of

rock properties such as uniaxial compressive strength,

modulus of elasticity and brittleness by Gokceoglu [38],

Kayabasi et al. [39], Gokceoglu and Zorlu [40], Sonmez

et al. [41] and Yagiz and Gokceoglu [42].

4 Determining the parameters for the prediction

of roof fall rate

Several geotechnical parameters are known to influence

roof stability. Based on study conducted by Molinda et al.

[2], major contributing parameters on roof fall are CMRR,

PRSUP, intersection span and depth of cover. In the

following, each of these parameters and their influence on

roof fall are described.

CMRR Quality of roof rock has an important role in the

occurrence of roof fall. Roof fall reports in coal mines

showed that the weak roof was the main reason of fatal

incidents. CMRR is an indicator for representing the

quality of roof rock in coal mines that was developed by

Molinda and Mark [43] and has a single rating between 0

and 100. When the CMRR value is approaching 0 the roof

is weaker, while approaching 100 shows that the roof is

stronger. One of the most important advantages of CMRR

classification is that it considers natural causes of roof fall

such as strength of roof rock, bedding and other disconti-

nuities and groundwater.

PRSUP In underground coal mining, roof bolts are usu-

ally the only primary support systems overhead protection

of miners. Therefore, its failure is a major factor in roof fall

accidents and fatalities. Increasing the roof bolt density in

many cases can be the simplest way for reducing roof fall

risk. PRSUP is a roof bolt density indicator that is calcu-

lated by the following (2):

PRSUP ¼ Lb � Nb � C

14:5� Sb �We

ð2Þ

where Lb is length of the bolt in m, Nb the number of bolts

per row, C the bolt capacity in KN, Sb the spacing between

rows of bolts in m, and We entry width in m.

Intersection span Researches have shown that intersec-

tions are 8–10 times more likely to collapse than the

equivalent length of entry or crosscut. Because unlike of

entries and crosscuts, rock load applied on roof in inter-

sections is proportional to the cube of the span [44]. One of

the most important methods of decreasing roof instability

at intersections is creating intersections with minimum

possible span. According to Fig. 4, the intersection span is

calculated as the sum of the two intersection diagonals.

Depth of cover Deep cover is one of the main reasons of

roof fall accidents in underground coal mines, because

increasing depth leads to increase in virgin stress levels in

the rock mass, both vertically and horizontally. Therefore,

achieving to sufficient stability is harder at high depth, and

special precautions are required to ensure ground stability.

The purpose of presented paper is to construct a fuzzy

logic model for predicting roof fall rate in underground

coal mines. To do this, the database compiled from US coal

mines was used. This database includes 109 datasets from

37 coal mines in 10 US states. The database was divided

into two groups randomly: one group for training and

developing fuzzy model including 80 percent of the data-

sets (i.e. 87 datasets) and the other group including rest of

datasets (i.e. 22 datasets) for testing the model perfor-

mance. Results of the basic descriptive statistical analysis

performed on original database are given in Table 1.

Fig. 4 Method of measuring intersection span [2]
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5 Fuzzy model to predict roof fall rate

In this section, a fuzzy model based on Mamdani algorithm

is introduced for the prediction of roof fall rate in coal

mines. Fuzzy model was implemented on fuzzy logic

toolbox of MATLAB� ver. 7.6 software package [45]. In

this model, max–min composition was selected as com-

position method of fuzzy relations because of being the

most commonly used technique [13]. In this method, the

rule-based system is described by the following equation:

lCk
ðzÞ ¼ max

k
½min½lAk

ðinputðxÞÞ; lBk
ðinputðyÞÞ��

k ¼ 1; 2; . . .; r
ð3Þ

where lCk
, lAk

and lBk
are the membership functions of

output ‘‘z’’ for rule ‘‘k,’’ input ‘‘x’’ and input ‘‘y,’’

respectively.

As can be seen in the Fig. 5, the proposed fuzzy model

includes four input variables (CMRR, PRSUP, intersection

span and depth of cover) and one output variable (roof fall

rate).

In the model, triangular and trapezoidal membership

functions were adopted for describing input and output

variables because of their simplicity and computational

efficiency. The triangular and trapezoidal membership

functions are shown in Fig. 6. In this figure, a, b, c and

d are the parameters of the linguistic value and x is the

range of the input parameters.

The graphical representations of the membership func-

tions of different input and output variables are shown in

Fig. 7. In this figure, VL stands for very low, L for low, M

for medium, H for high and VH for very high. In addition,

Table 2 shows the linguistic variables, their linguistic

values and associated parameters.

The next stage of the FIS is the construction of the if–

then rules, which are used to represent the fuzzy relation-

ships between input and output fuzzy variables. In this

paper for constructing the rule base of fuzzy model, a total

of 180 rules were utilized based on experts’ experiences

and data compiled from the US coal mines. Figure 8 shows

a fuzzy if–then rule editor including 11 rules of the model

in MATLAB� environment.

In the last stage, each result in the form of a fuzzy set is

converted into a crisp (real output) value by the defuzz-

ification process. In this model, the COA method, which is

a common method of defuzzification, was employed for

defuzzification process [16]. The crisp value adapting the

COA defuzzification method was obtained by:

z� ¼
R

lAðzÞ � z � dz
R

lAðzÞ � dz
ð4Þ

where z� is the crisp value for the z output and lA(z) is the

aggregated output membership function.

The fuzzy model developed here can provide an esti-

mate of roof fall rate when proper input data were entered

into model. For example, as can be seen in Fig. 9, when

input parameters are CMRR = 28, PRSUP = 5.89,

IS = 21 m and D = 152.4 m, the output predicted for roof

fall rate is 1.99 (whereas according to Table 4 actual roof

fall rate is 1.81).

6 Results and discussions

As mentioned before, 22 datasets, which were not incor-

porated in the model, were used for testing and validation

Table 1 Basic descriptive statistics for the original database

Parameter (unit) Symbol Min Max Mean SD

Coal mine roof rating CMRR 28 78 47.72 11.1

Primary roof support PRSUP 2.46 14.67 5.71 2.29

Intersection span (m) IS 15.2 23.9 19.34 1.71

Depth of cover (m) D 45.7 335.3 136.8 68.1

Roof fall rate RFR 0 31.82 2.99 5.8

Fig. 5 Schematic illustration of the roof fall rate fuzzy model

Fig. 6 Triangular (top) and trapezoidal (bottom) membership

functions
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of the model. Regarding that the purpose of this paper is to

predict the roof fall rate qualitatively, the output of the

proposed model for each dataset is converted into quali-

tative information (low, medium and high) based on

Table 3, then obtained result is compared with actual roof

fall rate to test the model. As can be seen in Table 4, the

proposed model can predict roof fall rate correctly in 19

cases (approximately 85% cases), and only in 3 cases

(approximately 15% cases), the model cannot predict the

desired roof fall rate.

The response plots for roof fall rate with different input

variables for fuzzy model have been presented in Fig. 10.

In Fig. 10a–f, the effects of two input parameters vari-

ability on roof fall rate have been shown, whereas two

other parameters are constant, and their values can be

seen on top of each figure. It can be concluded from

Fig. 10 that the proposed rule-based fuzzy model is

capable of predicting roof fall rate in the experimental

domain quite efficiently as the rule covers a larger deci-

sion surface.

The results showed that the fuzzy logic is a useful and

powerful means for predicting roof fall rate in coal mines.

Other coal mines all over the world can use this model, and

output of this model can be considered as a preliminary

estimation of roof fall rate based on which mining

managers and engineers can develop preventive measures

for controlling roof, so hazards due to roof fall can be

minimized. For example, if fuzzy model predicts that the

roof fall rate in a coal mine is less than 1, based on Table 3,

the probability of roof fall occurrence is low and no con-

trolling measures are needed. If the fuzzy model predicts

the roof fall rate between 1 and 3, the probability of roof

fall occurrence in that mine is medium, and by developing

a few controlling measures, the roof fall risk can be min-

imized to the least possible amount. Finally, when the

fuzzy model predicts the roof fall rate more than 3, the

Fig. 7 Fuzzy representation of input and output variables
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probability of roof fall occurrence is very high, and only by

developing extensive monitoring and controlling measures

can decrease the roof fall risk to an acceptable level.

Among input parameters, CMRR and depth of cover

are uncontrollable (depending on ground conditions so

unchangeable) and two other parameters, PRSUP and

intersection span, are controllable (depending on design of

mine and mining conditions so changeable). Thus, the most

practical controlling measures for decreasing roof fall risk

are as follows:

Table 2 Representation of

membership functions and their

parameters

a MF stands for membership

function

Variables Linguistic variables Linguistic values Type of MFa Parameters

Inputs CMRR Very low Trapezoidal [28 28 35 41]

Low Trapezoidal [35 41 42 48]

Medium Trapezoidal [42 48 50 56]

High Trapezoidal [50 56 60 66]

Very high Trapezoidal [60 66 78 78]

PRSUP Low Triangular [2.46 2.46 3.5]

Medium Trapezoidal [2.46 3.5 4.5 5.5]

High Trapezoidal [4.5 5.5 7.5 8.5]

Very high Trapezoidal [7.5 8.5 14.67 14.67]

Intersection span Low Trapezoidal [15.2 15.2 16.8 19.8]

Medium Triangular [16.8 19.8 22.9]

High Trapezoidal [19.8 22.9 23.9 23.9]

Depth of cover Low Trapezoidal [45.7 45.7 91.5 152.5]

Medium Trapezoidal [91.5 152.5 213 274]

High Trapezoidal [213 274 335.3 335.3]

Output Roof fall rate Low Trapezoidal [0 0 0.5 1.5]

Medium Trapezoidal [0.5 1.5 2.5 3.5]

High Trapezoidal [2.5 3.5 31.82 31.82]

Fig. 8 Fuzzy if–then rule editor

for proposed fuzzy model
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1. In mine design stage: creating intersections with

minimum possible span.

2. In mining stage: increasing the roof bolt density

using longer and stronger bolts especially in the

intersections.

7 Conclusions

Roof fall is a common geotechnical hazard in coal mines,

and it is generally complex and unpredictable due to

uncertainty and variability in geological and mining

Fig. 9 Fuzzy rule viewer for

proposed model

Table 3 Classification of roof fall rate

Roof fall rate Roof fall class Roof fall level and description

Less than 1 Low Acceptable

No controlling measures are

needed

Between 1 and 3 Medium Acceptable

A few management review

and controlling measures

are needed

More than 3 High Undesirable

Extensive monitoring

and controlling measures

are needed

Table 4 Testing dataset used for evaluating the proposed model

No. CMRR PRSUP IS

(m)

D
(m)

Roof fall

rate actual

Roof

fall rate

predicted

1 28 5.89 21 152.4 1.81 (Medium) Medium

2 30 6.07 17.4 91.4 4 (High) Medium

3 32 8.67 16.5 243.4 2 (Medium) Medium

4 35 4 19.5 61 0 (Low) Low

5 37 13.24 17.7 76.2 6.26 (High) High

6 37 9.93 17.7 121.9 12.07 (High) High

7 38 4.32 18.3 182.9 0.65 (Low) Low

8 40 6.25 18.6 228.6 0.52 (Low) Medium

9 41 3.79 18 106.7 1.28 (Medium) Medium

10 42 3.27 18.6 61 2.37 (Medium) Medium

11 44 6.2 18.9 106.7 3.57 (High) High

12 44 3.5 20.7 76.2 1.56 (Medium) Medium

13 45 4.55 19.8 106.7 5.67 (High) High

14 46 4.84 19.7 91.4 2.63 (Medium) High

15 47 3.98 18.8 152.4 0 (Low) Low

16 50 5.52 18.3 91.4 3.19 (High) High

17 50 7.23 23.9 304.8 3.5 (High) High

18 51 3.24 20.1 152.4 0 (Low) Low

19 55 3.71 19.1 304.8 0.28 (Low) Low

20 58 3.1 19.8 243.4 0 (Low) Low

21 75 2.46 19.2 121.9 0 (Low) Low

22 76 8.83 21 152.4 0.72 (Low) Low
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parameters. Recently, the application of fuzzy logic

method has increased in almost all research areas, partic-

ularly including complexity and uncertainty. Therefore, in

this paper using fuzzy logic method, a model was estab-

lished to predict roof fall rate. The model was constructed

using four inputs: CMRR, PRSUP, intersection span and

depth of cover. Proposed fuzzy model was developed based

on Mamdani algorithm, and triangular and trapezoidal

fuzzy membership functions were adopted for describing

input and output variables. Furthermore, 180 if–then fuzzy

rules and COA method for defuzzification were used in

order to develop fuzzy model. The results of the fuzzy

model showed that fuzzy logic is a useful and powerful

means to enhance the safety of underground coal mines.

Practical outcome of the proposed model can be considered

as a preliminary estimation of roof fall rate based on which

controlling measures can be developed for the reduction of

roof fall accidents. The major advantage of fuzzy model is

that human judgment and intuition can be effectively used

for the prediction of roof fall rate, which helps in field

applications. Finally, it is clear that the presented fuzzy

model can be improved based on more data that can be

obtained from other underground coal mines over time.
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Fig. 10 Surface plots of roof fall rate with a depth of cover and CMRR, b CMRR and PRSUP, c depth of cover and PRSUP, d intersection span

and PRSUP, e CMRR and intersection span, f depth of cover and intersection span
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