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Abstract This article proposes a novel approach for text

categorization based on a regularization extreme learning

machine (RELM) in which its weights can be obtained ana-

lytically, and a bias-variance trade-off could be achieved

by adding a regularization term into the linear system of

single-hidden layer feedforward neural networks. To fit the

input scale of RELM, the latent semantic analysis was used

to represent text for dimensionality reduction. Moreover, a

classification algorithm based on RELM was developed

including the uni-label (i.e., a document can only be

assigned to a unique category) and multi-label (i.e., a

document can be assigned to multiple categories simulta-

neously) situations. The experimental results in two

benchmarks show that the proposed method can produce

good performance in most cases, and it could learn faster

than popular methods such as feedforward neural networks

or support vector machine.

Keywords Text categorization � Extreme learning

machine � Support vector machine � Latent semantic

analysis � Regularization

1 Introduction

Text categorization (TC) is a task of automatically

assigning predefined categories to a given text document

based on its content [1]. A growing number of machine

learning techniques have been used for TC such as prob-

abilistic model [2], k-nearest neighbor (KNN) [3], neural

networks [4–6], support vector machines (SVM) [7, 8], and

logistic regression [9, 10].

Among above methods, SVM has been regarded as one

of the most successful methods in TC [1, 8, 11]. However,

SVM has some disadvantages, for example, learning its

parameters usually needs to spend a lot of time [7, 12].

Moreover, extending learning algorithms from binary classi-

fication to multi-classification will increase the computational

cost.

Neural network is also an efficient and popular approach

for TC, with which multiclass classification could be

implemented easily [13]. Generally, the free parameters of

the neural networks are learnt via gradient descent algo-

rithms [14], which are relatively slow and have many

issues related to its convergence such as stopping criteria,

learning rate, learning epochs, and local minima.

Recently, Huang et al. [15] proposed a novel learning

algorithm for single-hidden layer feedforward neural net-

works called extreme learning machine (ELM). It is shown

that ELM not only learns much faster with higher gener-

alization performance than the traditional gradient-based

neural network methods but also avoids the convergence

difficulties mentioned above [16, 17]. However, a potential

disadvantage of ELM is that it tends to require more

hidden neurons than conventional tuning-based algorithms

in many cases [18], so its scale will become remarkable

large if the input dimensionality is rather high such as text

data.
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In this article, we propose a novel approach based on a

regularization extreme learning machine (RELM) for TC.

Firstly, the latent semantic analysis (LSA) [19] was used to

obtain a semantic representation of text and reduce the

dimensionality to fit the input scale of ELM. Nextly, a

regularization term was added into the linear system of

ELM to construct a RELM in which its output weights

were obtained analytically. The aim of adding regulariza-

tion term is that we wish the RELM could overcome the

overfitting problem, since the dimensionality in semantic

space might still be high after using LSA, which may result

in a low bias but large variance of the estimated weights.

Finally, a TC algorithm was developed including uni-label

and multi-label situations.

The major contributions of this article are as follows:

(1) introducing a regularization term into the linear system

of ELM, meanwhile, its analytical solution and theoretical

proof are presented; (2) proposing a framework combining

the LSA and RELM for TC (including uni-label and multi-

label cases); (3) giving some experimental suggestions

about parameter selection for TC based on RELM.

The rest of this article is organized as follows. Section 2

introduces the preliminaries and related works. Section 3

explains the proposed method in detail. Experimental

results and analysis are shown in Sect. 4. Finally, we

summarize the conclusions in Sect. 5.

2 Preliminaries and related works

A brief review of ELM is presented and the related works

about neural networks for TC are introduced.

2.1 A review of extreme learning machine

ELM is a single-hidden layer feed forward networks

(SLFNs) where the input weights are chosen randomly and

the output weights are calculated analytically. For N arbi-

trary distinct samples ðxi; tiÞ 2 R
k � R

m; the SLFNs with ~N
hidden nodes and activation function g(x) are mathemati-

cally modeled as

oj ¼
X~N

i¼1

bigðwi � xj þ biÞ; j ¼ 1; . . .;N; ð1Þ

where wi ¼ ½wi1;wi2;. . .;wik�T is the weight vector connecting

the ith hidden node and the input nodes, wi � xj denotes

the inner product of wi and xj, bi is the threshold of the

ith hidden node, and bi ¼ ½bi1;bi2;. . .; bim�T is the weight

vector connecting the ith hidden node and the output

nodes. If a SLFNs with ~N hidden nodes can approximate

these N samples with zero error (i.e.
P ~N

j¼1 jjoj � tjjj ¼ 0),

there exist bi, wi and bi such that

X~N

i¼1

bigðwi � xj þ biÞ ¼ tj; j ¼ 1; . . .;N: ð2Þ

The above N equations can be written compactly as

Hb ¼ T ; ð3Þ

where

H ¼
gðw1 � x1 þ b1Þ � � � gðw ~N � x1 þ b ~NÞ

..

.
� � � ..

.

gðw1 � xN þ b1Þ � � � gðw ~N � xN þ b ~NÞ

2
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3
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N� ~N

; ð4Þ
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bT

1

..

.
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3
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and T ¼
tT
1

..

.

tT
~N

2

64

3

75

N�m

; ð5Þ

H is called the hidden layer output matrix of the neural

networks; the ith column of H is the ith hidden node output

with respect to inputs x1; x2; . . .; xN .

Huang et al. [15, 16] proved that one may randomly

choose and fix the hidden node parameters with almost any

nonzero activation function and then analytically determine

the output weights when approximating any continuous

target function on any compact input sets. Therefore, (3)

becomes a linear system and the output weights b are

estimated as

b̂ ¼ HyT; ð6Þ

where Hy is the Moore–Penrose generalized inverse of the

hidden layer output matrix H. Thus, the output weights b
are calculated in a single step, and this avoids any long-

training procedure where the network parameters are

adjusted iteratively with appropriately chosen control

parameters.

Huang et al. [20] also show that from the standard

optimization method point of view, ELM for classification

is equivalent to SVM, but ELM has less optimization

constraints due to its special separability feature.

2.2 Neural networks for text categorization

Since several years ago, neural networks have been applied

to TC tasks. In [4], Ng et al. used the perceptrons to con-

struct a text classifier and reported a surprisingly high

performance. Moreover, multilayer perceptron method was

used for subject categorization [21] or authorship attribu-

tion classification [22]. To overcome the high dimension-

ality problem, Wang and Yu [5] introduced a combination

of modified back propagation neural network (BP) and

LSA, they used LSA to map the high dimensional term

space into a low dimensional semantic space, so the

dimensionality was reduced dramatically, and the perfor-

mance was reported to be improved. However, the learning
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process is quite slow because of the convergence issues. In

[23], Liu et al. introduced ELM for TC and reported the

performance comparison with SVM, they pointed out

experimentally that SVM still outperforms ELM in terms

of F1 value (see 4.2 for the definition of F1) even the ELM

has higher accuracy. Nevertheless, they did not introduce

the multi-label case of TC, and the learning and classifi-

cation time were not mentioned. Different from that, our

RELM method tends to have better generalization perfor-

mance due to the regularization constrain, and our classi-

fication algorithm can deal with the uni-label or multi-label

cases for TC.

3 Text categorization based on regularization extreme

learning machine

Generally, TC based on machine learning techniques

consists three parts: text representation method, classifi-

cation algorithm and performance evaluation. LSA is a

classical text representation method, which could not only

greatly reduces the dimensionality but also discovers the

important associative relationship between terms [19].

Thus, LSA is used to project the original high dimensional

term vectors into the low dimensional semantic vectors for

text representation. Next, a regularization extreme learning

machine (RELM) and its solution are presented. Finally, a

TC algorithm based on RELM is developed.

3.1 Representation of text

Given a document d ¼ ðt1; t2; . . .; tnÞT; where n is the

dimensionality in the term space. The tfidf value [24] for

each term is defined as:

tfidf ðti; dÞ ¼ tf ðti; dÞ � idf ðtiÞ; ð7Þ

where tf ti; dð Þ denotes the number of times that ti occurred

in d, and idf tið Þ is the inverse document frequency which is

defined as idf(ti) = log (N /df(ti)), where N is the number

of documents in training set and df tið Þ denotes the number

of documents in training set in which ti occurs at least once.

Then a document can be represented as a vector:

d ¼ ðw1;w2; . . .;wnÞT; ð8Þ

where wi ¼ tfidf ðti; dÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

j tfidf ðtj; dÞ2
q

.

Here, all document vectors are combined as a term by

document matrix D 2 R
n�N ; where n and N are commonly

considerable large. Generally, the matrix D is not suitable

to be used as input for ELM directly. With a singular value

decomposition: D ¼ U � R� VT; where U and V are two

orthogonal matrices and R ¼ diagðr1; r2; . . .; rnÞ is the

diagonal matrix of singular values. The best approximation

of D with rank-k matrix is Dk ¼ Uk � Rk � VT
k ; where Uk

is comprised of the first k columns of the matrix U and VT
k

is comprised of the first k rows of matrix VT corresponding

to the largest k singular values, which form the diagonal

matrix Rk ¼ diagðr1; r2; . . .; rkÞ. Thus the matrix Dk cap-

tures most of the important latent semantic of the term by

document matrix D. Consequently, a document vector d ¼
ðw1;w2; . . .;wnÞT can be projected from the term space into

the k-dimensional semantic space and represented by

d̂ ¼ dTUkR
�1
k : ð9Þ

Therefore, the dimensionality is reduced from n to

k, and all of the training and test examples could be

represented by this way.

3.2 Regularization extreme learning machine

Assuming X 2 R
k�N is a training example matrix obtained

by (9), the ELM with ~N hidden nodes and activation

function g(x) are mathematically modeled as Hb = T (3),

where H is the hidden layer output matrix of the neural

network (4). To solve the linear system is equivalent to

finding a least-squares solution b̂ to satisfy follow equation:

jjHb̂� Tjj2F ¼ min
b
jjHb� T jj2F; ð10Þ

where jj � jjF is the Frobenius norm.

According to the text data, the high dimensional and

sparse characteristic might lead to the overfitting problem.

The estimated weight b̂ often have a low bias but large

variance such that the model performs well on the training

set but poorly on any other set. Regularization [25] is an

effective way to deal with this problem by sacrificing a

little bias to reduce the variance of the predicted values and

hence may improve the overall prediction accuracy.

A lot of regularization methods are used in the linear

system, for example, ridge regression [26], lasso [27],

elastic net [28], or even the nonconvex regularizer l1/2 [29]

and minimax concave term [30]. Nevertheless, these

approaches, except ridge regression, need an iterative esti-

mated algorithm. In order to keep the advantage that the

linear system of ELM can be solved analytically, we use the

Frobenius norm as a regularization term and rewrite (10) as

jjHb̂� Tjj2F ¼ min
b
ðjjHb� Tjj2F þ kjjbjj2FÞ; ð11Þ

where k is a parameter used to control the trade-off

between the approximation error and the regularization

degree, and b̂ can be obtained by theorem 1.

Theorem 1 The minimization problem of Eq. (11) has an

optimal solution when k is a positive constant, the solution

is given by:
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b̂ ¼ ðHTH þ kIÞ�1HTT: ð12Þ

Proof Let us denote the objective function of (11) by

l(b), i.e. l(b) = ||Hb - T||F
2 ? k ||b ||F

2. Setting

dlðbÞ
db
¼ 0; ð13Þ

we have

ðHTH þ kIÞb ¼ HTT ; ð14Þ

because (HTH ? k I) is an invertible matrix when k[ 0.

So,

b ¼ ðHTH þ kIÞ�1HTT: ð15Þ

The second-order derivative of l(b) w.r.t. b is

d2lðbÞ
dbbT

¼ 2ðHTH þ kIÞ; ð16Þ

it is a positive define matrix when k[ 0. Therefore, (12) is

the optimal solution of (11) when k[ 0. h

It should be noted that a similar result is also mentioned

in [17] from the point of stable view. Recently, Huang

et al. [31] did a more general discussion about the con-

strained optimization based ELM in, and different solutions

can be obtained based on the concerns on the efficiency in

different size of training datasets.

3.3 Algorithm for text categorization

Generally, ELM focus on the function approximation

applications. According to the classification problem, we

need some category discrimination function.

Here, we code the category information as the target

vector of training set. In order to represent the coding for

uni-label or multi-label corpus uniformly, we define the

target vector corresponding to a document d as

t ¼ ðb1; . . .; bi; . . .; bmÞT; ð17Þ

where m is the number of categories in corpus, and bi is

equal to 1 or -1 depending on whether the related

document belongs to the corresponding categories. For

example, supposing there are five categories (m = 5), a

document d ¼ ðw1;w2; . . .;wkÞT belongs to the first and the

forth categories, then the related target vector is

t = (1, - 1, - 1, 1, - 1)T. For test set, the output

target matrix can be evaluated as

Y ¼ ~Hb̂; ð18Þ

where ~H is the hidden layer output matrix of testing data.

According to the uni-label corpus, we define the cate-

gory discrimination function as:

CategoryðdjÞ ¼ arg
i

maxðYjÞ; ð19Þ

where dj is the jth sample and Yj is the jth row output vector

of Y.

According to the multi-label corpus, we define the cat-

egory discrimination function as:

CategoryðdjÞ ¼ arg
i
ðYj [ hÞ; ð20Þ

where dj is the jth sample, Yj is the jth row output vector of

Y, and h = 0 or can be estimated by cross verification.

Algorithm 1 gives the implementation pseudo code of

TC based on RELM.

4 Experiments

This section firstly introduces the datasets used in the

experiments, then the evaluation measures of performance

are given. The results and analysis are presented finally.

Some commonly used notations are listed in Table 1 for

convenience. Moreover, a boldface in a table means better

performance when the setting is same.

Algorithm 1 TC based on RELM

Input: the training and testing set and the setting of parameters

Output: the labels of testing set

Learning stage:

1: evaluating the semantic representation of the training set

using Eq. (8) and Eq. (9)

2: generating the input weights and hidden biases randomly

3: evaluating the hidden layer output matrix H with Eq. (4)

4: evaluating the matrix T of the training set with Eq. (17) and

(5)

5: evaluating the output weights b̂ with Eq. (12)

Classification stage:

6: evaluating the semantic representation of the testing set

using Eq. (8) and Eq. (9)

7: evaluating the hidden layer output matrix ~H with Eq. (4)

8: evaluating the output target value Y with Eq. (18)

9: classifying the testing document using Eq. (19) or (20)

depending on whether the corpus belongs to uni-label or

multi-label

Table 1 Some commonly used notations in the experiments

Notation Meaning

mF1 Micro - averaged F1

MF1 Macro - averaged F1

#dim Dimensionality of documents

#node The number of hidden nodes

$train The time cost of training (unit: second)

$test The time cost of testing (unit: second)
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4.1 Datasets

Two popular TC benchmarks are tested in our experiments:

Reuters-21578 and WebKB. The Reuters-21578 dataset1

is a standard multi-label TC benchmark and contains 135

categories. In our experiments, we use a subset of the data

collection which includes the 10 most frequent cate-

gories among the 135 topics and we call it Reuters-top10. We

divide it into the training and testing set with the standard

‘‘ModApte’’ version. The pre-processed procedure includes:

removing the stop words, switching upper case to lower case,

stemming2, and removing the low frequency words (less than

three). After that, 5,920 training documents and 2,315 testing

documents with 5,585 term features are obtained.

WebKB dataset is a standard uni-label TC benchmark

which contains web pages gathered from university com-

puter science departments. We use the subset called

WebKB43 including four most populous entity-represent-

ing categories. After pre-processed procedure, 2,777

training documents and 1,376 testing documents with 7,287

term features are obtained.

4.2 Evaluation measures

In TC, the most commonly used performance measures are

recall, precision and their harmonic mean F1 [1]. Given a

specific category ci from the category space fc1; . . .; cmg; the

corresponding recall (Rei), precision (Pri) are defined by:

Rei ¼
TPi

TPi þ FNi
; Pri ¼

TPi

TPi þ FPi
; ð21Þ

where TPi (true positives) is the number of documents

assigned correctly to class i, FPi (false positives) is the

number of documents that do not belong to class i but are

assigned to this class incorrectly and FNi (false negatives)

is the number of documents that actually belong to class i

but are not assigned to this class. The corresponding F1i is

defined as:

F1i ¼
2� Rei � Pri

Rei þ Pri
: ð22Þ

The average performance of a binary classifier over

multiple categories is derived from the micro-averaged and

the macro-averaged. For micro-averaged, the measures are

computed globally without categorical discrimination. The

micro-averaged recall cReU and micro-averaged precision

cPrU are defined as:

cReU ¼
Pm

i¼1 TPij jPm
i¼1 ð TPij j þ FNij jÞ ;

cPrU ¼
Pm

i¼1 TPij jPm
i¼1 ð TPij j þ FPij jÞ ; ð23Þ

and the micro-averaged F1 is defined as

micro� averaged F1 ¼
2� cPr

U � cRe
U

cPr
U þ cRe

U : ð24Þ

Table 2 Performance

comparison between RELM

and ELM in Reuters-top10

#dim #node RELM (k = 1) ELM

$train $test mF1 MF1 $train $test mF1 MF1

50 100 0.02 0.03 91.48 79.07 0.11 0.03 91.72 79.88

200 0.05 0.04 91.64 79.37 0.24 0.04 92.16 81.5

400 0.15 0.05 91.81 79.94 0.71 0.05 92.82 83.41

1,000 0.68 0.08 91.78 79.57 9.72 0.09 92.64 84.74

2,000 2.32 0.14 91.95 80.36 74.39 0.16 88.48 79.45

4,000 8.75 0.25 92.09 80.91 548.95 0.25 57.41 44.23

100 100 0.07 0.03 88.24 77.87 0.11 0.03 90.97 82.27

200 0.07 0.04 92.78 84.26 0.23 0.04 93.17 85.59

400 0.17 0.06 93.13 85 0.7 0.05 93.4 86.38

1,000 0.69 0.09 93.25 85.41 9.48 0.1 93.23 86.85

2,000 2.32 0.15 93.42 85.94 75.63 0.17 91.88 85.64

4,000 8.81 0.29 93.61 86.32 653.21 0.29 74.58 62.49

200 100 0.03 0.03 69.24 49.66 0.11 0.04 70.8 54.56

200 0.07 0.04 88.89 81.16 0.25 0.04 90.12 82.97

400 0.18 0.06 93.66 86.95 0.7 0.06 93.82 87.59

1,000 0.72 0.11 93.84 87.34 8.86 0.11 93.69 87.53

2,000 2.44 0.18 94.05 87.96 73.89 0.21 93.05 87.17

4,000 8.97 0.33 94.14 88.06 656.87 0.34 81.39 73.11

1 http://www.daviddlewis.com/resources/.
2 http://tartarus.org/*martin/PorterStemmer/.
3 http://web.ist.utl.pt/*acardoso/datasets/.
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For macro-averaged, F-measure is computed locally

over each category ci first and then the average over all

categories is taken:

macro� averaged F1 ¼
Xm

i

F1i

 !
=m: ð25Þ

Table 3 Performance

comparison between RELM and

ELM in WebKB4

#dim #node RELM (k = 1) ELM

$train $test mF1 MF1 $train $test mF1 MF1

70 100 0.04 0.02 85.32 83.34 0.14 0.02 86.63 85.08

200 0.03 0.02 87.19 85.72 0.13 0.02 87.42 85.87

400 0.09 0.03 87.8 86.4 0.46 0.03 87.27 85.64

1,000 0.35 0.05 88.1 86.75 8.69 0.05 84.19 82.65

2,000 1.21 0.09 88.55 87.15 74.38 0.09 69.69 67.8

4,000 4.64 0.16 88.87 87.47 202.61 0.15 52.48 50.68

150 100 0.01 0.02 73.8 69.08 0.11 0.02 73.44 69.13

200 0.03 0.02 86.76 85.2 0.15 0.02 87.02 85.45

400 0.09 0.03 88.58 87.22 0.44 0.03 88.45 87.16

1,000 0.36 0.05 88.86 87.59 8.27 0.05 86 84.27

2,000 1.24 0.1 88.73 87.48 73.49 0.1 75.33 73.07

4,000 4.76 0.18 88.9 87.65 204.02 0.17 65.89 63.56

300 100 0.02 0.02 60.59 51.71 0.06 0.02 58.85 49.65

200 0.04 0.02 73.8 69.49 0.15 0.02 74.43 69.94

400 0.1 0.03 86.6 84.96 0.56 0.03 86.66 84.95

1,000 0.41 0.07 88.44 87.09 7.26 0.07 87.29 85.83

2,000 1.34 0.13 87.96 86.53 70.42 0.13 78.75 76.35

4,000 4.87 0.22 88.03 86.46 208.31 0.2 74.29 72.04

Table 4 Performance

comparison between RELM and

BP

Dataset Reuters-top10

RELM (k = 0.5, #node = 1,000) BP (#node = 50)

#dim $train $test mF1 MF1 $train $test mF1 MF1

40 0.68 0.09 91.21 77 300.17 0.04 92.73 83.13

60 0.68 0.09 92.21 83.01 361.99 0.05 92.39 83.82

80 0.7 0.09 93 85.02 641.95 0.05 93.13 85.88

100 0.7 0.09 93.51 85.68 851.81 0.12 92.36 85.9

120 0.7 0.1 93.41 86.07 1,192.42 0.13 91.41 83.71

140 0.7 0.1 93.76 87.16 1,933.44 0.14 92.4 84.73

160 0.72 0.1 93.83 87.24 2,672.61 0.44 91.85 83.43

Dataset WebKB4

RELM (k = 1, #node = 700) BP (#node = 70)

#dim $train $test mF1 MF1 $train $test mF1 MF1

60 0.15 0.03 86.26 84.14 236.73 0.03 81.69 79.63

90 0.18 0.03 88.79 87.58 516.46 0.03 80.38 78.62

120 0.18 0.04 89.18 87.98 571.3 0.03 81.9 79.83

150 0.19 0.04 88.86 87.54 717.44 0.04 77.76 75.63

180 0.19 0.04 89.16 87.86 823.81 0.04 81.83 80.16

210 0.2 0.04 89.22 87.97 1,113.35 0.04 80.45 77.01

240 0.21 0.04 88.94 87.58 1,161.3 0.05 77.98 75.64
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To evaluate the performance overall, we adapt the

micro - averaged F1 and macro - averaged F1 as the

performance measures.

4.3 Results and analysis

To verify the performance of RELM, we compare it with the

standard ELM [23], back propagation neural network (BP)

[5], and SVM [7]. All experiments are carried out in MAT-

LAB 2010a environment running in a 2.8 GHZ CPU and 8 G

memory. For each experiment, we run the test 10 times and

take their averaged values as the results. Because all exper-

iments take the same representation method (using LSA), we

does not count the time cost of the dimensionality reduction.

All experiments below using RELM or ELM are taken radial

basis function as their active functions.

4.3.1 Comparison with ELM

The performance comparisons between ELM and RELM

are presented in Tables 2 and 3. For brief, we only give

three situations (about 1, 2, and 5% of the original

dimensionality) and others have similar cases. In these

tables, the training speed of RELM is much faster than

ELM. The performances of RELM increases during the

number of hidden nodes increases; however, the perfor-

mances of ELM become instable and drop dramatically

when the number of hidden nodes reaches some certain

numbers which might be induced by overfitting. Therefore,

RELM obtains more stable performance and possesses the

potential to improve performance by increasing the scale of

networks.

4.3.2 Comparison with BP

In the BP experiments, we assigned a small number to the

number of hidden nodes because the training time increases

tremendously as the number of hidden nodes increases, and

its performance does not necessarily increases in the same

time. Even #node=50, the time cost is remarkable. From

Table 4, the training speed of BP is much slower than

RELM; however, the performance of BP is inferior to

RELM in most cases. So, RLEM is obviously better than

BP in our experiments.

Table 5 Performance

comparison between RELM and

SVM

Dataset Reuters-top10

RELM (k = 20, #node = 6,000) SVM

#dim $train $test mF1 MF1 $train $test mF1 MF1

50 19.96 0.37 91.62 79.35 15.75 6.25 92.73 82.75

60 19.99 0.37 92.4 82.62 17.54 6.95 93.48 85.61

70 20.1 0.39 92.51 83.53 19.55 7.72 93.21 85.51

80 20.03 0.39 92.86 84.54 21.56 8.53 93.64 86.28

90 20.07 0.41 93.1 85.04 23.82 9.45 93.53 86.23

100 20.04 0.41 93.2 85.05 25.95 10.18 93.64 86.91

200 20.23 0.47 93.76 87.2 49.87 19.72 94.3 89.26

300 20.43 0.53 94.06 87.75 75.01 30.96 94.31 88.82

400 20.6 0.61 94.34 88.07 104.54 43.21 94.38 88.54

500 20.68 0.67 94.16 88.18 134.03 56.29 94.29 88.33

Dataset WebKB4

RELM (k = 10, #node = 6,000) SVM

#dim $train $test mF1 MF1 $train $test mF1 MF1

70 11.18 0.22 87.83 86.48 5.89 2.99 87.65 86.3

80 11.15 0.23 88.46 87.31 6.61 3.36 89.03 87.97

90 11.17 0.23 88.9 87.63 7.31 3.74 89.1 88.12

100 11.18 0.23 89.51 88.53 8.02 4.1 89.17 88.34

200 11.3 0.26 89.69 88.55 15.82 8.21 89.83 88.76

300 11.37 0.31 89.08 87.83 24.07 13.03 88.88 87.46

400 11.43 0.35 88.62 87.23 32.96 18.4 88.52 86.77

500 11.55 0.39 88.66 87.31 42.64 24.22 88.52 86.61

600 11.61 0.43 88.62 86.94 52.6 30.11 89.24 87.12

700 11.73 0.46 88.31 86.55 64.55 36.92 89.32 87.08
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4.3.3 Comparison with SVM

Table 5 presents the comparison results between RELM

and SVM in Reuters-top10 and WebKB4. The dimen-

sionality is from about 1 to 10% of the number of the

original features. From this table, we can observe that the

F1 performance of RELM is slightly lower than SVM in

most cases; however, the speed of RELM is much faster

than SVM, especially in the cases that the dimensionality is

relatively large.

4.3.4 Parameter discussions

The parameters of RELM include the following: the active

function, the input dimensionality, the number of hidden

nodes, and the regularization factor k. Although these

parameters are also need to be tuned, they are actually very

easy to determined for TC. Here, we give some suggestions

how to tune these parameters experimentally. Since all

experimental results are too many, we only present some

typical cases or give the conclusions directly for concise.

According to the active functions selection for TC, a

experimental suggestion is: radial basis function C trian-

gular basis function C sine function � sigmoid C hard

limit function, where C means the performance is slightly
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Fig. 1 Performance in Reuters-top10 while the dimensionality varies

(the dimensionality can be selected randomly in the suggested interval
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superior and � means the performance is considerable

superior.

From the experimental results above and Figs. 1 and 2,

we can see that the performance is very poor when the

dimensionality is exceedingly small (commonly \1% of

the original dimensionality) or when it is close to or larger

than the number of hidden nodes (these cases can be

observed in the lines of #node = 200 in Fig. 1 and in the

lines of #node = 300 in Fig. 2). Apart from that, the per-

formance is almost insensitive to the dimensionality which

means the dimensionality can be selected randomly in a

specific interval (commonly lies in 2–5% of the original

dimensionality) when the number of hidden nodes is rela-

tively large enough.

We also observe that the number of hidden nodes is an

important factor. In Figs. 3 and 4, the performance

increases when the number of hidden nodes increase until

the it reaches a stable situation. Therefore, the number of

hidden nodes should be take enough large for example

greater than 10 times of the input dimensionality.

For the regularization factor k, an experimental sug-

gestion is k 2 ½0:1 20�. The selected rule is: the more scale

of RELM the larger k should be taken, i.e. k should be

increased while the dimensionality and the number of

hidden nodes increase. Generally, k could be selected in

interval ½0:1 1� when the scale of RELM is small (for

example, the cases #dim = 50 in Fig. 5 or #dim = 70 in

Fig. 6), and k could be selected in interval ½10 20� when the

scale of RELM is relatively large (for example, the cases

#dim = 150 in Fig. 5 or #dim = 300 in Fig. 6).

In sum, the radial basis function and triangular basis

function are suggested to be taken as the active function for

TC, and the input dimensionality could be selected

randomly in our propositional interval (commonly lies in

2–5% of the original dimensionality). Moreover, the

number of hidden nodes should be relatively large (com-

monly greater than 10 times of the input dimensionality),

and k should be tuned in ½0:1 20� according to the rule: the

more scale of RELM the larger k.

5 Conclusions

In this article, a regularization ELM is presented and its

analytical solution and theoretical proof are given simul-

taneously. Moreover, a TC framework combining the LSA

and RELM is proposed, and an algorithm including uni-

label and multi-label classification for TC is developed.

The experimental results show that the proposed method

can produce good performance in most cases and can learn

faster than conventional popular learning algorithms such

as feedforward neural networks or support vector machine.

The features of the proposed approach include much

faster learning and classification speed, ease of imple-

mentation, and least human intervene. It might become a

promising technique for TC and its applications such as

news section classification, quick text retrieval, and real-

time topic tracking.

For the further researches, we are trying to incorporate

cognitive information into RELM to improve the classifi-

cation performance.
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