
ORIGINAL ARTICLE

Self-organizing maps for texture classification

Nedyalko Petrov • Antoniya Georgieva • Ivan Jordanov

Received: 4 March 2011 / Accepted: 26 December 2011 / Published online: 18 January 2012

� Springer-Verlag London Limited 2012

Abstract A further investigation of our intelligent

machine vision system for pattern recognition and texture

image classification is discussed in this paper. A data set of

335 texture images is to be classified into several classes,

based on their texture similarities, while no a priori human

vision expert knowledge about the classes is available.

Hence, unsupervised learning and self-organizing maps

(SOM) neural networks are used for solving the classifi-

cation problem. Nevertheless, in some of the experiments,

a supervised texture analysis method is also considered for

comparison purposes. Four major experiments are con-

ducted: in the first one, classifiers are trained using all the

extracted features without any statistical preprocessing; in

the second simulation, the available features are normal-

ized before being fed to a classifier; in the third experiment,

the trained classifiers use linear transformations of the

original features, received after preprocessing with princi-

pal component analysis; and in the last one, transforms of

the features obtained after applying linear discriminant

analysis are used. During the simulation, each test is per-

formed 50 times implementing the proposed algorithm.

Results from the employed unsupervised learning, after

training, testing, and validation of the SOMs, are analyzed

and critically compared with results from other authors.

Keywords Self-organizing maps � Texture classification �
Feature extraction � Statistical analysis � PCA � LDA

1 Introduction

Analysis, recognition, and classification of texture patterns

and images are topics with current surge of research

interest in the field of digital image processing and pattern

recognition, with wide areas of applications [1–5]. A

number of different methods, algorithms, and paradigms

have been or are being developed nowadays [6–9].

The investigated image classification and recognition

systems may vary in their approach but most of them

include data acquisition, data preprocessing, feature extrac-

tion, feature analysis, classification, and testing and evalu-

ation stages [8–11]. The preprocessing of the raw data is

difficult but important part of the whole process, whose aims

are to extract useful and appropriate characteristics and

features that are to be used in the later stages [8]. Often, the

raw data are too large or complex to be used directly as input

to a classifier, leading to the ‘‘curse of dimensionality’’ and

other problems related to the generalization abilities of the

trained systems, especially when insufficient training sam-

ples are available. Even if this is not the case, reducing the

number of variables representing the data can speed up and

facilitate the learning process at later stages [11]. That is

why principal component analysis (PCA), for example, is a

widely accepted technique in such cases [1, 2, 12].

In [12], we investigated a texture images classification

problem, using supervised neural network learning, for

which a priori knowledge about the image classes was used.

The aim of this research is to extend this previous work,

considering the same classification problem, but assuming

there is no expert knowledge available for the texture

N. Petrov (&) � I. Jordanov

School of Computing, University of Portsmouth,

Portsmouth PO1 3HE, England, UK

e-mail: Nedyalko.Petrov@port.ac.uk

I. Jordanov

e-mail: Ivan.Jordanov@port.ac.uk

A. Georgieva

NDOG, University of Oxford, Oxford OX3 9DU, England, UK

e-mail: Antoniya.Georgieva@obs-gyn.ox.ac.uk

123

Neural Comput & Applic (2013) 22:1499–1508

DOI 10.1007/s00521-011-0797-x



classes of the data set samples. This implies that no

supervised learning can be used, and the knowledge about

the texture patterns and their similarity and uniformity has

to be extracted from the data set itself. Unsupervised

classification of texture patterns and images is widely used

approach with applications in a broad range of areas, for

example: for determining water quality based on some

chemical and physicochemical features [1], for classifica-

tion of SAR images [2], for texture-based classification of

atherosclerotic carotid plaque images for determining risk

of stroke for individuals [13], for classifying volcanic ash

using surface texture features [3], for automatically clas-

sifying texture structure of different fabric types using

SOM [14], for classification of textures in scene images

using biology inspired features [6], for classification of

aerial images using SOMs [15].

In this investigation, a data set of 335 texture images,

acquired via an intelligent visual recognition system, as

reported in [12], is used. Each data sample of the set rep-

resents a grayscale image of an industrial cork tile that was

classified in the previous paper into one of seven classes—

Beach, Corkstone, Desert, Lisbon, Pebble, Precision and

Speckled. The distribution of the texture classes is non-

uniform and is shown in Fig. 1.

The simulation of the investigated system is divided in

five main stages: data acquisition, feature extraction, fea-

ture analysis, classifier training, and classifier testing and

evaluation.

The rest of the paper is organized as follows: Sect. 2 pre-

sents information about the data acquisition, feature extrac-

tion, and feature analysis and reduction stages, while Sect. 3

covers the classification stage. The results from the conducted

tests are given and discussed in Sect. 4. Finally, Sect. 5 con-

cludes the paper and gives some ideas for future work.

2 Data acquisition and feature extraction

The texture image data set used in this paper is acquired via

an intelligent visual recognition system described in more

detail in [12]. The system consists of a charge-coupled

device camera, lightning devices, and scaffolding. Since

the texture of the samples is of prime interest, the images

are converted to a grayscale format.

As mentioned above, a total of 335 grayscale images of

size 230 9 340 pixels of cork tile samples of 7 predefined

by experts types were collected (see Fig. 2).

The feature extraction phase in our investigation aims to

identify characteristics and properties that make the classes

of samples distinct from each other [16]. At this stage of

the process, features that represent some valuable infor-

mation about the texture of the images are obtained. This is

preceded by image normalization.

2.1 Initial feature extraction

In order to reduce the illumination effects on the analyzed

images (e.g., due to a glare), a normalization technique is

applied. In this process, a small window (15 9 15 pixels) is

moved within each image and the local average is subtracted

from the pixels’ values, in order to get images with average

intensity of each neighborhood about a zero [9]. Afterward,

34 features are extracted using classical approaches.

Beach
18%

Corkstone
14%

Desert
19%

Lisbon
12%

Pebble
12%

Precision
13%

Speckled
12%

Fig. 1 Distribution of the texture classes

Fig. 2 Samples of the acquired

texture data—images of seven

different types of wall cork tiles:

Beach, Corkstone, Desert,
Lisbon, Pebble, Precision and

Speckled

1500 Neural Comput & Applic (2013) 22:1499–1508

123



2.1.1 Co-occurrence matrices

Co-occurrence matrices, introduced by Haralick in [17], is a

commonly applied statistical approach for texture features

extraction that takes into account relative distances and

orientation of pixels with co-occurring values [9, 15, 18].

The MATLAB’s Image Processing Toolbox is used for

the computation of the co-occurrence matrices of the nor-

malized images. As usually proposed by other authors [19],

four relative orientations are used—horizontal (0�), right

diagonal (45�), vertical (90�), and left diagonal (135�). In

this way, the energy, homogeneity, correlation, and con-

trast characteristics in each direction are computed, getting

as a result the rotation invariant features [9, 11].

Also, two spatial relationships are considered—the

direct neighbors and the pixels with difference of five. As

a result, a total of eight co-occurrence matrices are

obtained—four for the direct neighbors and another four

for the pixels with difference of five.

2.1.2 Laws’ masks

The Laws’ masks are used as a filter technique that is

applied to identify points of high energy in an image [20].

Masks are derived from one-dimensional (1-D) vectors

of five pixels length, proposed by Laws, to pick up the

average gray level, edges, ripples, spots, and waves

[12, 13]:

L5 (Level) = [1 4 6 4 1] ? Level detection;

E5 (Edge) = [-1 -2 0 2 1] ? Edge detection;

S5 (Spot) = [-1 0 2 0 -1] ? Spot detection;

R5 (Ripple) = [1 -4 6 -4 1] ? Ripple detection;

W5 (Wave) = [-1 2 0 -2 1] ? Wave detection.

The vectors are multiplied each other (the second vector

is transposed) and this way 25 different 5 9 5 masks are

produced. The masks are then applied to the normalized set

of samples and the obtained filtered images are converted

to texture energy maps. The aim of this process (also called

smoothing) is to deduce the local magnitudes of the

quantities of interest (edges, spots, etc.). A smoothing

window of size 15 9 15 [9] is applied to each filtered

image Fk for the k-th mask and new energy images are

obtained, where each pixel in the image is given by (1):

Ekðr; cÞ ¼
Xcþ7

j¼c�7

Xrþ7

i¼r�7

Fkði; jÞj j; ðk ¼ 1; . . .; 25Þ; ð1Þ

where (r, c) denotes the rows and columns indices. After

obtaining 25 energy maps for each image, a power metric,

representing the sum of the squared absolute values for

each pixel in the map is used [9], to finally obtain 25 dif-

ferent values for each texture sample.

2.1.3 Entropy

Entropy is a statistical measure of randomness that can be

used to characterize the texture of an image [9, 14]. It takes

low values for smooth images and vice versa.

The entropy for each image sample is calculated using a

MATLAB’s build-in function, according to (2):

E ¼ �
XG

i¼1

dðiÞ: log2 dðiÞ; ð2Þ

where G is the number of gray levels in the image’s his-

togram, ranging between 0 and 255 for a typical 8-bit

image, and d(i) is the normalized occurrence frequency of

each gray level.

2.2 Statistical analysis and feature reduction

Before applying any statistical analysis, a random subset of

25% of the available data is excluded for the purposes of

further testing. This subset will be referred to as the testing

set from now on and the remaining 75% of the available

data will be the training set.

During the feature extraction stage, a total of 34 features

are obtained for each texture image (8 by the co-occurrence

method, 25 by Law’s masks and 1 entropy feature). The

distribution of the seven classes of the training set, repre-

sented by two randomly selected from the 34 features is

shown in Fig. 3. Figure 3b presents the classes’ distribu-

tion according to the 2nd and the 5th features of the ori-

ginal data set and Fig. 3a shows the classes’ means with

95% confidence interval. As it can be seen from Fig. 3, the

considerable overlap between the classes makes the clas-

sification process more challenging.

In order to reduce the dimensionality of the classifica-

tion problem (i.e., the number of inputs to the classifier), to

reduce the redundant information (i.e., the information

contained in some highly correlated features), and to

improve the class separability, two statistical analysis

techniques [10] are used in some of the experiments. They

are described in more details in the next two subsections.

2.2.1 Principal component analysis

PCA is an eigenvalue-based multivariate technique that

transforms a number of possibly correlated features into a

number of uncorrelated features, called principal compo-

nents (PC) [2, 9]. The number of the derived PCs is less

than or equal to the number of the original features. It is an

unsupervised technique and as such does not use any

labeled information on the data.

The first PC accounts for as much of the variability

(information) in the data, as possible, and each succeeding

Neural Comput & Applic (2013) 22:1499–1508 1501

123



PC accounts for as much of the remaining variability as

possible. Depending on the areas of application, PCA is

also referred to as Hotelling transform, Karhunen–Loeve

transform, or proper orthogonal decomposition [9].

The PCA implementation of the MATLAB’s Statistics

Toolbox is used for processing the extracted features of the

training set. As a result, a new data set in which the first 5

features contain about 97% of the total variation (infor-

mation) is obtained (Fig. 4a). The PCA transformation

matrix is saved for further use in the evaluation stage.

Figure 5 shows the distribution of the seven texture

classes, represented by the first and second PCs. It can be

seen that four out of the seven classes (Beach, Corkstone,

Desert, and Pebble) are easily separable from the others.

However, the rest of the classes are too close to each other

and partially overlap. This is because the PCA considers all

the data samples independently, without taking into

account which class they belong to. The overlapping in

some of the classes however is expected to harden the

classifiers’ performance later on.

2.2.2 Linear discriminant analysis

Linear discriminant analysis (LDA) is an eigenvalues-

based transformation technique that aims to find a linear

combination of features that characterize or separate two or

more classes [9, 21]. LDA is not used in this work as a

classification technique, but as a data preprocessing trans-

form, before applying the classification technique, as rec-

ommended in [10]. The number of the newly generated

Fig. 3 Texture types

distribution, according to two

randomly selected features from

the training set: a classes’

means with 95% confidence

intervals; b scatter plot of the

samples

Fig. 4 Percentage of the

information from the training

set contained: a in the first five

PCs for the PCA experiment;

b in the first five eigenvalues for

the LDA experiment

1502 Neural Comput & Applic (2013) 22:1499–1508

123



features is always one less than the number of the classes.

An LDA implementation in MATLAB, following the

algorithm presented in [21], is employed for this research.

LDA is applied to the features extracted for each texture

sample of the training set. As a result, the dimensionality of

the feature space is reduced from 34 to 6 without loss of

information about the class separability [11] and the LDA

transformation matrix is saved for further use in the eval-

uation stage.

Figure 4b shows the percentage contribution of each

eigenvalue to the sum of the six eigenvalues. It can be seen

that about 98.5% of the eigenvalues sum is contributed by

the first five eigenvalues.

The classes’ means with 95% confidence intervals and

the scatter plot of the processed with LDA data are shown

in Fig. 6. It can be seen that the classes’ separability is

considerably improved.

3 Classification

For the classification of the texture samples data, self-

organizing maps (SOM) are employed. As it is known, a

SOM is an artificial neural network (NN) that is trained

using unsupervised learning to produce a low-dimensional

(typically two-dimensional), discretized representation of

the input space of the training samples, called map. A

specific characteristic of SOMs (compared to other NNs) is

that they use a neighborhood function to preserve the

topological properties of the input space [22]. Like most

neural networks, SOMs operate in two modes: training and

testing. The MATLAB’s implementation of SOM is

employed for this research and the following algorithm is

used for the classification:

1. Design of SOM’s architecture (map topology, number

of neurons, training parameters, etc.);

2. Training of the SOM with data subset, representing the

extracted texture features (75% of the available data set);

3. As a result of step 2, a 2D map is obtained, in which

each node and its closest neighbors represent similar

data samples (Fig. 7);

4. Based on the available expert knowledge for the

training samples, the count of the samples belonging to

a certain class is determined for each node of the map;

5. Each node is then labeled to represent just one class—

the class with predominant number of associated

samples. In case equal number of samples of different

classes is mapped to a certain node, the node is labeled

to the predominant class in its neighborhood (Fig. 7).

A node gets no label if there are no data samples

mapped to it (node [0,4] in Fig. 7b);

6. The classifier’s testing is performed with the remaining

25% of the available data;

7. Each testing sample label is compared to the label of

the node that it is mapped to. A sample is counted as

unclassified if it is mapped to an unlabeled node;

Fig. 5 Texture types

distribution, according to the

first two PCs: a classes’ means

with 95% confidence intervals;

b scatter plot of the samples

Neural Comput & Applic (2013) 22:1499–1508 1503

123



8. The classification accuracy rate is calculated using

Eq. 3:

a ¼ nc

nc þ nw þ nu
� 100½%�; ð3Þ

where a is the accuracy of the classifier, nc is the

number of correctly classified samples, nw is the

number of wrongly classified samples and nu is

the number of unclassified samples.

4 Simulation and results

MATLAB 2010B and its Neural Network, Image Pro-

cessing and Statistics Toolboxes are used for the compu-

tations and simulations presented in this paper.

Four major experiments are conducted: in the first one,

the classifiers are trained using all the extracted features

without any statistical preprocessing; in the second, the

extracted features are normalized before being fed to a

Fig. 6 Texture types

distribution, according to the

first two eigenvalues: a classes’

means with 95% confidence

intervals; b scatter plot of the

samples

Beach Pebble Corkstone Desert 

Lisbon 
Precision Speckled 

Beach Pebble Corkstone Desert 

Lisbon Precision Speckled 

Beach Pebble Corkstone Desert 

Lisbon Precision Speckled 

(a) (b)

(c)

Fig. 7 Sample SOM classifier

map. Image a presents the node

hits for the samples from the

training set and b from the

testing set. The number in each

node represents its hits. The

nodes are colored according to

the classes they are labeled to.

Image c shows the relative

distance between the map

nodes. Darker color
corresponds to larger distances

1504 Neural Comput & Applic (2013) 22:1499–1508

123



classifier; in the third experiment, the trained classifiers use

features obtained after preprocessing with PCA; and in the

last one, features obtained after applying LDA are used.

During the simulation, each test is performed 50 times

using the algorithm given in Sect. 3. The minimum, max-

imum, and mean percentages of successfully classified

texture images from the testing set are recorded, and the

mean standard deviation over the 50 runs is also calculated.

4.1 Classification without statistical preprocessing

In this experiment, SOMs are trained using all the 34

extracted features. No statistical preprocessing is per-

formed, and random 75% (251 texture images) of the

available data samples are used for training and the

remaining 25% (84 texture images) for testing.

Tables 1 and 3 show results from simulations with

varying number of training epochs and varying number of

neurons for different SOM’s topologies. The sample con-

fusion matrix given in Table 4 shows excellent perfor-

mance of the classifier for two of the classes (Lisbon and

Speckled) and inferior results for the rest.

4.2 Classification with features normalization

In this experiment, all 34 features are used for the SOM’s

learning and the training set is normalized, so that the

features have zero mean and unity standard deviation.

Tables 2 and 3 show results from simulations with varying

number of training epochs and varying number of neurons

for different SOM’s topologies. Table 4 gives a sample

confusion matrix of the classifier’s performance for one

run. It can be seen that the classifier’s performance is

improved, and it is now able to better distinguish most of

the classes. However, it still experiences some difficulties

with the Beach and the Corkstone samples.

4.3 Classification with PCA

In this case, statistically preprocessed with PCA data is

used for the training of SOMs. Again, random 75% (251

texture images) of the available data samples are used for

training and the remaining 25% (84 texture images) for

testing.

Similarly to the previous case, the number of training

epochs, the number of neurons in the SOM, the SOM’s

topology, and the number of principal components (PC)

used for the training are varied. Each sub-experiment is

performed 50 times, and the minimal, maximal, and the

mean accuracy (%) for these runs are recorded. The results

are presented in Tables 5, 7, and Fig. 8a. The sample

confusion matrix given in Table 8 shows that this classifier

experience slight difficulties recognizing some of the

Corkstone samples, but performs very well on the rest of

the classes.

4.4 Classification with LDA

In the last experiment, SOMs are trained using data sta-

tistically preprocessed with LDA, while the same training/

testing data ratio (75% training, 25% testing) is kept intact.

The parameters for this experiment are varied through

the number of eigenvalues used, the number of training

epochs, the number of neurons, and the SOM’s topology.

Each simulation is performed 50 times, and the minimal,

maximal, and the mean accuracy (in %) for these runs are

given in Fig. 8b, Tables 6, and 7. Table 8 presents a

sample confusion matrix of the classifier’s performance for

one run. It can be seen that this classifier is able to dis-

tinguish all the classes, and the classification error is

mainly contributed by the unclassified samples (mapped to

an unlabeled node).

4.5 Analysis of the results

Figure 8a illustrates that no significant improvement of the

accuracy is obtained when more than 5 principal compo-

nents are used (PCA case), and for the LDA case (Fig. 8b),

the first 3 eigenvalues bring the most significant improve-

ment. This could also be concluded from the graphics

given in Fig. 4.

Regarding the SOM’s topology, no clear corelation

between the accuracy and the number of used neurons was

observed (Tables 3 and 7), but more experiments need to

be done in order to investigate this in more detail.

Table 1 Variation of the classifier’s accuracy (in %) for different

number of training epochs for SOM with 120 neurons (15 9 8 map

topology) and no statistical preprocessing

Epochs 50 100 250 500 1,000 2,500 5,000 7,500

Min 48.2 58.0 70.3 70.4 75.3 75.3 74.1 75.3

Max 63.0 75.3 81.5 80.3 81.5 81.5 82.7 82.7

Mean 55.1 66.7 77.0 77.0 78.4 78.3 78.0 78.1

Std 3.6 3.9 2.6 1.9 1.4 1.6 1.9 1.8

SOMs with 120 neurons (15 9 8 map topology) are trained

Table 2 Variation of the classifier’s accuracy (in %) for different

number of training epochs for SOM with 120 neurons (15 9 8 map

topology) after normalization

Epochs 50 100 250 500 1,000 2,500 5,000 7,500

Min 71.6 79.0 84.0 84.0 85.2 85.2 87.7 87.7

Max 86.4 90.1 93.8 93.8 93.8 93.8 95.1 93.8

Mean 77.8 84.9 88.7 89.8 89.9 89.8 90.8 90.9

Std 3.6 3.1 2.4 2.0 2.1 1.8 1.8 1.6

Neural Comput & Applic (2013) 22:1499–1508 1505

123



Figure 9 summerises and illustrates the obtained results

for the four cases, presented in the previous section. It can

be seen from the figure that, as expected, the worst accu-

racy is attained for the case with no statistical prepro-

cessing. Although the accuracy of the normalized data

looks better than the obtained one for the PCA case, it has

to be noted that only five principal components are con-

sidered during the training, whereas in the normalized case,

all 34 extracted features are taken into account. The use of

Table 3 Variation of the

classifier’s accuracy (in %) for

different number of neurons and

different SOM topology (trained

for 500 epochs): with no

statistical preprocessing on the

left side of the cells and after

normalization on the right

Neurons 60 120

Topology 3 9 20 5 9 12 6 9 10 6 9 20 10 9 12 12 9 10

Min 70.4/82.7 69.1/84.0 69.1/85.2 67.9/84.0 70.4/84.0 70.4/85.2

Max 82.7/92.6 79.0/92.6 80.3/92.6 81.5/93.8 81.5/92.6 81.5/92.6

Mean 77.9/88.0 75.2/88.1 75.1/87.9 75.5/88.1 75.9/89.0 76.6/89.1

Std 2.5/2.0 2.4/2.1 2.3/2.0 2.9/2.0 2.0/1.9 2.5/1.6

Table 4 Sample confusion

matrix for SOM classifier with

120 neurons (15 9 8 map

topology) and 500 training

epochs: with no statistical

preprocessing on the left side of

the cells and after normalization

on the right

Bold values represent the

number of correctly classified

samples of each class

Actual Predicted

Beach Corkstone Desert Lisbon Pebble Precision Speckled Unclassified

Beach 14/13 1/1 0/0 0/0 0/0 0/0 0/0 0/1

Corkstone 1/0 8/7 0/1 0/0 1/2 0/0 0/0 1/1

Desert 2/0 0/0 10/15 0/0 1/0 1/0 1/0 0/0

Lisbon 0/0 0/0 0/0 11/11 0/0 0/0 0/0 0/0

Pebble 0/0 1/0 0/1 2/0 8/10 0/0 0/0 0/0

Precision 1/0 0/0 1/0 1/1 2/0 5/10 1/0 0/0

Speckled 0/0 0/0 0/0 1/0 0/1 0/0 9/9 0/0

Table 5 Variation of the

accuracy (in %) of the classifier

for different number of training

epochs for SOM with 120

neurons, 15 9 8 map topology,

and PCA preprocessing with 5

PCs

Epochs 50 100 250 500 1,000 2,500 5,000 7,500

Min 70.4 74.1 85.2 85.2 85.2 84.0 85.2 86.4

Max 85.2 88.9 92.6 91.4 93.8 92.6 92.6 92.6

Mean 75.6 80.9 89.1 88.8 89.2 88.9 89.5 89.3

Std 2.8 3.3 2.1 1.6 2.0 1.8 1.5 1.5

Fig. 8 Variation of the accuracy (in %) of the classifier (SOM with

120 neurons, 15 9 8 map topology, 500 epochs). The border between

the subbars shows the mean accuracy rate for the 50 runs. The top and

the bottom sections show the min and max rate, respectively, for:

a different number of PCs used for the training (after PCA);

b different number of eigenvalues used for training (after LDA)

Table 6 Variation of the accuracy (in %) of the classifier for dif-

ferent number of training epochs for SOM with 120 neurons, 15 9 8

map topology, and LDA with 6 eigenvalues

Epochs 50 100 250 500 1,000 2,500 5,000 7,500

Min 85.2 86.4 92.6 92.6 95.1 96.3 95.1 95.1

Max 96.3 98.8 100.0 100.0 100.0 100.0 100.0 100.0

Mean 92.6 93.9 97.7 97.9 98.5 98.2 98.1 98.2

Std 2.9 3.0 1.5 1.3 1.2 1.1 1.1 1.3

1506 Neural Comput & Applic (2013) 22:1499–1508

123



only five PCs in the PCA case led to significant reduction

in the computational time, compared to the first two

experiments.

Analyzing the sample confusion matrices for the four

experiments (Tables 4 and 8), it can be said that the

accuracy is improved (as expected) after applying LDA

and PCA on the data sets, and this is especially valid for the

Desert and Precision classes, while at the same time, the

SOM kept excellent recognition rate for the Lisbon and

Speckled classes.

Overall, the achieved accuracy for the LDA case is

superior for all runs, outperforming the others by 9% on

average. The best results for the LDA are due to the nature

of this approach, which uses the samples’ lables during the

feature analysis. On the contrary, the PCA does not con-

sider the classes when applying ortogonal linear transfor-

mation to convert the investigated features to principal

components. It can also be observed that the increase in the

number of epochs for the runs does not lead to substantial

increase in the accuracy, and above 250 epochs, an accu-

racy plateau is normally reached (Tables 1, 2, 5, and 6).

The results for the PCA case, presented in Tables 5 and

7, are in good agreement with those given in [2], where the

authors reported between 81 and 98% accuracy rate for a

PCA-based unsupervised classification of SAR images.

They are also very close to the [83, 95.5%] achieved in [15]

and fall within the intervals with slightely larger accuracy

variance, reported in [5, 6], where the results are within the

[77, 100%] and [67, 92%] domains, respectively.

5 Conclusion

The investigated texture image recognition of cork tiles is

considered as unsupervised classification problem, and

SOMs are employed for its solution. The proposed

approach includes statistical feature preprocessing tech-

niques (for the purposes of dimensionality reduction and

defining optimal number of the features used for the clas-

sification) and employing SOM as a classifier for unsu-

pervised classification (NN architecture and topology

design, investigating the complexity of the unsupervised

learning and the performance of the SOM). For the purpose

of comparison, the experiments and simulations of the

system are also conducted using the raw data set without

any statistical preprocessing. As expected, better results are

obtained for the cases when statistical techniques such as

PCA and LDA are used (on average about 92% accuracy

Table 7 Variation of the

classifier’s accuracy (in %) for

different number of neurons,

different SOM topology, 500

epochs after: PCA with 5 PCs

on the left side of the cells and

LDA with 6 eigenvalues on the

right

Neurons 60 120

Topology 3 9 20 5 9 12 6 9 10 6 9 20 10 9 12 12 9 10

Min 81.5/96.3 81.5/96.3 82.7/96.3 81.5/95.1 82.7/93.8 84.0/93.8

Max 91.4/100.0 92.6/100.0 91.4/100.0 93.8/100.0 92.6/100.0 91.4/100.0

Mean 86.7/98.7 87.8/99.2 87.4/99.1 87.1/98.6 88.7/97.9 88.4/97.6

Std 2.1/1.1 2.2/0.9 1.8/1.0 2.2/1.4 2.0/1.2 1.7/1.4

Table 8 Sample confusion

matrix for SOM classifier with

120 neurons (15 9 8 map

topology) and 500 training

epochs: with PCA on the left

side of the cells and with LDA

on the right

Bold values represent the

number of correctly classified

samples of each class

Actual Predicted

Beach Corkstone Desert Lisbon Pebble Precision Speckled Unclassified

Beach 14/15 0/0 1/0 0/0 0/0 0/0 0/0 0/0

Corkstone 0/0 7/10 1/0 0/0 2/0 0/0 0/0 1/1

Desert 1/0 0/0 14/14 0/0 0/0 0/0 0/0 0/1

Lisbon 0/0 0/0 0/0 11/11 0/0 0/0 0/0 0/0

Pebble 0/0 0/0 0/0 0/0 11/11 0/0 0/0 0/0

Precision 0/0 0/0 0/0 1/0 0/0 10/11 0/0 0/0

Speckled 0/0 0/0 0/0 1/0 0/1 0/0 9/9 0/0

0

20

40

60

80

100

50

10
0

25
0

50
0

10
00

25
00

50
00

75
00

A
cc

u
ra

cy

Training Epochs

No Statistics

Normalized

PCA

LDA

Fig. 9 Bar graph showing the accuracy for the four case studies with

increasing the number of training epochs

Neural Comput & Applic (2013) 22:1499–1508 1507

123



rate). When LDA is applied, the trained SOMs achieve

very high accuracy rate—above 98%. This can be expec-

ted, as LDA is in fact supervised labeling technique, which

makes the classification tasks for the subsequently used

SOM much easier.

The comparison of the sample confusion matrices for

the four experiments (Tables 4 and 8) shows that the SOM

classifiers generally confirm the experts’ knowledge about

the seven types of texture. However, the visual closeness of

some of the misclassified samples to samples from other

classes could assist experts to refine the classes’ boundaries

or to introduce new classes.

Although a straightforward comparison of the methods’

performance, based only on the accuracy, can be mis-

leading due to the different complexity of the investigated

problems (network’s topology parameters, training con-

vergence parameters, differences in the preprocessing

techniques, and variations in the number of the investigated

features and classes, size and quality of the datasets, etc.), it

still can give some indication about the method quality.

Nevertheless, as compared with results from other authors

in the above paragraph, it can be concluded that while our

results of 88% mean accuracy for the PCA case, and above

98% for the LDA case, are generally comparable and

competitive for most of the cases, they are also superior in

some of the comparisons. It is also interesting to note that

in our previous paper [12], the achieved results (86% after

PCA and 95% after LDA) are inferior to the ones presented

here. This can be attributed to the added entropy feature

and the feature normalization, applied before the analysis

and classification stages, but would need further investi-

gation in a future work.

References

1. Astel A, Tsakouski S, Barbieri S, Simeonov V (2007) Compari-

son of self-organizing maps classification approach with cluster

and principal components analysis for large environmental data

sets. Water Res 41:4566–4578

2. Chamundeeswari VV, Singh D, Singh K (2009) An analysis of

texture measures in PCA-based unsupervised classification of

SAR images. IEEE Geosci Remote Sens Lett 6:214–218

3. Ersoy O, Aydar E, Gourgaud A, Artuner H, Bayhan H (2007)

Clustering of volcanic ash arising from different fragmentation

mechanisms using Kohonen self-organizing maps. Comput

Geosci 33:821–828

4. Guler I, Demirhan A, Karakis R (2009) Interpretation of MR

images using self-organizing maps and knowledge-based expert

systems. Digital Signal Process 19:668–677

5. Lei Q, Zheng QF, Jiang SQ, Huang QG, Gao W (2008) Unsu-

pervised texture classification: automatically discover and clas-

sify texture patterns. Image Vis Comput 26:647–656

6. Martens G, Poppe C, Lambert P, Van de Walle R (2008) Unsu-

pervised texture segmentation and labeling using biologically

inspired features. In: IEEE 10th workshop on multimedia signal

processing, vols 1 and 2, pp 163–168

7. Paniagua B, Vega-Rodriguez MA, Gomez-Pulido JA, Sanchez-

Perez JM (2010) Improving the industrial classification of cork

stoppers by using image processing and neuro-fuzzy computing.

J Intell Manuf 21:745–760

8. Shih FY (2010) Image processing and pattern recognition: fun-

damentals and techniques. Wiley, Hoboken

9. Umbaugh SE (2010) Digital image processing and analysis. CRC;

Taylor & Francis, Boca Raton

10. Bishop CM (2004) Neural networks for pattern recognition.

Clarendon Press, Oxford

11. Theodoridis S, Koutroumbas K (2009) Pattern recognition.

Elsevier/Academic Press, Amsterdam

12. Georgieva A, Jordanov I (2009) Intelligent visual recognition and

classification of cork tiles with neural networks. IEEE Trans

Neural Netw 20:675–685

13. Christodoulou CI, Pattichis CS, Pantziaris M, Nicolaides A

(2003) Texture-based classification of atherosclerotic carotid

plaques. IEEE Trans Medical Imag 22:902–912

14. Kuo CFJ, Kao CY (2007) Self-organizing map network for

automatically recognizing color texture fabric nature. Fibers

Polym 8:174–180

15. Salah M, Trinder J, Shaker A (2009) Evaluation of the self-

organizing map classifier for building detection from lidar data

and multispectral aerial images. J Spatial Sci 54:15–34

16. Liu H, Yu L (2005) Toward integrating feature selection algo-

rithms for classification and clustering. IEEE Trans Knowl Data

Eng 17:491–502

17. Haralick RM, Shanmuga K, Dinstein I (1973) Textural features

for image classification. IEEE Trans Syst Man Cybern Smc

3:610–621

18. Kohonen O, Hauta-Kasari M, Parkkinen J, Jaaskelainen T (2006)

Co-occurrence matrix and self-organizing map based query from

spectral image database. art. no. 603305, ICO20: Illumination,

Radiation, and Color Technologies, vol 6033, pp 3305–3305

19. Randen T, Husoy JH (1999) Filtering for texture classification:

a comparative study. IEEE Trans Pattern Anal Mach Intell

21:291–310

20. Davies ER (2005) Machine vision: theory, algorithms, practi-

calities. Morgan Kaufmann, Amsterdam

21. Dillon WR, Goldstein M (1984) Multivariate analysis: methods

and applications. Wiley, New York

22. Kohonen T (1990) The self-organizing map. Proc IEEE 78:

1464–1480

1508 Neural Comput & Applic (2013) 22:1499–1508

123


	Self-organizing maps for texture classification
	Abstract
	Introduction
	Data acquisition and feature extraction
	Initial feature extraction
	Co-occurrence matrices
	Laws’ masks
	Entropy

	Statistical analysis and feature reduction
	Principal component analysis
	Linear discriminant analysis


	Classification
	Simulation and results
	Classification without statistical preprocessing
	Classification with features normalization
	Classification with PCA
	Classification with LDA
	Analysis of the results

	Conclusion
	References


