
CONT. DEV. OF NEURAL COMPT. & APPLN.

A novel weight pruning method for MLP classifiers based
on the MAXCORE principle

Cláudio M. S. Medeiros • Guilherme A. Barreto

Received: 16 February 2011 / Accepted: 17 September 2011 / Published online: 14 October 2011

� Springer-Verlag London Limited 2011

Abstract We introduce a novel weight pruning method-

ology for MLP classifiers that can be used for model and/or

feature selection purposes. The main concept underlying

the proposed method is the MAXCORE principle, which is

based on the observation that relevant synaptic weights

tend to generate higher correlations between error signals

associated with the neurons of a given layer and the error

signals propagated back to the previous layer. Nonrelevant

(i.e. prunable) weights tend to generate smaller correla-

tions. Using the MAXCORE as a guiding principle, we

perform a cross-correlation analysis of the error signals at

successive layers. Weights for which the cross-correlations

are smaller than a user-defined error tolerance are gradually

discarded. Computer simulations using synthetic and real-

world data sets show that the proposed method performs

consistently better than standard pruning techniques, with

much lower computational costs.

Keywords MLP classifier � Backpropagation algorithm �
Weight pruning � Feature selection

1 Introduction

Even though it has passed two decades and a half since the

rediscovery of the backpropagation algorithm in the mid-

1980s, and despite all the available literature on the MLP

network, a beginner soon becomes aware of the difficulties

in finding a suitable architecture for real-world applications.

In fact, this is a hard task also for an experienced practi-

tioner. An architecture that is too small will not be able to

learn from data properly, no matter what training algorithm

is used for this purpose. An architecture with too many input

units and hidden layer/neurons are prone to learn undesir-

able characteristics (e.g. noise) of the training data.

Hence, a crucial step in the design of a MLP is related with

the network model selection problem [5]. This problem is

still a research topic of interest [8, 10, 13, 20, 28, 30, 33] and

can be roughly defined as the task of finding the smallest

architecture that generalizes well, making good predictions

for new data. Generalization can be assessed by changing the

number of adjustable parameters (weights and biases) asso-

ciated with input units and hidden/output neurons. Among

the several ways to implement this in practice, we list the

following four as possibly the most common approaches.

1.1 Exhaustive search plus early stopping

Early stopping of training is a method that aims to prevent

overtraining due to oversized network, noisy training

examples, or a small training set [7]. The performances of

several networks having different number of features,

hidden layers, and hidden neurons are evaluated during

training on an independent validation set. Training of each

network is stopped as soon as its generalization error

begins to increase. The optimal architecture is the one

providing the smallest generalization error.

C. M. S. Medeiros

Department of Industry, Federal Institute of Ceará,

Av. Treze de Maio, 2081—Campus of Benfica, Fortaleza,

Ceará CEP 60040-531, Brazil

e-mail: claudiosa@ifce.edu.br

G. A. Barreto (&)

Department of Teleinformatics Engineering,

Federal University of Ceará, Av. Mister Hull,

S/N—Campus of Pici, Center of Technology,

CP 6005, Fortaleza, Ceará CEP 60455-970, Brazil

e-mail: guilherme@deti.ufc.br

123

Neural Comput & Applic (2013) 22:71–84

DOI 10.1007/s00521-011-0748-6

1.2 Constructive algorithms

Network training starts with a small number of hidden

neurons and add neurons during the training process, with

the goal of arriving at an optimal network structure [1, 21].

This is the approach behind the Cascade-Correlation net-

work [9, 12, 14, 17, 31].

1.3 Pruning algorithms

Network training can start with a relatively large number of

hidden neurons and then, based on a measure of weight

relevance, prune out the least significant connections,

either by removing individual weights or by removing

complete units [6, 11, 24]. This is the approach followed by

the Optimal Brain Surgeon [15, 29] (OBS) and the Weight

Decay and Elimination (WDE) [23, 32]. The OBS per-

forms weight pruning based on the so-called weight

saliencies (see the ‘‘Appendix’’). The WDE algorithm

originates from a regularization method that modifies the

error function by the introduction of a term that penalizes

large weights.

1.4 Evolutionary computation

Several authors have used genetic algorithms [2, 27, 34]

and other evolutionary algorithms, such as particle swarm

optimization [35], for determining the best net-

work topology for a given problem, including the number

of hidden layers, the number of neurons per hidden layer,

and the number of relevant input features, connection

weights, and biases.

The previous model selection methods require signifi-

cant computational efforts. For example, even if we restrict

the exhaustive search to a specific class of architectures

(e.g. one-hidden-layered MLP), it is still a burdensome

task. Evolutionary algorithms are slow by their very pop-

ulation-based nature and usually cannot be used for real-

time purposes. The OBS algorithm demands the inversion

of the Hessian matrix of the error function, which is a

computationally intensive task [4]. The WDE algorithm

requires the specification of a user-defined regularization

parameter, which is generally set up by cross-validation.

In this paper, we introduce an efficient method for pruning

unnecessary weights of a trained MLP classifier without the

need of matrix inversions and any additional regularization

parameter. The proposed method is based on the correlation

analysis between the errors of the output neurons and the

errors backpropagated to the hidden neurons. Repeated

application of the method leads eventually to the complete

elimination of all connections arriving to (or emanating

from) a given neuron. Computer simulations using synthetic

and real-world data sets are carried out to compare the

proposed method with OBS and WDE algorithms on pattern

classification and feature subset selection tasks.

The remainder of the paper is organized as follows.

In Sect. 2, we briefly review the backpropagation algo-

rithm. In Sect. 3, we introduce the MAXCORE principle as

the guiding principle behind the proposal of the weight

pruning method to be described in Sect. 4. Comprehensive

computer simulations are then presented in Sect. 5 for

model selection tasks and in Sect. 5 for feature selection

tasks. The computational cost of the proposed weight

pruning method is discussed in Sect. 7. We conclude the

paper in Sect. 8 with a summary of the achievements and

suggestions for further developments.

2 The backpropagation algorithm

In this section, we describe the bascis of the backpropa-

gation algorithm for training a one-hidden-layered MLP.

This learning algorithm requires two passes of computa-

tion: a forward pass and a backward pass. During the for-

ward pass activations and outputs are computed on a

neuron-by-neuron basis, while the weights remain unal-

tered. At iteration t, the activation of the ith hidden neuron,

i ¼ 1; 2; . . .;Q; is given by

u
ðhÞ
i ðtÞ ¼

XP

j¼1

wijðtÞxjðtÞ � hiðtÞ ¼
XP

j¼0

wijðtÞxjðtÞ; ð1Þ

where wij is the synaptic weight connecting the jth input

unit to the ith hidden neuron, hi(t) is the bias of the ith

hidden neuron, Qð2�Q\1Þ is the number of hidden

neurons, and P is the dimension of the input vector

(excluding the threshold). For simplifying notation, we set

x0(t) = -1 and wi0 = hi
(h)(t).

The output of the ith hidden neuron is then defined by

y
ðhÞ
i ðtÞ ¼ ui u

ðhÞ
i ðtÞ

h i
¼ ui

XP

j¼0

wijðtÞxjðtÞ
" #

; ð2Þ

where uið�Þ is usually a sigmoidal function. Similarly, the

output values of the output neurons are given by

y
ðoÞ
k ðtÞ ¼ uk u

ðoÞ
k ðtÞ

h i
¼ uk

XQ

i¼0

mkiðtÞyðhÞi ðtÞ
" #

; ð3Þ

where mki is the synaptic weight connecting the ith hidden

neuron to the kth output neuron (k ¼ 1; . . .;M), and M C 1

is the number of output neurons. Again, for the purpose of

simplifying notation, we set y0(t) = -1 and mk0 = hk
(o)(t),

where hk
(o)(t) is the threshold of the kth output neuron.

The backward pass starts at the output layer by propa-

gating the error signals from the output layer toward the

hidden layer. For that, we need first to compute the error

72 Neural Comput & Applic (2013) 22:71–84

123

value ek
(o)(t) generated by each output neuron at current

iteration t

e
ðoÞ
k ðtÞ ¼ dkðtÞ � y

ðoÞ
k ðtÞ; k ¼ 1; . . .;M ð4Þ

where dk(t) is the target value for the kth output neuron.

The error ek(t) is multiplied by the derivative u0k u
ðoÞ
k ðtÞ

h i
¼

ouk=ou
ðoÞ
k before being propagated to the hidden layer:

dðoÞk ðtÞ ¼ u0k u
ðoÞ
k ðtÞ

h i
e
ðoÞ
k ðtÞ: ð5Þ

The quantity resulting from this multiplication is known

as the local gradient of the kth output neuron. Similarly,

the local gradient di
(h)(t) of the ith hidden neuron is

computed as

dðhÞi ðtÞ ¼ u0i u
ðhÞ
i ðtÞ

h iXM

k¼1

mkiðtÞdðoÞk ðtÞ

¼ u0i u
ðhÞ
i ðtÞ

h i
e
ðhÞ
i ðtÞ; i ¼ 0; . . .;Q; ð6Þ

where the term ei
(h)(t) plays the role of a backpropagated or

projected error signal for the ith hidden neuron.

Finally, the synaptic weights of the output neurons are

updated according to the following rule

mkiðt þ 1Þ ¼ mkiðtÞ þ gdðoÞk ðtÞy
ðhÞ
i ðtÞ; i ¼ 0; . . .;Q; ð7Þ

where 0 \ g� 1 is the learning rate. The weights of the

hidden neurons are, by their turn, adjusted through a

similar learning rule

wijðt þ 1Þ ¼ wijðtÞ þ gdðhÞi ðtÞxjðtÞ; j ¼ 0; . . .;P: ð8Þ

One complete presentation of the entire training set

during the learning process is called an epoch. Many

epochs may be required until the convergence of the

backpropagation algorithm is verified. Thus, it is good

practice to randomize the order of presentation of training

examples from one epoch to the next, in order to make the

search in the weight space stochastic over the learning

cycles.

The simplest way of evaluating convergence is through

the average squared error

etrain ¼
1

2N

XN

t¼1

XM

k¼1

e
ðoÞ
k ðtÞ

h i2

¼ 1

2N

XN

t¼1

XM

k¼1

dkðtÞ � y
ðoÞ
k ðtÞ

h i2

; ð9Þ

computed at the end of a training run using the training

data vectors. If it falls below a prespecified value, then

convergence is achieved. The generalization performance

of the MLP should be evaluated on a testing set, which

contains examples not seen before by the network.

3 The MAXCORE principle

In Eq. 6, we have defined the backpropagated error signal

for the ith hidden neuron as

e
ðhÞ
i ðtÞ ¼

XM

k¼1

mkiðtÞdðoÞk ðtÞ ¼
XM

k¼1

m�kiðtÞe
ðoÞ
k ðtÞ; ð10Þ

where m�kiðtÞ ¼ mkiðtÞu0k u
ðoÞ
k ðtÞ

h i
is the weight between

the kth output neuron and the ith hidden neuron modu-

lated by the derivative of the kth output activation

function.

From Eq. 10, we can easily note that ei
(h)(t) is the result

of a linear combination of the output error signals

e
ðoÞ
k ðtÞ; k ¼ 1; . . .;M; with weights mki

* (t). Thus, the higher

the value of mki
* (t) and, hence, of mki(t), the higher the

correlations between ei
(h)(t) and ek

(o)(t). A similar linear

relationship can be derived for the signals ei
(h)(t), associ-

ated with the hidden neurons, and the signals ej
(i)(t), asso-

ciated with the input units (see Eq. 16).

From the exposed, we can state the following general

principle, henceforth called the Principle of Maximum

Correlation of Errors (MAXCORE):

The MAXCORE principle Relevant synaptic weights

tend to generate higher correlations between error signals

associated with the neurons of a given layer and the error

signals propagated back to the previous layer. Nonrelevant

(i.e. prunable) weights tend to generate smaller

correlations.

The MAXCORE is the guiding principle behind the

proposal of the weight pruning procedure to be described in

the next sections.

4 The proposed methodology

The procedure to be described is a pruning method. The

user should first train a MLP network with a relative large

number of hidden neurons until achieves the lowest pos-

sible value for etrain. Recall that large MLPs are prone to

overfitting due to local optimization of their cost function,

which can lead to a poor generalization performance. After

that, the application of a pruning procedure can discard

nonrelevant weights of an overparameterized network, thus

providing a smaller model with equivalent or better gen-

eralization performance than the original one.

The main idea behind the pruning procedure to be

described is to maintain those connections that produce

higher correlations between the errors in a given layer and

the errors that are propagated back to the preceding layer.

Weights associated with smaller error correlations are

candidates to be discarded.

Neural Comput & Applic (2013) 22:71–84 73

123

4.1 Pruning hidden-to-output layer weights

The pruning procedure starts with the training data being

submitted once again to the trained network. No weight

updating is allowed from this stage on. Once all the

N training examples are presented, determine the error

matrices Eo and Eh; defined as follows:

Eo ¼

e
ðoÞ
1 ð1Þ e

ðoÞ
2 ð1Þ � � � e

ðoÞ
M ð1Þ

e
ðoÞ
1 ð2Þ e

ðoÞ
2 ð2Þ � � � e

ðoÞ
M ð2Þ

..

. ..
. ..

. ..
.

e
ðoÞ
1 ðNÞ e

ðoÞ
2 ðNÞ � � � e

ðoÞ
M ðNÞ

2
66664

3
77775

N�M

ð11Þ

and

Eh ¼

e
ðhÞ
0 ð1Þ e

ðhÞ
1 ð1Þ � � � e

ðhÞ
Q ð1Þ

e
ðhÞ
0 ð2Þ e

ðhÞ
1 ð2Þ � � � e

ðhÞ
Q ð2Þ

..

. ..
. ..

. ..
.

e
ðhÞ
0 ðNÞ e

ðhÞ
1 ðNÞ � � � e

ðhÞ
Q ðNÞ

2

66664

3

77775

N�ðQþ1Þ

: ð12Þ

The rows of the matrix Eo correspond to the errors

generated by the output neurons for a given training

example. Hence, this matrix is called from now on the

matrix of output errors, in contrast to the matrix Eh; whose

rows correspond to the backpropagated errors associated

with the hidden neurons. In particular, the first column of

Eh corresponds to backpropagated errors associated with

the thresholds mk0 ¼ hðoÞk ; k ¼ 1; . . .;M.

The second step involves the computation of the fol-

lowing matrix product

Coh ¼ ET
o Eh; ð13Þ

where the superscript T denotes the transpose of a matrix.

Note that the (k, i)th entry of Coh; denoted by Coh½k; i�;
corresponds to the scalar product (i.e. the cross-correlation)

of the kth column of Eo with the ith column of Eh;

Coh½k; i� ¼
XN

t¼1

e
ðoÞ
k ðtÞe

ðhÞ
i ðtÞ; ð14Þ

for k ¼ 1; . . .;M; and i ¼ 0; . . .;Q.

The third step requires sorting the absolute values of

entries Coh½k; i� in ascending order

jCoh½r1�j\jCoh½r2�j\ � � �\jCoh½rL�j; ð15Þ

where the vector rl ¼ ðkl; ilÞ contains the coordinates of the

entry of position l in the ranking, and L ¼ dimðCohÞ ¼
M � ðQþ 1Þ is the number of entries in Coh.

The fourth step involves the execution of the pruning

procedure shown in Table 1. In this table, Jtrain denotes a

performance index used to evaluate the network on the

training data, such as the average squared error etrain or the

classification rate CRtrain. The constant Jtol is a user-defined

value. If Jtrain ¼ etrain; then Jtol is the maximum error

allowed for the training data. Thus, we eliminate a given

connection mrl
only if the value of Jtrain, computed after the

elimination of that connection, remains lower than Jtol. If

Jtrain = CRtrain, then Jtol is the minimum recognition rate

allowed for the training data. In this case, we eliminate a

given connection mrl
only if the value of Jtrain, computed

after the elimination of that connection, still remains higher

than Jtol.

4.2 Pruning input-to-hidden layer weights

For pruning the weights connecting the input units to the

hidden neurons, {wij}, we now need to propagate the error

signals ei
(h)(t) toward the input units in order to generate the

error signals e
ðiÞ
j ðtÞ; j ¼ 0; . . .;P :

e
ðiÞ
j ðtÞ ¼

XQ

i¼1

wijðtÞdðhÞi ðtÞ ¼
XQ

i¼1

w�ijðtÞe
ðhÞ
i ðtÞ; ð16Þ

where w�ijðtÞ ¼ wijðtÞu0i u
ðhÞ
i ðtÞ

h i
is the weight between the

ith hidden neuron and the jth input unit modulated by the

derivative of the ith hidden activation function.

After the presentation of N training vectors, the resulting

errors can be organized into the error matrix Ei; defined as

Ei ¼

e
ðiÞ
0 ð1Þ e

ðiÞ
1 ð1Þ � � � e

ðiÞ
P ð1Þ

e
ðiÞ
0 ð2Þ e

ðiÞ
1 ð2Þ � � � e

ðiÞ
P ð2Þ

..

. ..
. ..

. ..
.

e
ðiÞ
0 ðNÞ e

ðiÞ
1 ðNÞ � � � e

ðiÞ
P ðNÞ

2

66664

3

77775

N�ðPþ1Þ

: ð17Þ

Similarly to the procedure described in the previous

section, we need to compute the following matrix product

Chi ¼ ðE�h Þ
T Ei; ð18Þ

where the matrix E�h is obtained from matrix Eh by

removing its first column. This does not influence the

pruning process since there are no connections among the

constant input of the hidden layer (i.e. y0(t) = - 1) and

the input units.

The (i, j)th entry of Chi; denoted by Chi½i; j�; is given by

Chi½i; j� ¼
XN

t¼1

e
ðhÞ
i ðtÞe

ðiÞ
j ðtÞ; ð19Þ

for i ¼ 1; . . .;Q; and j ¼ 0; . . .;P. Then, we sort the

absolute values of entries Chi½i; j� in ascending order

jChi½s1�j\jChi½s2�j\ � � �\jChi½sL�j; ð20Þ

where the vector sl ¼ ðil; jlÞ contains the coordinates of the

entry of position l in the ranking, and L ¼ dimðChiÞ ¼
Q� ðPþ 1Þ is the number of entries in Chi.

The final step involves the execution of the pruning

procedure shown in Table 2. For obvious reasons, from

74 Neural Comput & Applic (2013) 22:71–84

123

now on we refer to the proposed method as the CAPE

method (Cross-correlation Analysis of back-Propagated

Errors). This method must be applied reapeatedly until no

more weights are to be pruned (see the flowchart in Fig. 1).

5 Model selection using the CAPE method

As a proof of concept, we work initially with a synthetic

two-dimensional data set in order to visualize the hyper-

planes (i.e. lines in this case) due to each hidden neuron

and the resulting global decision surface. This data set is

composed of 200 pattern vectors divided into two nonlin-

early separable classes. For training, 140 of them are ran-

domly chosen while the remaining ones are used for testing

the performance of the pruned network.

The second set of simulations involves preliminary tests

using two benchmarking data sets (Iris and Wine). The Iris

data set is composed of 150 4-dimensional pattern vectors

distributed into 3 classes. The Wine data set is composed of

178 13-dimensional vectors also distributed into 3 classes.

For the Iris (Wine) data set, 35 (33) patterns per class are

randomly selected for training purposes and the remaining

45 (79) ones are used for testing.

For a more demanding classification task, we have used

a biomedical data set kindly made available for this

research by the Group of Applied Research in Orthopae-

dics (GARO) of the Centre Médico-Chirurgical de Réad-

aptation des Massues, Lyon, France. The task consists in

classifying patients as belonging to one out of three cate-

gories: Normal (100 patients), Disk Hernia (60 patients), or

Spondylolisthesis (150 patients). Each patient is repre-

sented in the database by six biomechanical attributes

derived from the shape and orientation of the pelvis and

cervical, thoracic, and lumbar spine: pelvic incidence,

pelvic tilt, sacral slope, pelvic radius, lumbar lordosis

angle, and grade of spondylolisthesis. The training set is

formed by randomly selecting 42 pattern vectors per class,

and the remaining 184 examples are used for testing pur-

poses. This data set is available for the interested reader

upon request. For the interested reader, we recommend the

additional reading of the works of Berthonnaud et al. [3]

and Rocha Neto and Barreto [26].

Weights and biases are randomly initialized within the

range -0.5 to ?0.5. All neurons use hyperbolic tangent

activation functions, and the inputs are normalized to the

range of network activations. Features are normalized to

zero mean and unit variance. The output target vectors use

the 1-out-of-M binary encoding. The learning rate was set

to g = 0.001 for all simulations. All the networks and

pruning methods were implemented in MATLAB 7.0.

5.1 Results for the synthetic data set

For the first data set, we initially trained a fully connected

MLP network with Q = 12 hidden neurons. The input and

output dimensions were set to P = 2 and M = 1, respec-

tively. This network was trained until the MSE value for

the training data, ðetrainÞ; reached a steady-state, i.e. no

significant changes are observed.

Numerical results are shown in Table 3. In this table,

Nc = (P ? 1) 9 Q ? (Q ? 1) 9 M is the initial number

of weights, CRtrain and CRtest stand for the classification

rate for the training and testing data, respectively, etest is the

mean-squared error in testing data set, and AIC stands for

Akaike’s Information criterion.1

The application of the CAPE and OBS methods involves

several steps. Initially, they are applied to Architecture 1,

with Q = 12 hidden neurons and, hence, Nc = 49 adjust-

able parameters as a whole. Note that this initial architec-

ture classifies the data accurately. However, we are not

only interested in good classification rates, but also in

knowing whether there is redundancy, i.e. whether this

architecture is oversized. The application of CAPE and

OBS resulted in a pruned architecture with Q = 9 hidden

neurons, but with less connections than a fully connected

MLP architecture with Q = 9 neurons (Nc = 37). The

classification rates of both architectures remained the same

as before. The resulting AIC value is slightly higher for the

architecture pruned by the CAPE method, mainly due to its

larger number of parameters.

Once the performances of the pruned architectures for

Q = 9 hidden neurons remained at acceptable levels, we

started to wonder what would happen if we apply the

Table 1 Pruning procedure for hidden-to-output layer weights

1. Set l = 1;
2. WHILE l L DO

2.1. Set a = mrl ;
2.2. Set mrl = 0;
2.3. Compute Jtrain;
2.4. IF Jtrain Jtol , Jtrain = CRtrain

THEN
Set mrl = a;

ENDIF
2.5. Set l = l + 1;

ENDWHILE

Table 2 Pruning procedure for input-to-hidden layer weights

1. Set l = 1;
2. WHILE l L DO

2.1. Set b = wsl ;
2.2. Set wsl = 0;
2.3. Compute Jtrain;
2.4. IF Jtrain Jtol , Jtrain = CRtrain

THEN
Set wsl = b;

ENDIF
2.5. Set l = l + 1;

ENDWHILE
1 The AIC has the follow structure AIC ¼ �2 lnðetrainÞ þ 2Nc [23].

Neural Comput & Applic (2013) 22:71–84 75

123

pruning methods to another fully connected, one-hidden-

layered MLP (Architecture 2) that has approximately the

same number of connections Nc = 33 as the pruned

Architecture 1. The rationale for doing that was to verify

whether there was still room for further weight pruning.

The application of CAPE and OBS to Architecture 2 led to

the same pruned architecture with Q = 7 neurons and

Nc = 22 connections. Again, note that the pruned Archi-

tecture 2 has less connections than a fully connected net-

work with Q = 7 neurons (Nc = 29). We continued with

the pruning procedure for more two fully connected net-

works, namely, Architectures 3 and 4. The results were

identical for both the CAPE and OBS methods.

The results of the application of the WDE algorithm to

the Architecture 1 are also shown in Table 3. Since this

algorithm works during the training phase (see the

‘‘Appendix’’), we cannot compare it directly with the OBS

and CAPE methods, which are applied to already trained

networks. Thus, only the final result is shown. The regu-

larization parameter is set to k = 0.001 after some exper-

imentation. The application of the WDE algorithm resulted

in an architecture with 4 neurons and 17 connections.

However, the CRtest for the resulting architecture is lower

than that achieved by the pruned Architecture 4.

In Fig. 2, it is shown the resulting global decision

surface and the position of the hyperplanes (i.e. lines)

associated with the unpruned Architecture 1. We can see

clearly that there are too many lines (i.e. redundant

neurons), much more than the number required to dis-

criminate well between the two classes. For comparison

purposes, the decision surface and the hyperplanes for

Architecture 4, pruned by the CAPE method, are shown

in Fig. 3, where only three lines remained. The successive

application of the CAPE method, starting from Archi-

tecture 1, eventually led to the minimum number of

hidden neurons required to solve this nonlinearly separa-

ble problem.

Note that the OBS algorithm also led to the same opti-

mal three-hidden-neurons architecture, but at the expenses

of much higher computational costs. Recall that the OBS

algorithm requires the computation of the inverse of a

Hessian matrix, one for each neuron in the network, every

time the architecture is retrained. The CAPE method

requires no matrix inversion at all. In addition, the CAPE

method does not require the specification of the regulari-

zation parameter k (WDE algorithm), which should be

estimated by trial-and-error or by cross-validation.

5.2 Results for the Iris data set

Table 4 shows the results achieved by the pruned archi-

tectures on the Iris data set. The initial network topology

Table 3 Numerical results for

the synthetic data set
Q Nc CRtrain CRtest etrain etest AIC

Architecture 1 12 49 100 100 0.0090 0.0098 107.42

CAPE 9 29 100 100 0.0239 0.0231 65.47

OBS 9 28 100 100 0.0208 0.0166 63.75

Architecture 2 8 33 100 100 0.0088 0.0153 75.47

CAPE 7 22 100 100 0.0139 0.0119 52.55

OBS 7 22 100 100 0.0139 0.0119 52.55

Architecture 3 6 25 100 100 0.0075 0.0110 59.79

CAPE 4 17 100 100 0.0120 0.0087 42.85

OBS 4 17 100 100 0.0120 0.0087 42.85

Architecture 4 4 17 100 100 0.1385 0.1440 37.95

CAPE 3 13 100 100 0.1383 0.1458 29.96

OBS 3 13 100 100 0.1383 0.1458 29.96

WDE 4 17 100 98.33 0.0334 0.0442 40.80

Start
Eo Eh Ei

Compute

Coh Chi

Sort entries in
and

Execute Algorithm
in Table 1

Execute Algorithm
in Table 2

Proceed with
pruning?

END

yes

no

Fig. 1 Flowchart for the CAPE

methodology

76 Neural Comput & Applic (2013) 22:71–84

123

(Q = 9 hidden neurons) is independently trained and tested

four times, using the same training and testing data sets.

Only the weight initialization and the order of presentation

of the training vectors per epoch were changed from one

training/testing run to another. This was necessary to

emphasize differences between the two pruning methods.

Weight pruning is carried out using the highest classi-

fication rate achieved for training data as reference (i.e.

Jtrain = CRtrain). In general, both methods presented

equivalent performance on testing data if we consider only

average classification rates and mean-squared errors in the

evaluation. In terms of the final number of weights, the

OBS method presented a slight advantage over the CAPE,

since it ended with a smaller number of weights and hidden

neurons. However, as we show later, if we also consider the

resulting confusion matrix for the pruned networks, the

networks pruned by CAPE performed better than the ones

pruned by OBS.

An interesting behavior was observed in this simulation.

Those architectures labeled with an asterisk (*) had an

output neuron pruned. For all four initial architectures, the

application of the CAPE method pruned an output neuron,

while the OBS method pruned an output neuron in 3 out of

4 cases. As mentioned earlier, occasionally a neuron has to

be pruned when all the connections converging to (or

emanating from) that neuron have been pruned. In this

simulation specifically, the fact that an output neuron has

been pruned and may indicate that the output coding is

redundant. As a matter of fact, the 1-out-of-M output

encoding used in all simulation in this paper required three

neurons to represent the three classes of the Iris data set.

However, it is possible to represent the three classes using

only two output neurons! This redundancy in output class

representation was found, without any a priori information

about the task, by both the CAPE and OBS methods, but it

is particularly a strong feature of the CAPE method.

Figure 4a shows the classification results for Model 1

with Q = 9 hidden neurons and M = 3 output neurons.

The points in the figure correspond to neurons’ output

values yk
(o), k = 1, 2, 3; thus, the output space is three-

dimensional. The output coordinates (y1
(o), y2

(o), y3
(o)) corre-

sponding to input vectors classified as belonging to the

setosa class (in blue) are concentrated around the

−2 −1 0 1 2
−2

−1

0

1

2

−2 −1 0 1 2
−2

−1

0

1

2Fig. 2 Decision surface (left)
and individual lines (right) for a

trained MLP with Q = 12

hidden neurons

−2 −1 0 1 2
−2

−1

0

1

2

−2 −1 0 1 2
−2

−1

0

1

2Fig. 3 Decision surface (left)
and individual lines (right) for a

pruned MLP with Q = 3 hidden

neurons

Table 4 Results of the application of the pruning methods (Iris data)

Method Q Nc CRtrain CRtest etrain etest

Model 1 9 75 99.05 95.56 0.0199 0.0562

CAPE (*) 9 41 99.05 95.56 0.1822 0.2153

OBS (*) 9 41 99.05 95.56 0.1849 0.2162

Model 2 9 75 99.05 93.33 0.0194 0.0580

CAPE (*) 7 37 99.05 95.56 0.1932 0.2309

OBS (*) 7 37 99.05 93.33 0.1884 0.2243

Model 3 9 75 99.05 93.33 0.0203 0.0677

CAPE (*) 6 20 99.05 93.33 0.2969 0.3144

OBS (*) 5 18 99.05 93.33 0.3444 0.3586

Model 4 9 75 99.05 93.33 0.0127 0.0858

CAPE (*) 4 16 99.05 93.33 0.1765 0.2422

OBS 2 11 99.05 93.33 0.2868 0.3793

WDE 9 75 99.05 93.33 0.3277 0.3274

Neural Comput & Applic (2013) 22:71–84 77

123

coordinates (?1, -1, -1). Points corresponding to input

vectors classified as belonging to the versicolor class (in

red) and to the virginica class (shown in black) are con-

centrated around the coordinates (-1, ?1, -1) and (-1,

-1, ?1), respectively. There is some superposition among

points belonging to the versicolor and virginica classes,

resulting in a few classification errors.

Figure 4b shows the resulting classification achieved by

the Model 1 after the application of the CAPE method. The

pruned architecture presents Nc = 41 weights, Q = 9

hidden neurons, and still M = 3 output neurons. However,

since all the weights from the hidden layer to the output

neuron 1 has been pruned, the output of this neuron (i.e.

y1
(o)) plays no role now and has been set to zero. Hence, the

output coordinates for the classes setosa, versicolor, and

virginica now spread around the following points (0, -1,

-1), (0, ?1, -1), and (0, -1, ?1), respectively.

Numerical results are shown in Table 4. Average clas-

sification rates and error values were computed for the

pruned networks using the original 1-out-M encoding for

desired outputs, maintaining three output neurons, however

with the pruned output set to zero (i.e. y1
(o) = 0). Despite

that, classification rates for the testing data have been

maintained at acceptable levels (i.e.[93%) for the pruned

architectures.

If we retrain the pruned architectures now using only

two output neurons, with desired outputs encoded as

(-1, -1) (setosa class), (?1, -1) (versicolor class), and

(-1, ?1) (virginica class), the classification rates improve

considerably. For example, the classification rates for the

CAPE-pruned Model 1 changed from 95.5% (3rd row in

Table 4) to 98.9% (not shown in Table 4). It was also

observed a reduction in the mean-squared error values. The

testing error changed from etest ¼ 0:2153 to etest ¼ 0:0829.

Improvements in average classification rates and mean-

squared errors were also observed for the OBS-pruned

Model 1.

We also analyzed the effects of pruning on the confusion

matrices of the classifiers. The confusion matrix of the

unpruned Model 4 is shown in Table 5 using testing data

(45 pattern vectors, 15 for each class). The first row of this

table indicates that all 15 pattern vectors of class setosa

(i.e. 33.3% of the total amount of testing data) are correctly

assigned to this class. The same occurs for the 15 pattern

vectors of class virginica (third row). For the 15 data

vectors of the class versicolor, 12 of them (26.7% of the

total) are correctly classified as belonging to the class

versicolor, while 3 pattern vectors of the class versicolor

(6.7% of the total) are erroneously assigned to class

virginica.

The confusion matrices obtained for Model 4, pruned by

the CAPE and OBS methods, are shown in Table 6. It is

clear that the confusion matrix obtained from the CAPE-

pruned Model 4 is better than that produced by the

OBS-pruned Model 4. As a conclusion, we recommend that

the pruned architectures must be further evaluated by their

confusion matrices, when presenting equivalent classifica-

tion rates.

5.3 Results for the vertebral column data set

For this simulation, we set Jtol = 85% to serve as a ref-

erence for the minimum acceptable recognition rate for

Fig. 4 Training (asterisk) and

testing (circle) classification

results for the Iris data set.

a Unpruned MLP and b pruned

MLP with pruned output set to

zero

Table 5 Confusion matrix for unpruned Model 4 (Iris data)

Predicted class

Real class 33.3 0 0

0 26.7 6.7

0 0 33.3

Table 6 Confusion matrices for the pruned Model 4 (Iris data)

CAPE OBS

Predicted class Predicted class

Real Class 33.3 0 0 33.3 0 0

0 26.7 6.7 2.3 26.7 4.4

0 0 33.3 0 0 33.3

78 Neural Comput & Applic (2013) 22:71–84

123

training and testing purposes. That is, even if a pruned

network has produced a CRtrain value higher than 85%, its

CRtest value should also be higher than 85%. Network

pruning is carried out progressively through successive

applications of the CAPE/OBS/PWM methods. Numerical

results are summarized in Table 7.

The CAPE method has produced a pruned Architecture

1 with Q = 19 hidden neurons and Nc = 126 connections,

i.e. with less connections than a fully connected MLP

architecture with the same number of hidden neurons

(Nc = 193). The OBS method has ended with a pruned

network with Q = 22 hidden neurons and Nc = 134. The

final classification rates (CRtrain and CRtest) of both meth-

ods were coincidentally the same.

Important facts are worth mentioning with respect to the

PWM method [5], which is described in the ‘‘Appendix’’.

Firstly, despite the fact that it has ended with the network

with the smallest number of connections (Nc = 121) for

Q = 21 hidden neurons, its CRtest is smaller than 85%.

Secondly, due the small number of weights, it has achieved

the lowest AIC value, wrongly indicating this architecture

as the best one for this problem. These results indicate that

the AIC index is possibly not the best model selection

method for classification problems, since it is based on the

average squared error only, not on classification rates.

Similarly to the procedure described in Sect. 5.1, we

have trained another fully connected, one-hidden-layered

MLP, denoted Architecture 2, with a number of hidden

neurons Q = 18 close to the final value achieved by the

CAPE-pruned Architecture 1. The training parameters for

the Architecture 2 were the same as before. The application

of the CAPE and the OBS methods to Architecture 2 led to

the same number of hidden neurons (Q = 14), with the

latter achieving less connections than the former. However,

the classification rate CRtest for the CAPE method was

higher. The AIC model, in this case, indicated the OBS

method as the one providing the best pruned architecture,

despite the fact that the CAPE method has produced the

highest classification rate in testing data. This was mainly

due to the smaller number of connections achieved by the

OBS method.

The PWM method performed quite well in terms of

classification rates, ending with a pruned architecture with

Q = 16 number of neurons and Nc = 96 connections. It is

worth mentioning, however, that the PWM is highly sen-

sitive to weight initialization, and the numerical results

shown in Table 7 for the PWM method corresponds to the

best one obtained after 10 training/testing runs. The CAPE

and the OBS are much less sensitive to weight

initialization.

As the recognition rate CRtest for the pruned Architec-

ture 2, irrespective of the pruning method, also remained

above Jtol = 85%, we decided to start pruning another fully

connected, one-hidden-layered MLP, with Q = 13. How-

ever, no method was able to reduce further the number of

hidden neurons, only the number of weights. Anyway, all

pruned networks achieved recognition rates on testing data

below the minimum allowed value. Thus, one can infer that

the architectures best suited to the problem are the pruned

ones obtained from Architecture 2.

For the sake of comparison, we evaluated two SVM

classifiers, using linear and RBF kernels, for 50 runs on the

vertebral column data set. The SVM classifiers were both

trained by the standard SMO algorithm Platt [22]. These

classifiers achieved average recognition rates of 85.1%

(linear kernel) and 85.3% (RBF kernel), which are much

inferior than the recognition rate reported in Table 7 for the

CAPE-pruned Architecture 2 (88.59%).

6 Feature subset selection using CAPE

If all the weights emanating from one or more input units

have been discarded, the features associated with those

input nodes are to be considered nonrelevant ones, since

they will play no role in the computations. Thus, the pro-

posed weight pruning method can be also used for feature

selection.2 For this simulation, we used the Wine (13 fea-

tures and 178 instances) and the Dermatology (34 features

and 366 instances) benchmarking data sets.

For the Wine data set, we trained an MLP with Q = 9

hidden neurons using all Nfeat = 13 features and the whole

data set.3 The total number of weights is Nc = 156. The

Table 7 Numerical results of the successive application of the

pruning methods to vertebral column data set

Q Nc CRtrain CRtest etrain etest AIC

Architecture 1 24 243 89.68 87.50 0.1132 0.1274 490.36

CAPE 19 126 92.06 86.96 0.1662 0.1273 255.59

OBS 22 134 92.06 86.96 0.1777 0.1598 271.46

PWM 21 121 89.68 84.24 0.1733 0.1544 245.51

Architecture 2 18 183 96.03 86.41 0.0616 0.1891 371.57

CAPE 14 98 95.24 88.59 0.1089 0.1632 200.43

OBS 14 91 95.24 87.50 0.1529 0.1827 185.76

PWM 16 96 96.03 88.59 0.1453 0.1918 195.86

Architecture 3 13 133 93.65 81.52 0.0765 0.2311 271.14

CAPE 13 103 93.65 83.70 0.1211 0.2113 210.22

OBS 13 102 93.65 80.43 0.1267 0.2410 208.13

PWM 13 96 93.65 78.80 0.1356 0.2348 196.00

2 Since the proposed approach is dependent on the classifier model, it

belongs to the class of wrappers for feature subset selection ([16]).
3 Recall that the task now is feature selection, not pattern classifi-

cation. Thus, we can train the network with all the available pattern

vectors.

Neural Comput & Applic (2013) 22:71–84 79

123

network was trained until it achieved CRtrain = 100%.

Then, the CAPE method was applied with Jtol = 99.50%.

The results shown in Table 8 suggest that there are at

least 3 redundant input features, as we can see on the

rightmost column. Hence, we created another training data

set, now with only Nfeat = 10 features by excluding the

features 6, 7, and 9. Another MLP was then trained and

pruned. This procedure was repeated until no more features

were to be discarded. At the end of 4 runs of the CAPE

method, only 8 features remained.

Figure 5a, b illustrate CAPE’s pruning power. In

Fig. 5a, we can see the original fully connected network,

Architecture 1 (P = 13, Q = 9, M = 3, and Nc = 156),

while in Fig. 5b, we see the resulting pruned architecture

(Nfeat = 8, Q = 4, M = 3, and Nc = 25) after the appli-

cation of CAPE method. As final step, we evaluated this

pruned architecture by training and testing it using the

10-fold cross-validation scheme. No weight pruning was

allowed at this step. The resulting average classification

rate was 98.60%.

To further evaluate CAPE in feature selection tasks, we

trained a fully connected MLP with Q = 10 hidden neu-

rons using the Dermatology data set, which contains 366

patterns distributed into six classes. Each vector had ini-

tially Nfeat = 34 features that were used to categorize six

skin diseases. The whole data set was used for the training

process. A procedure similar to the one applied to the Wine

data set was followed. All architectures were trained to

achieve CRtrain [99.50% with Jtol = 99.50%. The results

are summarized in Table 9.

The CAPE-based feature subset selection approach has

led to the elimination of 15 features at the end of the

pruning process of the Architecture 7, while the OBS-based

approach has led to the elimination of only 8 features.

Using the remaining 19 features, the pruned Architecture 7

achieved a recognition rate of CRtrain = 99.73%.

An interesting situation happens when we further apply

the CAPE algorithm to Architecture 8. Elimination of

features 16 and 26 is suggested (1st trial). However, when

we pruned out these two features, the resulting architecture

did not achieve a recognition rate above the acceptable

minimum (i.e. CRtrain \ Jtol = 99.50%) for a new trained

MLP using only 17 features. We then decided to train two

other MLPs using 18 features. The first one is trained after

the elimination of feature 16 only (2nd trial), while the

second one is trained after the elimination of feature 26

only (3rd trial). The 2nd trial achieved the minimum

acceptable recognition rate, while the 3rd trial did not. So,

we maintained feature 26 and eliminated feature 16.

The final MLP classifier, pruned by CAPE on the Der-

matology data set, presents the following numbers:

Nfeat = 18, Q = 10, M = 6, and Nc = 109. The features

1, 7, 11, 12, 13, 16, 17, 18, 20, 24, 25, 29, 30, 32, 33, and

34 can be discarded, since they are considered nonrelevant

Table 8 Progressive feature selection for the Wine data set

Q Nc CRtrain etrain Nfeat Out

Architecture 1 9 156 100 0.0006 13 –

CAPE 7 37 100 0.2018 10 6, 7, 9

OBS 9 62 100 0.0257 12 6

Architecture 2 9 129 100 0.0023 10 –

CAPE 7 32 100 0.2599 9 5

OBS 8 43 100 0.0360 10 –

Architecture 3 9 120 100 0.0011 9 –

CAPE 5 26 100 0.0953 8 2

OBS 6 29 100 0.0717 9 –

Architecture 4 9 111 100 0.0011 8 –

CAPE 4 25 100 0.1100 8 –

OBS 5 28 100 0.0349 8 –

Fig. 5 a Fully connected MLP

(Q = 9 and Nc = 156) and

b pruned MLP (Q = 4 and

Nc = 25)

80 Neural Comput & Applic (2013) 22:71–84

123

for the classification task of interest. As final step, we

evaluated the pruned architecture by training and testing it

using the tenfold cross-validation scheme. No weight

pruning is allowed at this step. The resulting average

classification rate was 98.00%.

6.1 Comparison with related methods

In this section, we compare the performance of the CAPE-

based feature subset selection method with those reported

in some recent works available in the literature.

Luukka [18] introduced a wrapper approach for feature

subset selection using fuzzy entropy measures. This

approach removed only 5 features of the Dermatology data

set, achieving an average classification rate of 98.28%.

Rocha et al. [25] proposed two strategies for evolving

MLP-like classifiers, named Topology-optimization Evolu-

tionary Neural Network (TENN) and Simultaneous Evolu-

tionary Neural Network (SENN) and evaluated them on

several benchmarking data sets, including the Dermatology

data set. It is reported average classification rates of 95.7%

(TENN) and 95.3% (SENN). For the sake of comparison, on

the Dermatology data set, the CAPE-based feature selection

method resulted in an average classification rate of 98.00%

using only 18 (out of 34) features.

Moustakidis and Theocharis [19] introduced the SVM-

FuzCoC, a powerful SVM-based feature selection method

that achieved an average classification rate of 97.12% for

the Wine data set using 6 features in average. For the

Dermatology data set, the SVM-FuzCoC achieved an

average classification rate of 94.11% using 12 features

in average. For the Dermatology (Wine) data set, the

CAPE-based feature selection method resulted in an

average recognition rate of 98.00% (98.6%) using 18 (8)

features. As a conclusion, the performance of the SVM-

FuzCoC method in terms of the trade-off between the

smallest number of features and the highest classification

rate is slightly better than that provided by the CAPE

method, but this is achieved at the expenses of much

higher computational efforts.

Table 9 Progressive feature selection for the Dermatology data set

Q Nc CRtrain etrain Nfeat Out

Architecture 1 10 416 99.73 0.0030 34 –

CAPE 7 85 99.73 0.0193 27 1, 11, 20, 29, 32, 33, 34

OBS 9 141 99.73 0.0298 31 1, 11

Architecture 2 10 346 99.73 0.0034 27 –

CAPE 8 106 99.73 0.0607 25 17, 30

OBS 10 110 99.73 0.0423 26 30

Architecture 3 10 326 100 0.0023 25 –

CAPE 10 121 100 0.0648 23 12, 25

OBS 10 115 100 0.0595 24 16

Architecture 4 10 306 99.73 0.0037 23 –

CAPE 7 78 99.73 0.0580 22 18

OBS 10 110 99.73 0.0374 23 –

Architecture 5 10 296 99.73 0.0036 22 –

CAPE 9 104 99.73 0.0900 21 24

OBS 10 110 99.73 0.0860 22 –

Architecture 6 10 286 99.73 0.0032 21 –

CAPE 9 98 99.73 0.0814 20 7

OBS 9 98 99.73 0.0454 19 7, 10

Architecture 7 10 276 99.73 0.0039 20 –

CAPE 9 97 99.73 0.0525 19 13

OBS 10 92 99.73 0.0525 19 13

Architecture 8 10 266 99.73 0.0042 19 –

CAPE (1st trial) 9 78 99.00 0.0485 17 16, 26

CAPE (2nd trial) 9 78 99.73 0.0485 17 16

CAPE (3rd trial) 9 78 99.00 0.0485 17 26

OBS 10 111 99.73 0.0366 18 16

Neural Comput & Applic (2013) 22:71–84 81

123

7 CAPE 3 OBS: estimating the computational costs

The computational cost is an important issue to be addres-

sed during evaluation of algorithms. Sometimes, the algo-

rithm effectiveness in providing a solution to a given

problem requires the execution of complex computations

and the use of excessive memory resources, which

can create severe difficulties in real-time or low-cost

applications.

In this paper, we have evaluated the CAPE and OBS

methods in several classification and feature selection

tasks. One may argue that the CAPE performed only

slightly better than the OBS to justify its choice as a

pruning method in the place of the classical OBS/OBD

methods. As mentioned before, the OBS/OBD methods

require the computation of the inverse Hessian matrix for

a given neuron in order to determine the weight salien-

cies (see the ‘‘Appendix’’). Computation of the inverse

Hessian matrix for MLP networks is a tricky task itself.

Exact computation of the Hessian matrix for MLP net-

works has been made possible [4], but its inversion is

still subject to numerical ill-conditioning. In this regard,

the CAPE method demands much less computational

efforts that the OBS/OBD methods, since no matrix

inversion is required.

In the results to be described, we take into account all

the essential mathematical operations used to compute the

weight saliencies (Si), as required by the OBS algorithm,

and the cross-correlation indexes (Coh½k; i� and Chi½i; j�) in

CAPE algorithm. Tables 10 and 11 show the number of

mathematical operations required by the CAPE and OBS

methods, respectively, as a function of the number of

pattern vectors (N), the input dimension (P), the number of

hidden neurons (Q), and the number of output neurons (M).

Figure 6 shows how the number of operations required

by both pruning methods evolves as a function of the

number of weights. For the sake of simplicity, we have

considered that sums, multiplications, divisions, etc. have

the same computational cost.

The number of operations required by the OBS

(denoted by Nop obsðNcÞ) and the CAPE (denoted by

Nop capeðNcÞ) was computed from the application of both

algorithms over an MLP with P = 2 input units, M = 1

output neuron, and the number of hidden neurons

Q ranging from 1 to 10. The number of instances in the

data set is N = 140. One can easily infer that the OBS

method has a quadratic dependence on Nc, while the

CAPE method presents a linear dependence with very

small slope. This result can help a user in deciding in

favor of the application of the CAPE pruning method to

pattern classification.

8 Conclusions

In this paper, we introduced the CAPE method, an easy-

to-apply and efficient procedure for pruning nonrelevant

weights of a trained MLP classifier. The CAPE method was

motivated by the MAXCORE principle, and it is based on

the correlation analysis of the errors produced by the output

neurons and the errors propagated back to previous layers.

Comprehensive computer simulations using synthetic and

real-world data indicate that, in terms of performance, the

CAPE method compares favorably with standard pruning

Table 10 Mathematical operations demanded by the CAPE method

Number of operations

? N.[3PQ ? 3Q.M - P ? 2Q ? 3M - 2] - PQ - QM
- M - 1

- N.[Q ? 2M]

9 N.[4PQ ? 4QM ? 5Q ? 5M]

	 –

Tanh N.[Q ? M]

Table 11 Mathematical operations demanded by the OBS method

Number of operations

? N.[3P2Q2 ? 3P2Q2.M ? 3Q2M2 ? 2QM ? Q ? M]

- N.[2PQ2M ? P2Q2 ? Q2M2 ? PQ ? 4QM ? Q ? 2M]

9 N.[8PQ2M ? 4P2Q2 ? 4Q2M2 ? 8PQ ? 11QM ? 3Q
? 3M]

	 N.[P2Q2 ? 2PQ2M ? Q2M2 ? PQ ? QM]

Tanh N.[Q ? M]

Fig. 6 Estimated costs for CAPE 9 OBS when pruning an MLP

(2,Q, 1) classifier

82 Neural Comput & Applic (2013) 22:71–84

123

techniques, such as the OBS, WDE, and PWM, with the

advantage of requiring much lower computational efforts.

Acknowledgments The authors thank Prof. Ajalmar Rêgo da Rocha

Neto (Federal Institute of Ceará—IFCE) for running the experiments

with the SVM classifiers on the vertebral column data set. We also

thank the anonymous reviewers for their valuable suggestions for

improving this paper.

Appendix

The WDE algorithm originates from a regularization

method that modifies the error function by adding a term

that penalizes large weights. As a consequence, Eqs. 7, 8

are now written as [23]

mkiðt þ 1Þ ¼ mkiðtÞ 1� k

ð1þ m2
kiðtÞÞ

2

 !
þ gdðoÞk ðtÞy

ðhÞ
i ðtÞ;

wijðt þ 1Þ ¼ wijðtÞ 1� k

ð1þ w2
ijðtÞÞ

2

 !
þ gdðhÞi ðtÞxjðtÞ;

where 0 \ k\ 1 is a user-defined parameter.

The OBS algorithm [15] requires that the weights are

ranked based on the computation of weight saliencies

defined as

Si ¼ DEi ¼
1

2

x2
i

½H�1�ii
ð21Þ

where xi is the ith weight (or bias) of interest and ½H�1�ii is

the ith diagonal entry of the inverse of the Hessian matrix

H ¼ ½Hij� ¼ o2E
oxioxj

.

Pruning by weight magnitude (PWM) is a pruning

method based on the elimination of small magnitude

weights ([5]). Weights are sort in increasing order of

magnitude. Starting from the smallest weight, a given

weight is pruned as long as its elimination does not

decrease the classification rate in training data set to a

value below a predefined value.

References

1. Aran O, Yildiz OT, Alpaydin E (2009) An incremental frame-

work based on cross-validation for estimating the architecture of

a multilayer perceptron. Int J Pattern Recogn Artif Intell

23(2):159–190

2. Benardos PG, Vosniakos GC (2007) Optimizing feedforward

artificial neural network architecture. Eng Appl Artif Intell

20(3):365–382

3. Berthonnaud E, Dimnet J, Roussouly P, Labelle H (2005) Anal-

ysis of the sagittal balance of the spine and pelvis using shape and

orientation parameters. J Spinal Disorders Tech 18(1):40–47

4. Bishop CM (1992) Exact calculation of the hessian matrix for the

multi-layer perceptron. Neural Comput 4(4):494–501

5. Bishop CM (1995) Neural networks for pattern recognition.

Oxford University Press, Oxford

6. Castellano G, Fanelli AM, Pelillo M (1997) An iterative pruning

algorithm for feedforward neural networks. IEEE Trans Neural

Netw 8(3):519–531

7. Cataltepe Z, Abu-Mostafa YS, Magdon-Ismail M (1999) No free

lunch for early stopping. Neural Comput 11(4):995–1009

8. Curry B, Morgan PH (2006) Model selection in neural networks:

some dificulties. Eur J Oper Res 170(2):567–577

9. Dandurand F, Berthiaume V, Shultz TR (2007) A systematic

comparison of flat and standard cascade-correlation using a stu-

dent-teacher network approximation task. Connect Sci 19(3):

223–244

10. Delogu R, Fanni A, Montisci A (2008) Geometrical synthesis of

MLP neural networks. Neurocomputing 71:919–930

11. Engelbrecht AP (2001) A new pruning heuristic based on vari-

ance analysis of sensitivity information. IEEE Trans Neural Netw

12(6):1386–1399

12. Fahlman SE, Lebiere C (1990) The cascade-correlation learning

architecture. In: Touretzky DS (ed) Advances in neural infor-

mation processing systems. Morgan Kaufmann, San Mateo, vol 2,

pp 524–532

13. Gómez I, Franco L, Jerez JM (2009) Neural network architecture

selection: can function complexity help? Neural Process Lett

30:71–87

14. Hammer B, Micheli A, Sperduti A (2006) Universal approxi-

mation capability of cascade correlation for structures. Neural

Comput 17(5):1109–1159

15. Hassibi B, Stork DG (1993) Second order derivatives for network

pruning: optimal brain surgeon. In: Hanson SJ, Cowan JD, Giles

CL (eds) Advances in neural information processing systems.

Morgan Kaufmann, San Mateo, vol 5, pp 164–171

16. Kohavi R, John GH (1997) Wrappers for feature subset selection.

Artif Intell 97(1–2):273–324

17. Littmann E, Ritter H (1996) Learning and generalization in

cascade network architectures. Neural Comput 8(7):1521–1539

18. Luukka P (2011) Feature selection using fuzzy entropy measures

with similarity classifier. Exp Syst Appl 38(4):4600–4607

19. Moustakidis S, Theocharis J (2010) SVM-FuzCoC: a novel

SVM-based feature selection method using a fuzzy complemen-

tary criterion. Pattern Recogn 43(11):3712–3729

20. Nakamura T, Judd K, Mees AI, Small M (2006) A comparative

study of information criteria for model selection. Int J Bifur

Chaos 16(8):2153–2175

21. Parekh R, Yang J, Honavar V (2000) Constructive neural-net-

work learning algorithms for pattern classification. IEEE Trans

Neural Netw 11(2):436–451

22. Platt JC (1998) Fast training of support vector machines using

sequential minimal optimization. In: Advances in Kernel meth-

ods: support vector learning. MIT Press, Cambridge, pp 185–208

23. Principe JC, Euliano NR, Lefebvre WC (2000) Neural and

adaptive systems. Wiley, London

24. Reed R (1993) Pruning algorithms—a survey. IEEE Trans Neural

Netw 4(5):740–747

25. Rocha M, Cortez P, Neves J (2007) Evolution of neural networks for

classification and regression. Neurocomputing 70(16–18):1054–1060

26. Rocha Neto AR, Barreto GA (2009) On the application of

ensembles of classifiers to the diagnosis of pathologies of the

vertebral column: a comparative analysis. IEEE Latin Am Trans

7(4):487–496

27. Saxena A, Saad A (2007) Evolving an artificial neural network

classifier for condition monitoring of rotating mechanical sys-

tems. Appl Soft Comput 7(1):441–454

28. Seghouane AK, Amari SI (2007) The AIC criterion and sym-

metrizing the kullback-leibler divergence. IEEE Trans Neural

Netw 18(1):97–106

Neural Comput & Applic (2013) 22:71–84 83

123

29. Stathakis D, Kanellopoulos I (2008) Global optimization versus

deterministic pruning for the classification of remotely sensed

imagery. Photogrammetr Eng Remote Sens 74(10):1259–1265

30. Trenn S (2008) Multilayer perceptrons: approximation order and

necessary number of hidden units. IEEE Trans Neural Netw

19(5):836–844

31. Wan W, Mabu S, Shimada K, Hirasawa K, Hu J (2009)

Enhancing the generalization ability of neural networks through

controlling the hidden layers. Appl Soft Comput 9(1):404–414

32. Weigend AS, Rumelhart DE, Huberman AB (1990) Generaliza-

tion by weight-elimination with application to forecasting.

In: Lippmann RP, Moody J, Touretzky DS (eds) Advances in

neural information processing systems. Morgan Kauffman, San

Mateo, vol 3, pp 875–882

33. Xiang C, Ding SQ, Lee TH (2005) Geometric interpretation and

architecture selection of the MLP. IEEE Trans Neural Netw

16(1):84–96

34. Yao X (1999) Evolving artificial neural networks. Proc IEEE

87(9):1423–1447

35. Yu J, Wanga S, Xi L (2008) Evolving artificial neural networks

using an improved PSO and DPSO. Neurocomputing 71(4–6):

1054–1060

84 Neural Comput & Applic (2013) 22:71–84

123

	A novel weight pruning method for MLP classifiers based on the MAXCORE principle
	Abstract
	Introduction
	Exhaustive search plus early stopping
	Constructive algorithms
	Pruning algorithms
	Evolutionary computation

	The backpropagation algorithm
	The MAXCORE principle
	The proposed methodology
	Pruning hidden-to-output layer weights
	Pruning input-to-hidden layer weights

	Model selection using the CAPE method
	Results for the synthetic data set
	Results for the Iris data set
	Results for the vertebral column data set

	Feature subset selection using CAPE
	Comparison with related methods

	CAPE x OBS: estimating the computational costs
	Conclusions
	Acknowledgments
	Appendix
	References

