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Abstract This paper studies the state-of-the-art classifi-

cation techniques for electroencephalogram (EEG) signals.

Fuzzy Functions Support Vector Classifier, Improved

Fuzzy Functions Support Vector Classifier and a novel

technique that has been designed by utilizing Particle

Swarm Optimization and Radial Basis Function Networks

(PSO-RBFN) have been studied. The classification per-

formances of the techniques are compared on standard

EEG datasets that are publicly available and used by brain–

computer interface (BCI) researchers. In addition to the

standard EEG datasets, the proposed classifier is also tested

on non-EEG datasets for thorough comparison. Within the

scope of this study, several data clustering algorithms such

as Fuzzy C-means, K-means and PSO clustering algorithms

are studied and their clustering performances on the same

datasets are compared. The results show that PSO-RBFN

might reach the classification performance of state-of-the

art classifiers and might be a better alternative technique in

the classification of EEG signals for real-time application.

This has been demonstrated by implementing the proposed

classifier in a real-time BCI application for a mobile robot

control.

Keywords Brain–computer interface � Classification

algorithms � FFSVC � IFFSVC � PSO-RBFN �
Particle swarm optimization � Clustering

1 Introduction

With the improvement in biomedical technology and

machine learning, the analysis of human bio-potential

signals has become an important research field. Research-

ers have been studying to understand and classify human

bio-signals in order to better help people with various

facilities as in developing assistive technologies for the

disabled or obtaining more accurate diagnosis of diseases

[1]. Among the human bio-potentials, electroencephalo-

gram (EEG) brain signals have been widely studied

because of their clinical importance for non-invasive

approaches of detecting neurological abnormalities and a

broad range of applications for brain–computer interface

technologies [2, 3].

EEG signals are electrical action potential signals

recorded on the scalp, generated by the firing of many

neurons in the brain. It has been known that specific tasks

in the human body are controlled by particular parts of the

brain [4]. The firing of the neurons results in generating

intensive neurological electrical activity enough to be

measured by the non-invasive electrodes placed on specific

parts of the brain. The recorded EEG signals are within

1–100 lV amplitude range and may contain useful infor-

mation to decipher human thoughts or intents. This infor-

mation can be converted into control inputs for various

real-time systems such as BCI-based assistive devices or

detection systems for brain-related abnormal activities [5].

Difficult characteristics of EEG signals, such as poor

signal-to-noise ratio compared to other human bio-poten-

tials, require employment of robust classification algo-

rithms in order to achieve reasonable classification

performance. Therefore, designing efficient classification

algorithms has been an important goal and highly attractive

area for the research community [2, 3].
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Classification of EEG signals mainly consists of three

components. The first component is preprocessing the EEG

signals. Preprocessing is the phase of preparing the data in

order to remove undesired components that might constitute

outliers in the signal such as eye blink artifacts for EEG signal.

The second component is feature extraction where various

pattern recognition and signal processing techniques (e.g.,

PCA, FFT or wavelet transforms) might be employed in order

to extract meaningful features that might be enough for clas-

sification [6, 7]. The last component is employing a machine

learning technique in order to classify the EEG signal utilizing

the data generated in the feature extraction step.

Our study focuses on an application of state-of-the-art

classifiers on EEG datasets while designing an additional

efficient classification technique. This proposed technique

utilizes Radial Basis Function networks (RBFN) classifier,

which is a simple one-layer feed-forward type of Neural

Networks. As it will be introduced later in more detail, clus-

tering algorithms might be employed in order to find the

parameters of RBFN classifier and they might highly affect the

performance of the classifier [8–12]. Thus, in order to discover

the effects of better clustering on RBFN classifier, the per-

formances of several clustering algorithms such as K-means,

Fuzzy C-means and Particle Swarm Optimization (PSO)

clustering are studied with comparison. Finally, the classifi-

cation performance of the RBFN classifier together with the

efficient clustering algorithm is compared with recent classi-

fiers such as FFSVC and IFFSVC.

The following section introduces EEG classification and

the offline datasets used throughout this study as well as the

employed feature extraction technique for the EEG signals.

The third section gives brief information about the studied

classification techniques. Section 4 introduces the cluster-

ing techniques and their performance comparisons. The

experimental results related to the classifiers are discussed

in Sect. 5. Finally, a real-time BCI implementation of the

proposed classification algorithm is presented in Sect. 6

followed by the conclusions.

2 EEG collection, datasets and feature extraction

In this section, the collection methods of EEG signals such

as the electrode placement system and the electrodes used

to collect the signals are introduced first. The details of the

offline datasets used in this study are explained. Then, the

feature extraction method employed to process the EEG

signals is presented.

2.1 Collection of EEG signals and the EEG datasets

In order to collect EEG signals, the electrodes are placed

according to a standard system called International 10–20

system as shown in Fig. 1. In this system, each electrode is

named with a letter to identify the lobe and a number to

identify the hemispheric location. Odd numbers refer to the

left hemisphere, and even numbers refer to the right

hemisphere of the scalp. On the basis of the specific mental

tasks, the signal coming from several individual electrodes

might be of an interest.

For example, Sensorimotor Cortex part of the brain

where the human motor actions are controlled in general

corresponds to the locations on the central lobe of the brain

[13].

The offline datasets used in this study are two-class

datasets obtained from BCI Competition IIIb and IV2b [14,

15] named as 911, O3VR, S4b (Competition IIIb) and

B0101T, B0102T (Competition IV2b). For 911, O3VR and

S4b, the data are collected from different subjects at mul-

tiple sessions including several trials each. On the other

hand, B0101T and B0102T include the data that belong to

the same subject but collected through multiple training

sessions on two different days within 2 weeks. The elec-

trode positions placed on the scalp of subjects for each

dataset are C3, C4 and Cz as shown in Fig. 1. Note that

these electrode positions are within the Sensorimotor

Cortex Area of the brain. The EEG signal in dataset IIIb is

sampled with 125 Hz and preprocessed by filtering

between 0.5 and 30 Hz [14]. On the other hand, the EEG

signal in datasets of IV2b has a sampling frequency of

250 Hz and filtered between 0.5 and 100 Hz [15].

The data are collected according to the cue-based

screening paradigm where subjects are shown motor

imaginary pictures as cues and data are recorded accord-

ingly. Timing intervals for collection of datasets from

Competition IIIb are shown in Fig. 2. One trial contains 8 s

of recording. Shortly after a fixation cross is displayed on

the screen, a short cue beep is generated as a warning to the

subject, indicating that one of the two visual cue images

will be displayed. The cue images displayed to the subjects

Fig. 1 International 10–20 EEG electrode placement system
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on the screen are either left arrow or right arrow indicating

left thinking or right thinking. After the visual cue is dis-

played, through a virtual reality experiment, a feedback is

given to the subject such as moving a ball to the left or

right.

Unlike the IIIb datasets, B0101T and B0102T datasets

are collected without any feedback given to the subject but

with the similar cue-based scheme. The detailed timing

schematic for the collection of IV2b datasets is given in

Fig. 3.

2.2 The feature extraction method for EEG datasets

An important phenomenon with the EEG signals is known

to be Mu rhythm or Event-Related Desynchronization

(ERD) [14]. This event creates a characteristic attenuation

in the power of EEG signal in certain frequency ranges due

to motor action preparation by the Sensorimotor Cortex

Area of the brain. Although this rhythm is observed in the

planning stage of physical movements, it has been dis-

covered by Pfurtscheller [14] that it might also appear

when the human is shown a visual stimulus as a mental

preparation of physical actions. During this mental prepa-

ration, an instant power decrease in the EEG signal occurs

and the power of the signal increases again. Therefore, the

re-synchronization of the EEG signal is called Event-

Related Synchronization (ERS).

Considering the nature of ERD and ERS phenomena,

in order to extract features from the EEG signal, band

power (BP) values of the signal are extracted within the

subject’s most reactive frequency ranges, alpha [8–11]

Hz and beta [11–29] Hz, as suggested in [14] and [16].

Band power values are obtained by band-pass filtering

the signal within specific frequency ranges, squaring it

and taking the average. After generating BP values, mean

band power value of the signal is taken within the time

interval starting from the visual cue demonstration and

until the end of visual feedback or imaginary period. As

a result of feature extraction, a four-dimensional feature

vector is obtained for each trial such as [C3a, C3b, C4a

and C4b] where C3a represents the band power feature,

extracted from C3 within the alpha band frequency

range.

3 The classification techniques

In this study, three state-of-the-art classifiers are imple-

mented and tested on the same standard datasets and

compared with each other. Among these, Fuzzy Support

Vector Classifier (FFSVC) and Improved Support Vector

Classifier (IFFSVC) are implemented because of their

excellent performances on the regular datasets that exceed

the well-known Support Vector Classifier [17–19]. In

addition, it has been reported by the studies in [2] and [16]

that Fuzzy Classifiers have been rarely used in EEG clas-

sification research, which suggests a great research poten-

tial. In addition to these two classifiers, an RBFN- and

PSO-based classification algorithm is proposed. Note that

this study is also important from the stand point that the

FFSVC and IFFSVC techniques have been specifically

implemented and tested for the first time in classifying

EEG signals.

3.1 Fuzzy functions support vector classifier (FFSVC)

The Fuzzy Functions Support Vector Classifier is a new

classifier design proposed by Celikyilmaz et al. [17]. It

combines the Fuzzy C-means clustering (FCM) algorithm

with any classification methods (Support Vector Classifier

in our case) to design a new classifier. This classifier

approach captures the hidden partitions in the dataset using

FCM clustering and applies one classifier for each partition

found by the clustering method. The membership values

found by FCM clustering are augmented with the original

training feature set. This helps classification by increasing

the dimensionality of the input space so that the data might

more likely become linearly separable. Since each classi-

fier helps estimating a part of the decision boundary, they

might be considered as a fuzzy model that represents

Fig. 2 Informative timing schematic for signal collection in the EEG

datasets IIIb

Fig. 3 Schematic for signal collection in the EEG datasets of IV2b
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conventional linguistic fuzzy IF–THEN rules in Fuzzy

Inference Systems [17].

The general structure describing FFSVC classification

technique is shown in Fig. 4.

Let each data vector in the dataset includes nv number of

features and k = 1, …, nv. The data vector with nv fea-

tures can be represented as x = [x1, …, xnv]. For each

fuzzy classifier, corresponding membership value, li,

which is obtained by Fuzzy C-means clustering algorithm,

is included as additional features to the data vector for each

cluster i and i = 1, …, c. Therefore, for the special case of

single data vector, the augmented vector can be represented

as /i = [x1, …, xnv, …, li]. These augmented vectors are

created for each data vector in the dataset according to the

results of clustering algorithm. The fuzzy classifier func-

tion layer includes a classification method selected as

Support Vector Classifiers (SVC). The output of each fuzzy

classifier is the probabilistic outputs of SVC, generated by

Platt’s probability method [20]. In the output layer, prob-

ability outputs are weighted with the membership values

and summed up in order to find a crisp probability output in

the sense of defuzzification in Fuzzy Inference Systems

(FIS) [17, 18]. The final result is thresholded in order to

generate true class labels.

In employing this classifier, there are three parameters

that need to be adjusted m, c and Creg. The variables m and

c come from the standard FCM clustering algorithm where

m is the fuzzification constant that determines the degree of

overlapping in clusters and the variable c is the number of

clusters that the dataset will be partitioned. The constant

Creg is the regularization constant for SVC that is used to

adjust the position of the separation plane. In employing

SVC for this paper, for all datasets, the radius of the

Gaussian kernel in SVC is taken as 1/nv where nv is the

number of features in an input vector and the other three

parameters are found by grid search as suggested in [17].

Improved Fuzzy Functions Support Vector Classifica-

tion (IFFSVC) is a newer technique that optimizes the

membership values obtained with standard FCM clustering

in order to be a better predictor for the data. This has been

done by adding additional error term to the objective

function of standard FCM algorithm and modifying the

membership update formula accordingly [19].

3.2 Particle swarm optimization-based radial basis

function networks classifier (PSO-RBFN)

Radial Basis Function Networks (RBFN) is a type of feed-

forward Neural Network, which consists of three layers:

input layer, hidden layer and output layer as shown sche-

matically in Fig. 5. The input layer contains n-dimensional

feature vectors entering the network. The hidden layer is

composed of radially symmetric Gaussian kernel functions

as shown in (1)

/i ¼ e
� xk�xik k2

r2 ð1Þ

where i = 1, 2, 3, …, m and m being the number of ker-

nels, xi represents the ith kernel center in the hidden layer

and xk represents the kth feature vector in the dataset.

Values of /i are calculated for each data vector together

with kernel centers, which might be determined by any

clustering technique [21]. Note that, the closer xk is to xi,

the higher the influence it will have in the hidden layer

outputs.

By the help of the hidden layer, feature vectors, which

are in Rn, are mapped into a higher dimension, Rm, so that

the data can more likely become linearly separable

according to the Cover’s theorem [21].

The outputs of hidden layer units are connected to the

output layer by weighted links. The output node of RBFN

is a linear summation as described in (2)

yi ¼
Xm

j¼1

Wj/j ð2Þ

where Wj represents the weights of links between hidden

and output layers and yi represents the output value gen-

erated by the network for the ith data vector. Training of

the network includes finding the appropriate weights

between the hidden layer and the output layer that will

provide appropriate mapping for the data vector from input

space to the output space.

Fig. 4 Fuzzy functions support vector classifier schematic [13]
Fig. 5 Radial basis function network structure

32 Neural Comput & Applic (2013) 22:29–39

123



Let /ij represent the hidden layer value for the jth kernel

and the ith data vector in the dataset, and the output layer

value can be written in the matrix form as follows in (3)

/11 /12 . . . /1m

/21 /22 . . . /2m

..

. ..
.

. . . ..
.

/N1 /N2 � � � /Nm

0
BBB@

1
CCCA

w1

w2

..

.

wN

0
BBB@

1
CCCA ¼

y1

y2

..

.

yN

0
BBB@

1
CCCA ð3Þ

where N represents the number of data vectors in the

dataset. The weights can be calculated using the pseudo-

inverse between output layer matrix, Y, and hidden layer

matrix, /, as stated in (4).

W ¼ pinvð/ÞY ð4Þ

Using the pseudo-inverse of matrix / provides

minimization of the mean square error between the actual

value of the output layer and the estimated value generated

by the RBF network [21]. During the testing phase of the

data with RBFN, yi outputs are found using the weights

obtained in the training. These outputs are thresholded at

the end in order to generate binary class label outputs.

In employing RBFN for a classification problem, finding

the appropriate centers for kernel functions has critical

importance on the generalization capability of the classi-

fier. Therefore, several clustering algorithms are widely

used in the literature to supervise the cluster centers [8–12].

In this study, PSO clustering algorithm is used to determine

the cluster centers for the hidden layer. The inspiration for

employing PSO clustering as a clustering technique is the

promising result of our earlier work [22]. In [22], and the

superior properties of PSO are examined over well-known

clustering algorithms such as K-means [23] and Fuzzy

C-means [24] using six different datasets. The following

section briefly summarizes our experimental results

obtained in [22] for the clustering algorithms.

4 Comparisons of clustering techniques

This section presents the three clustering techniques: Fuzzy

C-means [24], K-means [23] and Particle Swarm Optimi-

zation (PSO) clustering [25]. Their clustering performances

are compared using the standard datasets. In the literature,

the clustering performance of PSO has been shown to be

superior compared to other clustering techniques [22, 25].

Particle Swarm Optimization clustering is based on

standard PSO technique where each particle in the swarm

is a potential solution to the optimization problem (possible

cluster centers for clustering), which is determined by a

fitness function to be minimized or maximized. As the

algorithm iterates, each particle is allowed to update its

position in the search space evaluating its own fitness and

the fitness of the neighboring particles. The algorithm is

terminated when the specified maximum number of iterations

is reached or there is no improvement in the global best

solution of the swarm. The particle that has the best fitness at

the end of the last iteration is selected as the solution. For

each particle, xk [ Rnv, the velocity and position of particles

are updated based on (5) and (6), respectively.

vkðnþ 1Þ ¼ vkðnÞ þ bcrðpk � xkðnÞÞ þ bsrðgðnÞ � xkðnÞÞ
ð5Þ

xk nþ 1ð Þ ¼ xk nð Þ þ vkðnþ 1Þ ð6Þ

where vk(n) = current velocity of particle k, xk(n) = cur-

rent position of particle k, pk = best position of particle k,

g(n) = current global best position of the swarm,

bc = cognitive weight, bs = social weight and r = ran-

dom number (0,1).

In recent years, there have been many improvements

and modifications to the original PSO since it has been

proposed by [26]. One of these modifications is called the

Constriction PSO [27], which is also utilized in this study

and proven to give better results compared to other types of

modifications such as Inertia PSO [28].

The Constriction PSO is a way to guarantee the con-

vergence in the system through the assignment of eigen-

values with a constriction coefficient determined by

cognitive and social acceleration coefficients. The velocity

and position updates for this type of PSO algorithm are

shown in (7), (8).

vkðnþ 1Þ ¼ v½vkðnÞ þ bcrðpk � xkðnÞÞ þ bsrðgðnÞ
� xkðnÞÞ� ð7Þ

xk nþ 1ð Þ ¼ xk nð Þ þ vk nþ 1ð Þ ð8Þ

In (7) and (8), the v coefficient is called the constriction

constant that is used to guarantee the population stability

and is given by (9) below

v ¼ 2K

2� /�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2 � 4/

p���
���
: ð9Þ

In this equation, / = bc ? bs and is calculated to be /[ 4

in order to guarantee the convergence [27]. The constant

K allows the user to tweak the degree of convergence.

Setting K = 1 provides a slower convergence but a more

explorative searching as shown by [27]. Therefore, K = 1

is also used for our implementation.

On the basis of the experimental results presented by

both [27] and [28] and to guarantee the stability, the above

parameters are selected as: v = 0.729 and bc = U(1, 4)

(uniformly distributed random number between 1 and 4)

and bs = 4.1 - bc. Note that, the greater the constriction

factor than 0.729, the faster the algorithm converges,

however, the probability of convergence also decreases.
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The three clustering algorithms are compared in their

abilities to minimize the quantization error, which is a

measure for clustering performance [25, 29] defined by the

formula in (10).

Je ¼
PNc

j¼1

P
8Zp2Cj

dðZp;mjÞ= Cj

�� ��
h i

Nc
ð10Þ

In (10), |Cj| represents the number of data vectors

belonging to the cluster j that is the frequency of that

cluster, mj represents the center of cluster j, zp is the pth

data vector in the dataset and Nc is the number of clusters

that the data will be partitioned. The quantization error in

(10) is a measure of how close the center locations are to

the data members in each cluster. Minimizing the

quantization error makes the intra-cluster distances

decrease and inter-cluster distances increase, therefore

results in more compact clustering [25].

Table 1 compares the clustering algorithms and their

performances by presenting the mean final quantization

errors and standard deviations after 10 runs. During these

runs, all of the algorithms are started from the same ran-

dom initial cluster centers. In PSO clustering, all of the

particles are initialized to the same center locations with

other clustering algorithms. The PSO clustering is run with

20 particles and 50 maximum iterations, while the K-means

and FCM are run with 1,000 maximum iterations, in order

to have the same number of fitness evaluations, and are

completed in each method for the fair comparison.

The datasets used in this table are standard datasets used

in the literature [30]. As it can be seen from the results in

Table 1, PSO clustering is better than other methods in

terms of obtaining smaller quantization error and getting

closer to the global solution. In order to better demonstrate

the results of Table 1, quantization error versus number of

fitness evaluations plot for E. coli dataset is plotted in

Fig. 6 for a single run.

The plot shows that although Fuzzy C-means and

K-means clustering algorithms converge a lot faster than

PSO clustering, these two algorithms can easily get stuck in

local minima and do not show any progress no matter

how long the algorithms are run. However, since the

PSO algorithm works in a more explorative way, as the

algorithm is kept running, it continues and finds better

minima than the other two algorithms. Note that, since the

PSO clustering is run with 20 particles and 50 maximum

iterations, the number of fitness evaluations that have been

performed in each iteration is 20. Therefore, the number

1,000 in Fig. 6 corresponds to the result of 50 iterations of

the PSO clustering algorithm. On the other hand, since

each iteration of FCM and K-means corresponds to one

objective function evaluation, 1,000 fitness evaluations

indicate that both algorithms have run 1,000 steps.

It should be noted that although the PSO algorithm has

superior capabilities in doing better clustering, it comes

with a trade-off. PSO clustering converges slower than

K-means and FCM based on the number of fitness evalu-

ations. This is because PSO has explorative abilities,

whereas K-means and FCM have only exploitative abili-

ties. Thus, they have faster convergence but most likely

end up in a local optimum.

The same convergence plots are generated for standard

EEG datasets obtained from BCI Competition IIIb and

IV2b [14, 15] where the details of data collection and

feature extraction methods are introduced in Sect. 2.

Analyzing the results in the plots, the PSO clustering

resulted in smaller quantization error for all datasets. Thus,

it may improve the performance of classifier, which

employs clustering (Fig. 7).

5 Experimental results

In this section, the classification results of three classifiers

are presented on the two types of datasets namely EEG and

non-EEG datasets as introduced earlier and used in the

clustering section.

The FFSVC and IFFSVC classifiers are implemented

utilizing LIBSVM libraries in Matlab [31]. The parameter

optimizations of these classifiers are performed as sug-

gested in [17, 19]. A grid search is performed in order to

obtain the combination of parameters that gives the best

cross-validation performance within the following ranges

for Creg = [27, 26, …, 2-4], m = [1.3, 1.4, …, 2.4] and

c = [2, 3, …, 8].

Table 1 Quantization errors for

clustering algorithms
Datasets Mean quantization error (SD)

PSO Fuzzy C-means K-means

Breast cancer 1.4868 (0.1841) 1.65 (1.1773e-15) 1.6628 (2.6420e-04)

Ecoli 0.0696 (0.0294) 0.1973 (0.0012) 0.1863 (0.0178)

Iris 0.5588 (0.0509) 0.6463 (2.5866e-12) 0.6363 (0.0614)

Wine 0.9801 (0.0184) 1.0000 (6.3326e-07) 1.0272 (0.0418)

Glass 0.6959 (0.1661) 1.3226 (9.0138e-05) 1.1951 (0.1787)
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As introduced in Sect. 3, the parameter optimization of

RBFN includes finding hidden layer kernel centers and the

optimum number of hidden layer units that might gener-

alize the data well enough. During the parameter optimi-

zation of the RBFN, the number of hidden layer units is

searched exhaustively by starting from the same number of

feature dimension of the dataset and increasing until the

two times of dimension. The cross-validation is done

according to the average result of both training and vali-

dation performances. This is done to avoid overtraining the

classifier. While employing PSO-RBFN, the PSO algo-

rithm is run 100 iterations with the number of particles

adjusted according to the formula in (11) as suggested by

[25]

Npc ¼ 10þ 2
ffiffiffiffi
D
p

ð11Þ

where D = Number of features*Number of clusters.
The initial cluster centers are selected randomly and

different for each particle in the swarm. On the other hand,

the initial cluster centers of FCM clustering are taken the

same as one of the particles in the swarm so that it is

guaranteed FCM clustering starts at the same location with

one of the particles in the swarm. After the hidden layer

centers are found by each clustering algorithm, the standard

deviation values for the Gaussian kernels are searched

within the range of 0.1, 0.2, 0.3, …, 10, 20, 30, 40, 50 by

comparing the cross-validation performances. The number

of hidden layer units and the standard deviation that give

the highest average training and validation performance is

chosen for testing of the classifier on the new data. The

fitness function of PSO is selected as quantization error,

and fitness values of the particles are evaluated according

to this error during PSO runs. Table 2 includes the dataset

names and the ratios that the datasets are partitioned as

training, validation and test data.

The three classifiers are run 10 times, and the classifi-

cation performances are recorded. Table 3 includes the

average classification, standard deviation and the maxi-

mum classification performance reached during algorithm

runs for the PSO-RBFN classifier.

Similarly, Table 4 includes the same type of results for

RBFN classifier but in this case FCM algorithm is used to

find the centers of the hidden layer units for the classifier.

This is done in order to compare the effect of clustering

algorithms on the classification performance of RBFN

classifier.

When the results in both tables are analyzed, it can be

seen that the PSO-RBFN algorithm does significantly

better than FCM-RBFN classifier for some of the datasets.

For instance, for B0102T dataset, each PSO-RBFN run has

exceeded the FCM-RBFN performance. Another promising

result of PSO clustering is that it helps RBFN to reach the

maximum classification performance during data runs. For

Ionosphere dataset, it is observed that the performance of

PSO-RBFN has reached to 100% where it was significantly

better than any other FCM-RBFN runs. This is because of the

more explorative searching abilities of PSO algorithm as

compared to FCM, bringing more variation to the clustering

that can reach the maximum performance over all.

Finally, the results obtained from FFSVC and IFFSVC

classifiers are presented in Tables 5 and 6.
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Analyzing the overall results, it can be concluded that

PSO-RBFN classifier may compete with the state-of-the-art

FFSVC and IFFSVC classifiers in the standard datasets.

When the average maximum results are compared, PSO-

RBFN performance exceeds FFSVC peformance. Although

the average performance values of FFSVC and IFFSVC

exceed the PSO-RBFN results, using the PSO-RBFN

classifier for EEG classification applications might be still

advantageous because of their low computational com-

plexity and their extensibility. Both of the FFSVC and

IFFSVC classifiers are designed to be two-class classifiers.

However, with a slight modification, such as increasing the

number of nodes in the output layer of RBFN, the PSO-

RBFN classifier can be easily extended for a multi-class

classification problem.

In addition, the simplicity that comes with implementing

and training the RBFN classifier and the less computational

complexity might still make the PSO-RBFN more prefer-

able to the FFSVC and IFFSVC classifiers.

6 A real-time BCI application

The commercial Emotiv Epoc� EEG data acquisition

headsets available in our research laboratory are used for a

real-time application of PSO-RBFN classifier in a BCI

system. The classified outputs are used for control inputs of

an external device such as a mobile robot called Hexapod

as shown in Fig. 8a.

The Emotiv Epoc headsets are originally created in order

to provide an innovative way of game control using

Table 2 Dataset names and corresponding train, validation and test

ratios

Datasets #Train samples #Validation samples #Test samples

Diabetes 384 192 192

Liver 172 86 86

Ionosphere 174 87 87

Cancer 320 160 160

911 540 270 270

O3VR 238 118 123

S4b 540 270 270

B0101T 80 20 20

B0102T 80 20 20

Table 3 PSO-RBFN classification results

Datasets Average Max SD

Diabetes 79.27 81.25 1.38

Liver 70.70 75.58 2.73

Ionosphere 97.36 100.00 2.03

Cancer 99.31 100.00 0.62

X11 78.22 80.74 1.60

O3VR 96.00 97.50 1.02

S4b 79.15 81.85 1.78

B0101T 85.50 90.00 1.58

B0102T 78.50 85.00 4.74

Average 84.89 87.99 1.94

Table 4 FCM-RBFN classification results

Average Max SD

Diabetes 79.22 80.21 0.96

Liver 70.12 76.74 3.63

Ionosphere 94.60 96.55 0.90

Cancer 99.81 100.00 0.94

X11 78.89 78.89 0.00

O3VR 95.50 97.50 1.72

S4b 79.85 80.37 0.36

B0101T 85.00 85.00 0.00

B0102T 70.00 70.00 0.00

Average 83.67 85.03 0.94

Table 5 FFSVC classification results

Datasets Average Max SD

Diabetes 79.30 79.69 0.24

Liver 76.74 76.74 0.00

Ionosphere 97.70 97.70 0.00

Cancer 99.38 99.38 0.00

X11 78.80 80.00 0.50

O3VR 95.12 95.12 0.00

S4b 75.79 77.04 0.83

B0101T 85.00 85.00 0.00

B0102T 80.00 85.00 4.62

Average 85.31 86.18 0.68

Table 6 IFFSVC classification results

Datasets Average Max SD

Diabetes 80.83 81.77 1.17

Liver 76.98 79.07 0.73

Ionosphere 98.85 98.85 0.00

Cancer 99.50 100.00 0.00

X11 80.00 80.00 0.00

O3VR 95.12 95.12 0.00

S4b 78.11 78.15 0.01

B0101T 90.00 90.00 0.00

B0102T 87.00 95.00 5.83

Average 87.07 88.66 0.86
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brain–computer interface (BCI) technology [32]. With the

research edition of the headsets, the raw EEG data can be

accessed and processed utilizing the Software Develop-

ment Kit libraries, which are written in C??. In order to

utilize easy and efficient signal processing built-in func-

tions of Matlab software and provide an easy development

environment for other BCI researchers, a software interface

has been written in Matlab integrating C?? dynamic

linking libraries (dll) of the headsets so that they can be

programmed by only using Matlab.

A schematic of the electrode positions of the headsets is

given in Fig. 8b.

In this study, the electrodes FC5, F3, F4, FC6, O1 and

O2 are used as they relate to the Sensorimotor Cortex (FC5,

F3, F4 and FC6) and Visual Cortex areas (O1 and O2) of

the brain. These areas are known to manage planning,

control and execution of motor actions of the body [3, 14].

In order to provide a visual stimulus to the subject for

the left or right thinking similar to the standard EEG

datasets used in this paper, the EmoCube� stand-alone

application is used. The EmoCube works as stand-alone

executable server software written by Emotiv that accepts

UDP packets in order to move a 3-D cube to the several

locations in the screen within the main frame. The neutral

position of the EmoCube is shown in Fig. 9.

In order to perform the training and testing for the real-

time system, a graphical user interface has been created

utilizing the Matlab Graphical User Interface (GUI) design

environment. The design of the system GUI is shown in

Fig. 10.

In Fig. 10, left and right training buttons are used to

supervise the subject by providing visual stimuli via UDP

packets sent to the EmoCube server. When the left or right

button is pressed, the EmoCube moves to the left or right

from the center neutral position and returns back to its

neutral position again. The process that the cube moves to

the leftmost or rightmost positions takes 8 s. With the start

of cube movement, data acquisition is started, and as

the cube is moving, the raw EEG data collected from the

headset electrodes are stored into a buffer after filtering the

data between the frequency ranges of 0.5–30 Hz. The mean

band power features within alpha and beta bands are

extracted from the single trial by ignoring the initial 2 s.

Finally, these features are saved into a global feature

buffer.

When the Train PSO-RBF button is pressed, the PSO-

RBFN classifier is trained with the training samples col-

lected during the first session. This has been determined

according to the cross-validation results of the classifier.

The weight matrix and the hidden layer parameters of the

RBFN classifier are also found in this step. Finally, by

pressing the Real-Time Test button, the raw EEG data are

continuously buffered with the intervals of 6 s and deci-

sions are made by feeding the extracted band power fea-

tures to the classifier as test vectors.

The decisions generated by the PSO-RBFN classifier in

real time are classified either left or right thinking and sent

to the mobile robot wirelessly to move the robot to the right

or left. It should be noted that the wrong classified direc-

tions are not used to re-train the system. The system is

initially trained with 450 samples that are collected on

different multiple training sessions from the same subject.

The training samples are selected randomly from the buffer

by separating the 50% of the samples as training and the

Fig. 8 a Hexapod robot and b electrode positions of the headsets

Fig. 9 Visual stimuli screen by using EmoCube

Fig. 10 The GUI designed for real-time system training and robot

control
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remaining as for the cross-validation reasons. It has been

observed that the cross-validation performance of the sys-

tem has reached up to 65% during the training, and the

subject was able to move the robot in 7 correct directions

out of 10 pre-determined directions, suggesting that a

feasible real-time control of a robot with EEG signals is

possible. Although the number of experiments is consid-

ered to be good enough to see the general performance of

the algorithm, the number of runs can be increased in order

to get a more accurate statistical measurement.

7 Conclusion

This paper provides a study on the applications of various

classification algorithms including the proposed PSO-

RBFN classifier. In order to observe the effect of clustering

algorithms on the performance of RBFN classifier, three

well-known clustering algorithms are compared with each

other by their abilities to minimize the quantization error.

It can be concluded that better clustering obtained with

PSO algorithm helps RBFN to improve its classification

performance.

When the PSO-RBFN classifier is compared with the

other two classifiers, the PSO-RBFN might reach or exceed

the performance level of FFSVC and IFFSVC for most of

the datasets. The extensibility of PSO-RBFN classifier for a

multi-class problem and its simple implementation and

training for the classification tasks make the PSO-RBFN

classifier preferable for a real-time EEG classification

application. To support this conclusion, the proposed

classifier is successfully implemented for a real-time brain–

computer interface application in order to control a mobile

robot with commercial EEG headsets.
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