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Abstract This paper presents a new approach for

behavioral modeling of structural engineering systems

using a promising variant of genetic programming (GP),

namely multi-gene genetic programming (MGGP). MGGP

effectively combines the model structure selection ability

of the standard GP with the parameter estimation power of

classical regression to capture the nonlinear interactions.

The capabilities of MGGP are illustrated by applying it to

the formulation of various complex structural engineering

problems. The problems analyzed herein include estima-

tion of: (1) compressive strength of high-performance

concrete (2) ultimate pure bending of steel circular tubes,

(3) surface roughness in end-milling, and (4) failure modes

of beams subjected to patch loads. The derived straight-

forward equations are linear combinations of nonlinear

transformations of the predictor variables. The validity of

MGGP is confirmed by applying the derived models to the

parts of the experimental results that are not included in the

analyses. The MGGP-based equations can reliably be

employed for pre-design purposes. The results of MSGP

are found to be more accurate than those of solutions

presented in the literature. MGGP does not require sim-

plifying assumptions in developing the models.

Keywords Data mining � Structural engineering �
Multi-gene genetic programming � Formulation

1 Introduction

Modeling of structural engineering nonlinear systems is a

diverse research area where different kinds of methods can

be utilized. Due to the large variety of this field, no method

can impose itself as the best solution. Estimating both the

structure and the parameters of the structural engineering

problems makes their modeling process a difficult task.

Different criteria for model classification can be charac-

terized while dealing with a system modeling task [1]. A

model can be classified as phenomenological or behavioral

[2]. A phenomenological model is derived by considering

the physical relationships governing the system. As a

result, the structure of the model is selected according to

the prior knowledge about the system. It is not always

possible to design phenomenological models for many of

the structural engineering systems because of their com-

plexity. In order to overcome such a problem, the behav-

ioral models are commonly employed. Such models

approximate the relationships between the inputs and out-

puts based on a measured set of data without a need of prior

knowledge about the mechanism that produced the exper-

imental data. The behavioral models can provide very good

results with a minimal effort [2]. Traditional statistical

regression techniques are commonly used for the behav-

ioral modeling purposes. The regression analysis can have

large uncertainties. It has major drawbacks for idealization

of complex processes, approximation, and averaging

widely varying prototype conditions. The regression anal-

ysis tries to model the nature of the corresponding problem

by a pre-defined linear or nonlinear equation. Another

major constraint in application of the regression analysis is

the assumption of normality of residuals.

In the case of the behavioral models, several alternative

computer-aided pattern-recognition and data-classification
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approaches have been developed. The idea is that a pattern-

recognition system learns adaptively from experience and

extracts various discriminators. Artificial neural networks

(ANNs) are the most widely used pattern-recognition

procedures. ANNs have been used for a wide range of

materials and structural engineering problems [3–7].

Despite the acceptable performance of ANNs in most

cases, they do not usually give a definite function to cal-

culate the outcome using the input values. This approach is

mostly appropriate to be used as a part of a computer

program. However, more robust tools are still required to

assess the behavior of many of the structural engineering

problems.

Genetic programming (GP) [8] is a new approach that

introduces completely new features and traits. GP is an

extension of genetic algorithms (GAs). It is a supervised

machine learning technique that searches a program space

instead of a data space. The programs created by tradi-

tional GP are represented as tree structures and expressed

using a functional programming language [8, 9]. GP

overcomes the shortcomings of different computer-aided

and statistical methods previously presented in the liter-

ature. The main advantage of the GP-based approaches

over the regression and neural network techniques is their

ability to generate prediction equations without assuming

prior form of the existing relationships. Different strate-

gies have been proposed to improve the classical GP [10].

GP and its variants have been successfully applied to

various kinds of materials and structural engineering

problems [9, 11–20]. Multi-gene genetic programming

(MGGP) [21, 22] is a robust variant of GP. MGGP is

designed to generate mathematical models of predictor

response data that are ‘‘multi-gene’’ in nature, i.e., linear

combinations of low-order nonlinear transformations of

the input variables. The traditional GP representation is

based on the evaluation of a single tree (model) expres-

sion. In multi-gene representation, a single GP individual

(program) is constructed from a number of genes, each of

which is a tree expression [22]. Despite remarkable pre-

diction capabilities of the MGGP approach [22], appli-

cations of this method to civil engineering tasks are

conspicuous by their near absence.

This study investigates the feasibility of using MGGP

for simulating the complex behavior of the structural

engineering systems. The formulation capabilities of the

MSGP strategy are demonstrated by applying it to four

practical examples of structural engineering. Further, a

comparative study is conducted using the results obtained

through MGGP and those of different models found in the

literature. The MGGP approach overcomes the shortcom-

ings of the traditional and ANN methods. The MGGP

models were developed based on reliable experimental

results collected from the literature.

2 Genetic programming

Genetic programming is a symbolic optimization technique

that creates computer programs to solve a problem using

the principle of Darwinian natural selection [9]. The

breakthrough in GP then came in the late 1980s with the

experiments of Koza [8] on symbolic regression. GP is an

extension of genetic algorithms (GAs). This traditional GP

technique is also referred to as tree-based GP [8]. The

difference between GP and GA is related to the represen-

tation of the solution. A string of numbers is created by GA

to represent the solution, while the GP solutions are com-

puter programs commonly represented as tree structures.

GP is relatively a new field of pattern-recognition methods

in contrast to GA. A survey of the literature reveals the

growing interest of the research community in GP.

In GP, a random population of individuals (computer

programs) is created to achieve high diversity. A popula-

tion member in GP is a hierarchically structured tree

comprising functions and terminals. The functions and

terminals are selected from sets of functions and terminals

[9]. For instance, function set F can contain the basic

arithmetic operations (?, -, 9, /, etc.), Boolean logic

functions (AND, OR, NOT, etc.), or any other mathemat-

ical functions. The terminal set T contains the arguments

for the functions and can consist of numerical constants,

logical constants, variables, etc. [9]. The functions and

terminals are chosen at random and constructed together to

form a computer model in a tree-like structure with a root

point with branches extending from each function and

ending in a terminal. An example of a simple tree repre-

sentation of a GP model is illustrated in Fig. 1 [9].

The creation of the initial population is a blind random

search for solutions in the large space of possible solutions.

Once a population of models is created at random, the GP

algorithm evaluates individuals, selects individuals for

reproduction, generates new individuals by mutation,

crossover, and direct reproduction, and finally creates new

generation in all iterations [8, 9]. During the crossover

procedure, a point on a branch of each solution (program)
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-

√
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/
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Fig. 1 The tree representation of a GP model (H(a - 1/b))
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is selected at random and the set of terminals and/or

functions from each program are then swapped to create

two new programs (see Fig. 2). The evolutionary process

continues by evaluating the fitness of the new population

and starting a new round of reproduction and crossover.

During this process, the GP algorithm occasionally selects

a function or terminal from a model at random and mutates

it (see Fig. 3). The best program that appeared in any

generation, the best-so-far solution, defines the output of

the GP algorithm [8].

2.1 Multi-gene genetic programming

Symbolic regression is typically carried out through the

traditional (standard) GP to evolve a population of trees.

Each of the trees encodes a mathematical expression. The

evolved expressions predict a (N 9 1) output vectors

(y) using corresponding (N 9 M) matrix of inputs

(X) where N is the number of observations of the response

variables and M is the number of input variables [22].

Contrary to the traditional GP, each symbolic model

(and each member of the GP population) in MGGP is a

weighted linear combination of the outputs from a number

of GP trees. Each of these trees may be considered to be a

‘‘gene’’. A typical multi-gene model is shown in Fig. 4.

This model predicts an output variable using three input

variables (x1, x2, and x3). Although this model structure

contains nonlinear terms (e.g., tan), it is linear in the

parameters with respect to the coefficients d0, d1, and d2. In

practice, the maximum allowable number of genes (Gmax)

for a model and the maximum tree depth (Dmax) any gene

may have can be specified by the user. Therefore, a

remarkable control over the maximum complexity of the

evolved models can be exerted. In particular, enforcing

rigid tree depth restrictions (i.e., maximum depths of 4 or 5

nodes) usually results in the evolution of relatively com-

pact models. The evolved models are linear combinations

of low-order nonlinear transformations of the predictor

variables [22].

For each model, the linear coefficients are derived from

the training data using ordinary least squares methods. It

has been shown that multi-gene symbolic regression can be

more accurate and computationally more efficient than the

standard GP for symbolic regression [21, 22]. Also, Sear-

son et al. [21] showed that the multi-gene approach can

successfully be embedded within a nonlinear partial least

squares algorithm. In MGGP, the initial population is

constructed by creating individuals containing GP trees

with different genes (between 1 and Gmax) generated at

random. During an MGGP run, genes are acquired and

deleted using a tree crossover operator called two-point

high-level crossover. This is used in addition to the tradi-

tional GP recombination operators and allows the exchange

of genes between individuals. If the ith gene in an indi-

vidual is labeled Gi, then a two-point high-level crossover

is performed as shown by the following example. The first

parent individual of this example contains three genes (G1

G2 G3) and the second contains four genes (G4 G5 G6 G7).

-
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Fig. 2 Typical crossover

operation in GP
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Fig. 3 Typical mutation operation in GP

y = d0 + d1(2x1tan(x2+x3 ) + d2(4x2 + x3
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Fig. 4 A typical multi-gene GP model
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Two randomly selected crossover points are created for

each individual. The genes enclosed by the crossover

points are denoted by […].

G1 G2½ �G3ð Þ G4G5 G6G7½ �ð Þ:

Thereafter, the genes enclosed by the crossover points are

exchanged and the following two new individuals are

resulted:

G1G6G7G3ð Þ G4G5G2ð Þ:

The acquisition of new genes for both individuals is

allowed by two-point high-level crossover. Also, genes

are allowed to be removed. If an exchange of genes

results in an individual containing more genes than Gmax,

genes are selected at random and deleted until the

number of genes in the individual reaches Gmax. In the

MGGP algorithm, standard GP sub-tree crossover is

referred to as low-level crossover. In this case, a gene is

chosen at random from each parent individual. Then, the

standard sub-tree crossover is applied and the created

trees replace the parent trees in the otherwise unaltered

individual in the next generation. The following are the

six methods of mutating trees in MGGP: (1) sub-tree

mutation, (2) mutation of constants using an additive

Gaussian perturbation, (3) substitution of a randomly

selected input node with another randomly selected input

node, (4) set a randomly selected constant to zero, (5)

substitute a randomly selected constant with another

randomly generated constant, and (6) set a randomly

selected constant to one [22].

The probabilities of each of the recombinative processes

can be set by the user. The processes are grouped into

categories called events. Thus, the probability of crossover

events, direct reproduction events and mutation events can

be specified. These must sum to one. The probabilities of

event subtypes can also be specified by the user. For

instance, it is possible to define the probability of a two-

point high-level crossover taking place once a crossover

event has been selected [22].

3 Application to structural engineering problems

This paper introduces the MGGP approach to obtain

meaningful nonlinear relationships between various

parameters of four practical structural engineering prob-

lems. The problems investigated are as follows:

I. Prediction of compressive strength of high-perfor-

mance concrete.

II. Evaluation of ultimate pure bending of steel circular

tubes.

III. Prediction of surface roughness in end-milling.

IV. Classification of failure modes of beams subjected to

patch loads.

Various parameters are involved in the MGGP predic-

tive algorithm. The parameter selection affects the model

generalization capability of MGGP. These parameters are

selected based on some previously suggested values [22,

23] and after a trial-and-error approach. The parameter

settings are shown in Table 1. In this study, basic arith-

metic operators and mathematical functions are utilized to

get the optimum MGGP models. The number of programs

in the population is set by the population size. The number

of generation sets the number of levels the algorithm uses

before the run terminates. The proper number of population

and generation often depends on the complexity of prob-

lems and on the number of possible solutions. A fairly large

number of population and generations are tested to find

models with minimum error. The programs are run until

the runs automatically terminated. The maximum allow-

able number of genes in an individual and the maximum

tree depth directly influence the size of the search space

and the number of solutions explored within the search

space. The success of the MGGP algorithm usually

increases with increasing these parameters. In this case, the

complexity of the evolved function increases and the speed

of the algorithm decreases. The allowable number of genes

and tree depth are, respectively, set to optimal values of 8

and 4 as trade-offs between the running time and the

Table 1 Parameter settings for the MGGP algorithm

Parameter Settings

Function set ?, -, 9, /, H, exp, ln, sin,

cos, tanh

Population size 200–500

Number of generations 100–400

Maximum number of genes allowed in

an individual

8

Maximum tree depth 4

Tournament size 12

Elitism 0.01% of population

Crossover events 0.85

High-level crossover 0.2

Low-level crossover 0.8

Mutation events 0.1

Sub-tree mutation 0.9

Replacing input terminal with another

random terminal

0.05

Gaussian perturbation of randomly

selected constant

0.05

Direct reproduction 0.05

Ephemeral random constants [-10 10]
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complexity of the evolved solutions. GPTIPS toolbox [23],

in conjunction with subroutines coded in MATLAB, is

used to implement MGGP. Fitness function evaluates the

evolved expressions to designate the best encoded

expressions. The default GPTIPS multi-gene symbolic

regression function is used to minimize the root-mean-

squared error (RMSE) between the measured and predicted

output.

For the analyses, the available data sets are randomly

divided into training and validation subsets. The training

data are used for learning (genetic evolution). The valida-

tion data are used to measure the performance of the pro-

grams evolved by MGGP on data that play no role in

building the models. In order to obtain a consistent data

division, several combinations of the training and testing

sets are considered. The selection is such that the maxi-

mum, minimum, mean, and standard deviation of param-

eters were consistent in training and testing data sets. Out

of the available data for each problem, approximately 80%

of the data are taken for the training process and 20% are

used for the validation of the MGGP models. The best

models are chosen on the basis of a multi-objective strategy

as below:

1. The simplicity of the model, although this is not a

predominant factor.

2. Providing the best fitness value on the training set of

data.

The first objective can be controlled by the user through

the parameter settings (e.g., maximum tree depth or num-

ber of genes). Correlation coefficient (R), mean absolute

error (MAE), and root-mean-squared error (RMSE) are used

to evaluate the capabilities of the proposed correlations. R,

MAE, and RMSE are given in the form of formulas as

follows:

R ¼
Pn

i¼1 hi � hi

� �
ti � tið Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 hi � hi

� �Pn
i¼1 ti � tið Þ2

q ð1Þ

MAE ¼
Pn

i¼1 hi � tij j
n

ð2Þ

RMSE�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 hi � tij j2

n

s

� 100 ð3Þ

where hi and ti are respectively the measured and calcu-

lated output values for the ith output; hi and ti are

respectively the average of the measured and calculated

outputs, and n is the number of samples.

For the analysis of the classification problem, the output

variable is decoded with a threshold value equal to 0.5. For

a more detailed analysis of the classification accuracy of

MGGP, its sensitivity, specificity, positive predictivity, and

accuracy are obtained using (4–7). In general, the classi-

fication performance is presented by a confusion matrix as

shown in Table 2. In this table, TP, TN, FP, and FN stand

for true positive, true negative, false positive, and false

negative, respectively. TP and TN are correct classifica-

tions, while FP and FN are incorrect classifications.

• True positive (TP): The model predicts that the class is

‘‘A’’ and the class of given instance is indeed ‘‘A’’.

• True negative (TN): The model predicts that the class is

‘‘B’’ and the class of given instance is indeed ‘‘B’’.

• False positive (FP): The model predicts that the class is

‘‘A’’ but the class of the given instance is ‘‘B’’.

• False negative (FN): The model predicts that the class

is ‘‘B’’ but the class of the given instance is ‘‘A’’.

Sensitivity ð%Þ ¼ TP

TPþ FN
� 100 ð4Þ

Specificity ð%Þ ¼ TN

TN þ FP
� 100 ð5Þ

Positive predictivity ð%Þ ¼ TP

TPþ FP
� 100 ð6Þ

Accuracy ð%Þ ¼ TPþ TN

TPþ FPþ FN þ TN
� 100 ð7Þ

3.1 Problem I: compressive strength

of high-performance concrete

High-performance concrete (HPC) is a class of concretes

that provides superior performance than the conventional

types. HPC is defined by the American Concrete Institute

(ACI) as a concrete that meets special combinations of

performance and uniformity requirements. The perfor-

mance characteristics of HPC are major concerns in con-

struction of structural engineering applications. The

enhanced performance characteristics of HPC are generally

achieved by addition of various cementitious materials and

chemical and mineral admixtures to the conventional

concrete mix designs. A key property of an HPC mix is its

compressive strength. The significance of the compressive

strength in concrete technology is obvious. Developing

accurate prediction models for the compression strength of

HPC leads to saving costs and time and generating a suc-

cessful concrete mixture [24].

Table 2 Confusion matrix

Detected class

Class A Class A

Actual class Class A TP FN

Class B FP TN
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In its current state, behavior modeling of the compres-

sive strength of HPC containing these additives is inher-

ently more difficult than for the concrete without them. In

order to provide accurate assessment of the performance

characteristics of the HPC mix, the effects of these

parameters should also be incorporated into the model

development. Therefore, the MGGP approach is utilized to

formulate the compressive strength (r) and the influencing

variables as follows:

r ¼ f K; FA;Að Þ ð8Þ

where K—ratio of water and superplasticizer summation to

binder ((W ? S)/B), B—binder content (C ? BF ? F),

W (Kg/m3)—water content, C (Kg/m3)—cement content,

BF (Kg/m3)—blast furnace slag content, F (Kg/m3)—fly ash

content, S (Kg/m3)—superplasticizer content, FA (Kg/m3)

—fine aggregate content, A (day)—age of specimens.

The above variables are chosen as the input variables on

the basis of an extensive trial study and literature review

[24–27]. The significant influence of the employed vari-

ables in determining r is well understood. A reliable

database consisting of tests on mixtures with a wide range

of aggregate gradation and properties is obtained from the

literature [25, 26] to develop the generalized models. The

database contains 1,133 test results. The descriptive sta-

tistics of the variables used in the model development are

given in Table 3. For the analysis, 907 sets (80%) are taken

for the training process and the rest of the values (20%) are

used for the testing of the generalization capability of the

model.

Chen [27] used GP to build an empirical model for r
upon a database of 600 records of HPC. Chen and Wang

[28] proposed an incorporating improved grammatical

evolution (GE) into the genetic algorithm (GA), called

GEGA, to estimate the compressive strength of HPC.

Mousavi et al. [24] developed prediction models for the r
of HPC using a hybrid method combining genetic pro-

gramming with orthogonal least squares (GP/OLS) algo-

rithms. For more verification, the MGGP formulation

results are compared with the results of these recent

studies.

3.1.1 MGGP-based formulation for compressive strength

of HPC mixes

The MGGP-based formulation of the compressive strength

(r) is as given below:

r MPað Þ ¼ �50:54þ 14:01 cos cos Kð Þð Þ ln FA� Að Þ
� 7:072 ln 2:171489Kð Þ ln FA� Að Þ ð9Þ

Comparisons of the MGGP-predicted versus experimental

compressive strength of HPC are shown in Fig. 5. As it is

seen, the MGGP model is able to predict the target values

with high degree of accuracy. Figure 6 shows the variation

of the best (log values) and mean fitness with the number of

generations. It can be observed from this figure that the

fitness value decreases with increasing the number of

generations. The best fitness was found at the 145th gen-

eration (fitness = 7.3603). The statistical significance of

each of the three genes of the derived model is visualized

in Fig. 7. According to Fig. 7a, the weight (coefficients) of

the bias term is higher than the other genes. Figure 7b

depicts the degree of significance of each gene evaluated

using p-values. As it is seen, the contribution of the genes

to explain variations in r is very high, as their relevant

p-values are very low and are approximately equal to 0. The

statistical significance of the first gene (Gene 1) is lower

than the bias term and the second gene. Also, Fig. 8 presents

the population of the evolved models in terms of their

complexity (number of nodes) as well as their fitness. The

generated models that perform relatively well and are much

less complex than the best model in the population can be

identified in this figure. The best model in the population is

highlighted with a red circle. Each green circle represents a

model that is not strongly dominated by other models in the

population in terms of fitness and model complexity.

Besides, statistical performance of the MGGP, GP [27],

GEGA [28], and GP/OLS [24] models, on the entire

database, is summarized in Table 4. It can be observed

from this table that the MGGP model has produced better

results than the GP, GEGA, and GP/OLS-based models.

3.2 Problem II: ultimate pure bending of steel circular

tubes

Circular hollow steel tubes have widely been used in large-

scale engineering applications due to their good energy

absorption characteristics under pure bending. Deforma-

tions of the circular tubes under bending show considerable

changes to their cross-section profile along the tube length

[29, 30]. High nonlinearity in this phenomenon complicates

the behavior analysis of the steel circular tubes under pure

bending. Precise evaluation of the behavior of the circular

tubes under bending using the conventional analytical

solutions is not an easy task. Also, the obtained solutions are

often difficult to be used in routine design practice.

In this stage, the feasibility of using MGGP for devel-

oping accurate prediction models for the ultimate pure

bending of the steel circular tubes is investigated. Four

predictor variables included in the analysis are the tube

thickness (t), tube diameter (d), yield strength of steel (fy),

and modulus of elasticity of steel (E). Therefore, the

MGGP formulation of the ultimate pure bending (Mu) is

considered to be as follows:

Mu ¼ f t; d; fy;E
� �

ð10Þ
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The significant influence of the employed variables in

determining Mu is well understood [30–32]. The database

used to calibrate and validate the MGGP model is obtained

from the literature [30] and comprises a series of 55 pure

bending tests conducted on cold-formed tubes. The

descriptive statistics of the variables used in the model

Table 3 Descriptive statistics of the variables used in the model development (Problem I)

Parameter W (%) C (%) B (%) F (%) S (%) CA (%) FA (%) A (day) r (MPa)

Mean 0.0785 0.1178 0.0319 0.0270 0.0027 0.4126 0.3295 44.06 35.84

Standard error 0.0003 0.0013 0.0011 0.0009 0.0001 0.0010 0.0010 1.80 0.48

Median 0.0789 0.1148 0.0107 0.0000 0.0028 0.4181 0.3300 28.00 34.67

Mode 0.1023 0.1493 0.0000 0.0000 0.0000 0.4181 0.2665 28.00 33.40

Standard deviation 0.0111 0.0427 0.0361 0.0309 0.0024 0.0325 0.0330 60.44 16.10

Sample variance 0.0001 0.0018 0.0013 0.0010 0.0000 0.0011 0.0011 3,653.15 259.23

Kurtosis 0.0746 -0.5786 -0.5435 -0.8526 1.0700 -0.4130 0.0455 13.81 -0.16

Skewness 0.2561 0.4731 0.7555 0.6297 0.7403 -0.3986 -0.1940 3.47 0.42

Range 0.0608 0.1806 0.1503 0.1127 0.0131 0.1625 0.1662 364.00 80.27

Minimum 0.0514 0.0448 0.0000 0.0000 0.0000 0.3173 0.2480 1.00 2.33

Maximum 0.1122 0.2254 0.1503 0.1127 0.0131 0.4798 0.4141 365.00 82.60
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development are given in Table 5. For the analysis, 44

values of the data are taken for the training process and the

rest of the values are used for the testing of the

generalization capability of the model. Recently, Shahin

and Elchalakani [30] developed an ANN prediction model

for the Mu of cold-formed tubes. The results obtained by

the ANN model were included in the comparative study.

3.2.1 MGGP-based formulation for ultimate pure bending

of steel circular tubes

The MGGP-based formulation of the ultimate pure bending

(Mu), in terms of t (mm), d (mm), fy (MPa), and E (MPa), is

as given below:

Mu MPað Þ ¼ 0:813� 10�11 þ 0:1669� 10�11td6

þ 0:1431� 10�6t2d2fy

þ 0:3905� 10�5d2fy � 0:3905� 10�5E

� 0:3403� 10�7d3fy ð11Þ

Comparisons of the MGGP-predicted versus experimental

ultimate pure bending are shown in Fig. 9. It can be seen

that the MGGP model gives precise estimates of the target

values. Figure 10 shows the variation of the best (log

values) and mean fitness with the number of generations.

As can be seen in this figure, the fitness value decreases

with increasing the number of generations. The best fitness

was found at the 78th generation (fitness = 0.3507). The

statistical significance of the genes of the derived model is

visualized in Fig. 11. As shown in Fig. 11a, the weight of

the bias term is higher than the other genes. Figure 11b

depicts the degree of significance of each gene using

p-values. With the exception of the bias term (p-val-

ues = 0.61), the contribution of the other genes to explain

variations in Mu is very high, as their relevant p-values are

very low. The population of the evolved models in terms of

their complexity and fitness is presented in Fig. 12. The

performance statistics of the MGGP and ANN [30] models,

on the entire database, are summarized in Table 6. It can be

observed from this table that the MGGP model outperforms

the ANN-based solution.

3.3 Problem III: surface roughness in end-milling

Milling is an important machining process. Roughness of

the milled surface has a considerable influence on the

functional properties of the product. Fatigue strength and

corrosion resistance are remarkably improved by a high-

quality milled surface [33, 34]. The high quality of the

surface after milling results in avoiding further machining

of the surface. The above facts suggest the necessity of

developing precise models for determining the surface

roughness. The parameters influencing the surface rough-

ness are mainly divided into controlled and non-controlled

cutting parameters. Some of the important controlled

parameters are spindle speed, feed rate, and depth of cut.

There are also many non-controlled parameters such as the

vibrations, tool wear, machine motion errors, and material

non-homogeneity of the tool and workpiece. The non-

controlled parameters are often difficult to be obtained and

whose interactions cannot exactly be determined [35].

Fig. 7 Statistical properties of the evolved MGGP model (on training

data)

Fig. 8 Population of the evolved models in terms of their complexity

and fitness

Table 4 Overall performance of different models for the compres-

sive strength prediction

Model Performance

R MAE RMSE

Traditional GP [21] 0.872 6.53 8.44

GEGA [22] 0.878 6.62 8.94

GP/OLS [17] 0.882 5.76 7.59

MGGP 0.890 5.54 7.35
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Survey of the previous surface roughness research reveals

that particular efforts devoted to the determination of the

most precise model for surface roughness prediction were

based on the multiple regression analysis [36].

The current work introduces the MGGP technique to

predict the surface roughness in end-milling. Several pre-

dictor variables are included in the modeling process. The

MGGP-based formulation of the surface roughness, Ra

(lm), is considered to be as follows:

Ra ¼ f S; F; D;Vð Þ ð12Þ

where S (min-1)—spindle speed, F (mm/min)—feed rate,

D (mm)—depth of cut, and V (lV)—vibrations.

The database used to developing the MGGP model is

obtained from the literature [35]. It comprises a total of 156

measurements of the surface roughness. The descriptive

statistics of the variables used in the model development

are given in Table 7. For the MGGP analysis, 120 sets are

taken for the training process and the remaining 36 data

sets are used for the testing of the model.

Progress has recently been made in the ability to pre-

dict the surface roughness. In this context, Brezocnik

et al. [35] obtained an empirical prediction model for the

surface roughness utilizing the traditional GP. The pre-

dictions made by the derived MGGP model are compared

with the traditional GP model. The GP model is devel-

oped upon the same database employed herein. For the

comparison purposes, the traditional GP-based formula-

tion is given below:

3.3.1 MGGP-Based Formulation for Surface Roughness

in End-Milling

The prediction equation for the surface roughness (Ra), for

the best results by the MGGP algorithm, is as given below:

Ra lmð Þ ¼ 0:02374þ 0:01535F � 0:161

� 10�5FV þ 0:00001797V

� 0:00003594S� 0:322� 10�5SF

þ 0:003074D

� 0:4612� 10�5 �0:04þ F þ Dð Þ2 ð14Þ

Comparisons of the MGGP-predicted versus measured

surface roughness are shown in Fig. 13. It can be seen from

Fig. 13 that prediction accuracy of the MGGP model is

very good for both of the training and validation data sets.

Figure 14 shows the variation of the best and mean fitness

Table 5 Descriptive statistics

of the variables used in the

model development (Problem

II)

Parameter t (mm) d (mm) fy (MPa) E (MPa) Mu (kNm)

Mean 2.43 81.37 408.87 200,741.82 5.83

Standard error 0.08 2.70 4.01 1,418.14 0.34

Median 2.52 89.10 408.00 200,000 5.40

Mode 2.52 89.30 365.00 211,000 4.30

Standard deviation 0.60 19.99 29.77 10,517.21 2.49

Sample variance 0.36 399.51 886.08 110,611,737.37 6.19

Kurtosis 0.42 -0.26 -0.18 -0.84 -0.74

Skewness -0.90 -0.61 0.47 -0.18 0.15

Range 2.45 76.80 108.00 36,000 9.80

Minimum 0.90 33.60 365.00 182,000 0.80

Maximum 3.35 110.40 473.00 218,000 10.60

Ra lmð Þ ¼ 2:68327� S� 7:13018Fð ÞF
SV

� 2
D

S

þ 7:13018F 7:13018� V þ 2S� F � 2Dð Þ 7:13018F þ Dð Þ
S2 �S2 þ SF þ Dð Þ

� Sþ V V þ 14:2604Fð Þ
F �2Sþ 8:13018F þ 3Dð Þ

þ
29:5207F þ S �S2 þ 7:13018F þ SFð Þ

�
7:13018 F2þ SDð Þ

� �

D 7:13018F þ 3Dð Þ :

ð13Þ
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Fig. 9 Predicted versus

experimental ultimate pure

bending values using the MGGP

model: a training data,

b validation data

Fig. 10 Variation of the best

and mean fitness with the

number of generations

Fig. 11 Statistical properties of the evolved MGGP model (on

training data)

Fig. 12 Population of the evolved models in terms of their

complexity and fitness
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values with the number of generations. As illustrated in this

figure, the fitness value decreases with increasing the

number of generations. The best fitness was found at the

189th generation (fitness = 0.24878). The statistical sig-

nificance of the evolved genes is visualized in Fig. 15. As

shown in Fig. 15a, the weights of the bias term and Gene 2

are higher than the other genes. Figure 15b depicts the

degree of significance of the evolved genes. With the

exception of the bias term (p-values = 0.33), the other

genes have significant contributions to the evaluation of Ra.

The population of the evolved models in terms of their

complexity and fitness is presented in Fig. 16.

The performance statistics of the MGGP and traditional

GP [35] models, on the entire database, are summarized in

Table 8. It can be observed from this table that the MGGP

model notably outperforms the GP model. In addition, the

MGGP model is significantly short and straightforward in

comparison with the more complicated equation provided

by GP.

3.4 Problem IV: steel beams patch load behavior

Patch load actions on steel girders are frequently

encountered in structural problems such as crane girders

and secondary beams reactions. Transversal web stiffeners

can be utilized at the location of the concentrated load

points to provide the necessary resistance. In the cases

where the exact position of the concentrated load is not

previously known, the ultimate resistance of unstiffened

webs should be evaluated. This is related to the structural

behavior of the webs. Developing precise models for the

analysis of the structural behaviors associated with the

beam collapse is not an easy task due to the participation

of several influencing parameters [37]. The failure process

of a beam subjected to a patch load can be described

in three major phases. The first phase lasts until some

yielding is diagnosed in the surface of the web. The second

Table 6 Overall performance of different models for the ultimate

pure bending prediction

Model Performance

R MAE RMSE

ANN [24] 0.988 0.30 0.37

MGGP 0.996 0.29 0.37

Table 7 Descriptive statistics

of the variables used in the

model development (Problem

III)

Parameter S (min - 1) F (mm/min) D (mm) V (lV) Ra (lm)

Mean 1,163.46 380.02 71.64 1,353.36 2.64

Standard error 22.92 13.44 3.31 28.26 0.07

Median 1,250.00 381.00 76.20 1,352.17 2.59

Mode 1,500.00 609.60 25.40 – 3.05

Standard deviation 286.32 167.84 41.36 353.03 0.87

Sample variance 81,978.91 28,169.64 1,710.61 124,628.07 0.76

Kurtosis -1.40 -1.39 -1.47 -0.59 -0.20

Skewness -0.18 0.06 0.17 0.21 0.34

Range 750.00 457.20 101.60 1,604.28 3.81

Minimum 750.00 152.40 25.40 638.19 0.94

Maximum 1,500.00 609.60 127.00 2,242.47 4.75
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Fig. 13 Predicted versus

measured surface roughness

values using the MGGP model:

a training data, b validation data

Neural Comput & Applic (2012) 21:171–187 181

123



step extends from the yielding stage until some small

folds can be detected in the web and the last phase goes

up to the failure point. Accordingly, the collapse can be

classified in three different cases [38, 39]: (1) web

yielding, (2) web buckling, and (3) web crippling.

Figure 17 shows a schematic representation of the possi-

ble failure modes.

In this stage, the robustness of MGGP is demonstrated

by applying it to the classification of the failure modes of

beams subjected to patch loads. The resistance of a steel

beam subjected to a concentrated load depends on different

geometrical and physical parameters. The MGGP-based

formulation of the beam structural collapse form (SC) is

considered to be as follows:

SC ¼ f b; h; tw; tf ; bf ;w;Fw;Ff ; b
� �

: ð15Þ

Fig. 14 Variation of the best

and mean fitness with the

number of generations

Fig. 15 Statistical properties of the evolved MGGP model (on

training data)

Fig. 16 Population of the evolved models in terms of their

complexity and fitness

Table 8 Overall performance of different models for the surface

roughness prediction

Model Performance

R MAE RMSE

Traditional GP [29] 0.937 0.49 0.58

MGGP 0.951 0.21 0.27
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The following values were assigned to the failure modes

according to the physical phenomenon associated with

each path load case:

1. Web buckling collapse

2. Web crippling collapse

3. Web yielding collapse

The threshold value of the output is equal to 0.5. The

following are the geometrical and material properties

included in the analysis:

b (mm)—web panel length, h (mm)—web height, tw
(mm)—web thickness, tf (mm)—flange thickness, bf

(mm)—flange width, w (mm)—applied load length, Fw

(MPa)—web yield stress, Ff (MPa)—flange yield stress,

and b—normalized slenderness parameter
wþ9tfð Þ

ffiffiffiffiffiffiffiffi
Fw=E
p

tw

� �

;

E (MPa) is the Young’s modulus.

Geometrical parameters of the steel beams involved in

the model development are illustrated in Fig. 18. A com-

prehensive database presented by Fonseca et al. [37] is

employed for the model development. The database con-

sists of 251 experimental results for the ultimate load and

the collapse-associated physical phenomenon. The

descriptive statistics of the variables used in the model

development are given in Table 9. Of the available data,

201 sets are taken for the training process and 50 data sets

are used for the testing of the model.

3.4.1 MGGP-based formulation for beam structural

collapse mode

The MGGP-based empirical relationship to classify the

failure modes (SC) of beams subjected to patch loads is as

given below:

SC ¼ 1:931� 0:00002596 c� 25:95ð Þ cþ 2Ff þ Fw

� �

� 0:8205 tanh tanh tf � 6:526769
� �� �

þ 1:119 tanh tw � 4:93353ð Þ
þ 0:01255 tanh tw � 2:07549ð Þ tw þ 2 cþ bð Þ: ð16Þ

When 0.5 B SC \ 1.5, the case is marked as ‘‘buckling

collapse mode’’; for 1.5 B SC \ 2.5, the case is classified

Fig. 17 Schematic failure

modes for beams subjected to

patch loading [33]

b

w

tw

bf

tf

h 

Fig. 18 Geometrical parameters of the steel beams involved in the

model development

Table 9 Descriptive statistics of the variables used in the model development (Problem IV)

Parameter b (mm) h (mm) tw (mm) bf (mm) tf (mm) w (mm) Fw (MPa) Ff (MPa) b SC

Mean 1,374.23 524.65 5.36 167.58 11.89 67.44 285.35 291.44 1.64 2

Standard error 87.37 17.91 0.21 5.44 0.36 3.90 3.49 2.96 0.08 –

Median 1,000.00 500.00 4.30 150.00 11.20 50.00 280.50 280.00 1.21 2

Mode 600.00 500.00 2.00 100.00 12.00 5.00 250.00 250.00 1.59 3

Standard deviation 1,386.89 284.24 3.35 86.38 5.66 61.87 55.42 46.92 1.21 –

Sample variance 1,923,450.07 80,791.64 11.23 7,461.45 32.08 3,827.73 3,071.23 2,201.78 1.45 –

Kurtosis 17.21 4.82 1.63 3.48 2.45 1.64 -0.99 -0.62 2.38 –

Skewness 3.68 1.74 1.14 1.55 1.26 1.30 0.29 0.63 1.58 –

Range 9,500.00 1,662.00 19.01 456.00 29.25 300.00 235.00 192.00 5.70 2

Minimum 300.00 138.00 0.99 45.00 3.05 0.00 178.00 221.00 0.32 1

Maximum 9,800.00 1,800.00 20.00 501.00 32.30 300.00 413.00 413.00 6.01 3

Neural Comput & Applic (2012) 21:171–187 183

123



as ‘‘crippling collapse mode’’, and for 2.5 B SC \ 3, the

failure mode is marked as ‘‘yielding collapse mode’’.

Comparisons of the MGGP-predicted and detected failure

modes are shown in Table 10. The results indicate that the

developed model is efficiently able to classify the web

buckling, crippling, and yielding modes. The performance

of the MGGP model on the training data is better than that

on the validation data sets. Also, the accuracy of the model

for the classification of the web yielding collapse mode is

higher than that for the other modes. The overall accuracy

of MGGP for correctly classifying the buckling, crippling,

and yielding collapse modes is equal to 96.02%.

Figure 19 shows the variation of the best and mean

fitness values with the number of generations. As illus-

trated in this figure, the fitness value decreases with

increasing the number of generations. The best fitness was

found at the 148th generation (fitness = 0.25397). The

statistical significance of each of the evolved genes is

shown in Fig. 20. As shown in Fig. 20a, the weights of

the bias term and Genes 2 and 3 are higher than the other

genes. Figure 20b demonstrates the degree of significance

of each gene. As it is seen, the p-values for all the genes

are approximately equal to 0. Thus, the contribution of

the genes in determining SC is very high. The statistical

significance of Gene 1 (p-values = 0.88910-9) is slightly

lower than the other genes. The population of the evolved

models in terms of their complexity and fitness is pre-

sented in Fig. 21.

Fig. 19 Variation of the best

and mean fitness with the

number of generations

Table 10 The classification accuracies achieved by the MGGP model for the failure behavior evaluation

Samples Training data Validation data

Class 1

(Buckling)

Class 2

(Crippling)

Class 3

(Yielding)

Class 1

(Buckling)

Class 2

(Crippling)

Class 3

(Yielding)

TP 70 32 91 27 2 16

TN 123 191 102 18 43 29

FP 0 8 0 1 4 0

FN 6 0 2 3 1 1

Sensitivity (%) 92.11 100.00 97.85 90.00 66.67 94.12

Specificity (%) 100.00 95.98 100.00 94.74 91.49 100.00

Positive predictivity (%) 100.00 80.00 98.08 96.43 33.33 96.67

Accuracy (%) 96.98 96.54 98.97 91.84 90.00 97.83
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4 Performance analysis and model validity

Different prediction equations were obtained for the

assessment of four complex structural engineering systems

using the MGGP approach. Based on a logical hypothesis

[40], if a prediction model gives R [ 0.8, and the error

values (RMSE or MAE) are at the minimum, there is a

strong correlation between the predicted and measured

values. The model can therefore be judged as very good. It

can be observed from Figs. 5, 9 and 13 that the MGGP

models (Problems I, II, III) with high R and low RMSE or

MAE values are able to predict the target values to an

acceptable degree of accuracy. Meanwhile, the MAE and

RMSE values are not only low but also as similar as pos-

sible for the training and validation sets, which suggests

that the proposed models have a very good predictive

ability (low values) and generalization performance (sim-

ilar values) [41]. The results, shown in Table 10 and

Fig. 19, for the classification-type problem (Problem IV)

indicate that the accuracy of the derived model is very

high. As shown in Tables 4, 6, and 8, the MGGP models

outperform the ANN, traditional GP, GEGA, and GP/OLS

models previously developed for the behavior modeling of

the investigated systems.

According to Frank and Todeschini [42], the minimum

ratio of the number of objects over the number of selected

variables for model acceptability is 3, but often a safer

value of 5 is more reasonable. In the present study, the

relevant ratios for the problems are much higher. The

minimum of this ratio belongs to the ultimate pure bending

problem and is equal to 55/4 = 13.75. Furthermore, new

criteria recommended by Golbraikh and Tropsha [43] are

checked for external validation of the MGGP prediction

models (Problems I, II, III) on the validation data sets. It is

suggested that at least one slope of regression lines (k or k0)
through the origin should be close to 1. Models are con-

sidered valid, if they satisfy the required above conditions.

The validation criteria and the relevant results obtained by

the MGGP models are presented in Table 11. The model

validity results ensure that the models derived by means of

MGGP are strongly valid, have the prediction power, and

are not chance correlations.

The conventional statistical techniques often assume

linear, or in some cases nonlinear, relationships between

the output and the predictor variables, which is not always

true. In most cases, the best models developed using the

commonly used statistical approaches are obtained after

controlling just some equations established in advance.

Thus, they cannot efficiently consider the interactions

between the dependent and independent variables.

There are some important differences between MGGP

and ANNs. ANNs suffer from some shortcomings includ-

ing lack of transparency and knowledge extraction. The

knowledge extracted by ANNs is stored in a set of weights

that cannot be properly interpreted. ANNs require the

structure of the network (e.g., transfer functions, number of

hidden layers, and neurons) to be identified a priori. Due to

the large complexity of the network structure, ANNs do not

give a transparent function relating the inputs to the cor-

responding outputs. The main advantage of MGGP over

ANNs is that GP generates a transparent and structured

representation of the investigated system [44]. MGGP has a

powerful ability to model the mechanical behavior without

any prior assumptions. The best solutions (equations)

evolved by this technique are determined after controlling

numerous preliminary models, even millions of linear and

nonlinear models. Furthermore, the models derived using

Fig. 20 Statistical properties of the evolved MGGP model (on

training data)

Table 11 Statistical parameters

of the MGGP models for the

external validation

hi—actual output value for the

ith output; ti—predicted output

value for the ith output;

n—number of sample

Item Formula Condition Problem I

compressive

strength

Problem II

pure bending

Problem III

surface

roughness

1 Eq. (1) R [ 0.8 0.897 0.986 0.896

2
k ¼

Pn

i¼1
hi�tið Þ

h2
i

0.85 \ K \ 1.15 1.00 0.98 0.97

3
k0 ¼

Pn

i¼1
hi�tið Þ

t2
i

0.85 \ K0\ 1.15 0.97 1.02 1.02
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MGGP are simple and straightforward and can easily be

manipulated in practical circumstances. As more data

become available, the MGGP models can be improved to

make more accurate predictions for a wider range.

However, one of the goals of introducing expert systems

into the design processes is better handling of the infor-

mation in pre-design phase. In the initial steps of design,

information about the features and properties of targeted

output or process is often imprecise and incomplete

[44, 45]. Nevertheless, it is idealistic to have some initial

estimates of the outcome before performing any extensive

laboratory or field work. The MGGP approach introduced

in this research is based on the data alone to determine the

structure and parameters of the models. Thus, the models

developed using MGGP are considered to be mostly valid

for use in preliminary design stages and should cautiously

be used for final decision-making. For more reliability, the

results of the MGGP-based analyses are suggested to be

compared with those obtained using deterministic methods.

5 Conclusions

In this paper, a promising extension of the classical GP,

namely MGGP, is employed for the analysis of the struc-

tural engineering systems. MGGP integrates the capabili-

ties of the GP and linear regression methods to formulate

the nonlinear behavior without any need to predefine the

structure of the nonlinear model. The capabilities of the

MGGP methodology are illustrated by application to four

practical problems. The structural problems considered are

the assessment of compressive strength of HPC mixes,

ultimate pure bending of circular tubes, surface roughness,

and structural collapse modes of beams subjected to patch

loads. Reliable databases from the previously published

experimental results are used to develop the models.

Several predictive equations were obtained by means of

MGGP. Despite high nonlinearity in the behavior of the

investigated systems, the proposed MGGP models give

reasonable estimations of the target values for both the

prediction and the classification-type problems. The

validity of the models is tested for a part of test results

beyond the training data domain. Furthermore, the MGGP

prediction models efficiently satisfy the conditions of dif-

ferent criteria considered for their external validation. The

proposed MGGP models efficiently incorporate the effects

of several parameters representing the nonlinear behavior

of the structural systems. A major advantage of MGGP lies

in its powerful ability to generate relatively compact

models. The evolved models provide valuable analy-

sis tools for practical pre-planning and pre-design

purposes.

References

1. Walter E, Pronzato L (1997) Identification of parametric models

from experimental data. Springer, London

2. Metenidis MF, Witczak M, Korbicz J (2004) A novel genetic

programming approach to nonlinear system modelling: applica-

tion to the DAMADICS benchmark problem. Eng Appl Art Int

17:363–370

3. Guzelbey IH, Cevik A, Gogus MT (2006) Prediction of rotation

capacity of wide flange beams using neural networks. J Constr

Steel Res 62(10):950–961

4. Guzelbey IH, Cevik A, Erklig A (2006) Prediction of web crip-

pling strength of cold-formed steel sheeting using neural net-

works. J Constr Steel Res 62(10):962–973

5. Gandomi AH, Alavi AH (2011) Applications of computational

intelligence in behavior simulation of concrete materials. In:

Yang XS, Koziel S (eds) Chapter 9 in Computational optimiza-

tion and applications in engineering and industry. Springer,

Berlin, pp 225–249

6. Guven A (2011) A multi-output descriptive neural network for

estimation of scour geometry downstream from hydraulic struc-

tures. Adv Eng Softw 42:85–93

7. Pala M (2006) A new formulation for distortional buckling stress

in cold-formed steel members. J Constr Steel Res 62:716–772

8. Koza JR (1992) Genetic programming, on the programming of

computers by means of natural selection. MIT Press, Cambridge

9. Gandomi AH, Alavi AH, Arjmandi P, Aghaeifar A, Seyednour R

(2010) Genetic programming and orthogonal least squares: a

hybrid approach to modeling of compressive strength of CFRP-

confined concrete cylinders. J Mech Mater Struct 5(5):735–753

10. Gandomi AH, Alavi AH (2011) Multi-stage genetic program-

ming: a new strategy to nonlinear system modeling. Inf Sci. doi:

10.1016/j.ins.2011.07.026

11. Gandomi AH, Alavi AH, Yun GJ (2011) Nonlinear modeling of

shear strength of SFRC beams using linear genetic programming.

Struct Eng Mech 38(1):1–25
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