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Abstract Medical image fusion has been used to derive the

useful complimentary information from multimodality imag-

ing. The proposed methodology introduces fusion approach for

robust and automatic extraction of information from segmented

images of different modalities. This fusion strategy is imple-

mented in multiresolution domain using wavelet transform-

and genetic algorithm-based search technique to extract

maximum complementary information. The analysis of input

images at multiple resolutions is able to extract more fine

details and improves the quality of the composite fused image.

The proposed approaches are also independent of any manual

marking or knowledge of fiducial points and start the fusion

procedure automatically. The performance of fusion scheme

implemented on segmented brain images has been evaluated

computing mutual information as similarity measuring matrix.

Prior to fusion process, images are being segmented using

different segmentation techniques like fuzzy C-mean and

Markov random field models. Experimental results show that

Gibbs- and ICM-based segmentation approaches related to

Markov random field perform over the fuzzy C-mean and

which are being used prior to GA-based fusion process for MR

T1, MR T2 and MR PD images of section of human brain.

Keywords Image fusion � Multiresolution analysis �
MRF � Gibbs segmentation � ICM segmentation �
FCM segmentation � Genetic algorithm

1 Introduction

Rapid technological development in recent times has led to

the creation of a number of sensors that are capable of

capturing different phenomena in the object to be imaged

from different points of view. Each individual sensor

acquires particular physical property of the object to pro-

duce a two-dimensional image at the surface level or a

three-dimensional image at the volume level. Thus, the

ability or inability of a particular sensor to display an

image of an object depends how accurately it picks up the

variation of signals received from the entire object to be

imaged. Wide variety of data acquisition sensors focus on

different parts of the same object, and the acquired images

are complimentary in nature in many ways. Not any one of

them is sufficient in terms of their respective information

content. The concept of multifocus images is to combine or

fuse the sharply focused regions from different sensors to

take a better decision than the single source only [1–13].

In medical diagnosis, different radiological images are

important tools for visual interpretation and evaluation.

Integration of information from different modalities may

offer the physicians a better chance to take decision for

treatment procedures and surgical planning. In the present

day, physicians are recommending multisensor imaging for

identification of diseases of a particular organ. For example,

magnetic resonance imaging (MRI) gives better information

on soft tissue regions related to normal and abnormal tissues

[3]. Dose calculation is based on computed tomography (CT)

data, whereas positron emission tomography (PET) images

provide metabolic processes of the organs, like blood flow,

food activity, etc. with low space resolution [14]. Hence, it is

natural and desirable to combine different modalities of

medical images together to increase the examination accu-

racy and evaluation specificity.
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Many image fusion methods have been proposed for

combining different modality images. Some of them are

based on Bayesian approach [15]. Hurn et al. [15] sug-

gested a hierarchical framework for the estimation of a

fused classification of medical images by combining

registered data images at different resolution. The authors

not only fused the functional images representing the

metabolic activities, but also included structural images to

incorporate anatomical properties [16]. The Dempster–

Shafer evidence theory [5–7, 17] has been applied to

classify multisource data considering uncertainties related

to different data sources. Technique [18] based on mul-

tilayer perceptron neural networks has been applied to

compute nonparametric estimation of posterior class

probabilities for multisource remote sensing images. A

novel artificial neural model based on pulse-coupled

neural network (PCNN) has been efficiently applied to the

field of multimodality medical image fusion [19]. Wave-

let-based multiresolution image fusion has been reported

in [4, 20–25].

Among other fusion techniques for multimodal images,

pixel-level image fusion is one of the convenient methods,

which has been developed for fusion applications as

reported in [26, 27].

As mentioned earlier, no individual sensor is complete;

hence, integration of salient features of images produced by

different modalities serves for the enhancement of global

information. Under this circumstance, the objective of

present work is to introduce an ‘automatic’ multimodal

medical image fusion system using multiresolution and

genetic algorithm (GA)-based techniques. This process can

be used in clinical diagnosis with accepted fusion accuracy.

Before the implementation of fusion process, some seg-

mentation techniques are used to extract the regions of

interest. Segmentation algorithms like fuzzy C-means and

Markov random field models, which are stochastic and

deterministic in nature, have been implemented in an

effective way prior to fusion process. In the proposed

fusion scheme, finer details have been extracted from the

decomposed input images using multiresolution approach.

We have implemented genetic algorithm to select appro-

priate complementary features from the input images. The

proposed fusion process has been implemented on seg-

mented images of brain using different modalities like

PD (proton density)-, T1- and T2-weighted MR. Mutual

information (MI)-based similarity metric has been com-

puted as an index for performance evaluation of the pro-

posed fusion scheme for the images that are segmented

using different techniques. The organization of the paper

is as follows: Sect. 2 discusses about different segmenta-

tion methods implemented on brain images prior to

fusion process; Sect. 3 describes the multiresolution- and

genetic algorithm-based fusion process and measure of its

performance using MI; Sect. 4 gives the details of exper-

imental results of segmentation as well as fusion technique

implemented on PD-, T1- and T2-weighted MR images of

human brain; and Sect. 5 concludes the paper.

2 Process of segmentation implemented on MR T1, MR

T2 and MR PD brain images

In MRI, segmentation is used to determine the volume of

different brain tissues such as white matter (WM), gray

matter (GM) and cerebrospinal fluid (CSF). The volu-

metric changes in these brain tissues help in the study of

neural disorders. Researchers have focused on segmen-

tation of multimodal (MR and other) medical imaging

[28–30]. The primary difficulty in achieving an accurate

segmentation is the intensity inhomogeneities that com-

monly occur in MR image. Since each segmentation

technique has been proposed to solve a particular prob-

lem, no technique is better than the others for any pur-

pose. We have to find out which technique gives the best

result in terms of given criteria or the combination of

them. Evaluation methods for image segmentation are

classified into analytical and empirical evaluation meth-

ods as described in [31]. The analytical methods analyze

the properties of a segmentation algorithm, such as its

processing strategy, complexity and efficiency. Empirical

methods are further classified into goodness methods and

discrepancy methods.

The empirical goodness methods use the original image

and the resulting segmented image. Goodness can be

expressed in terms of a statistical measure such as the

uniformity within segmented regions [32], inter-region

contrast [33] or region shape [34]. The empirical discrep-

ancy methods compute the error between the segmented

image and a reference image. These empirical discrepancy

methods include the following: (a) accuracy [35, 36],

which refers to the degree to which the segmentation

results agree with the true segmentation; (b) area or vol-

ume-based metrics, which include two approaches—one of

them is by using standard statistical methods, such as two-

way analysis of variance and the t-test [37, 38], and the

other one is borrowed from object detection literatures [30,

39, 40]; (c) distance-based metrics are used to measure the

distance between the ‘segmentation generated boundary’

and the ‘true’ boundary.

In the present work for the image fusion of PD (proton

density)-, T1- and T2-weighted MR images of human

brain, we have segmented the images prior to implemen-

tation of fusion, using both FCM and MRF methods. For

MRF methods, we have used the techniques like ICM and

Gibbs. Finally, MI-based parameter has been computed to

compare the efficacy of all these segmentation techniques
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for the process of information combination or fusion of all

these images.

2.1 Fuzzy C-means clustering

Fuzzy C-means (FCM), also known as fuzzy ISODATA,

was first proposed in [41], and later, it was improved as

reported in [42]. FCM clustering is a data clustering

algorithm in which each data point belongs to a cluster with

a degree specified by a membership grade, unlike K-means

in which each observation has a clear-cut binary mem-

bership. The data samples may belong to more than one

group with a varying membership value ranging from 0 to

1. The major advantage of FCM over K-means clustering is

the formation of new clusters by monitoring data points

that have close membership values to the existing classes.

Fuzzy algorithm can be outlined as follows:

Let U = {u1, u2, …, un} be a set of given data. A fuzzy

c-partition of U is a family of fuzzy subsets of U, denoted

by P = {A1, A2, …, Ac}, which satisfies

XC

i¼1

AiðukÞ ¼ 1: ð1Þ

The performance index of a fuzzy partition P, Im(P), is

defined in terms of cluster centers by the formula

Im A; v1; . . .; vcð Þ ¼
Xn

k¼1

XC

i¼1

AiðukÞ½ �
m

jjuk � vijj2 ð2Þ

where vi is the cluster center for ith cluster and ||uk - vi||

represents the distance d, between uk and vi. Clearly, the

smaller the value of Im(P), the better the fuzzy partition

P. Thus, fuzzy partition has a goal to minimize the

performance index Im(P), which offers

vi ¼
PN

k¼1 AiðukÞ½ �mukPn
k¼1 AiðukÞ½ �m ð3Þ

and

AiðukÞ ¼
1

PC
j¼1

dik

djk

� � 2
m�1

ð4Þ

The FCM algorithm is very similar to K-means

algorithm. It is an iterative procedure as described below:

1. Initialize the number of classes and the membership

matrix Ai(uk) with random values between 0 and 1 such

that (1) is satisfied.

2. Calculate the fuzzy cluster centers vi, i = 1,2, …, c,

using (3).

3. Iterate until the improvement over the previous

iteration is below a certain threshold; this is done by

computing the cost function using (2).

4. Compute the new membership matrix Ai(uk) using (4).

Go to step-2.

Thus, by iteratively updating the cluster centers and the

membership degrees for each data point, the FCM algo-

rithm iteratively moves toward a local minimum.

2.2 Markov random field model

Segmentation method based on Markov random field

(MRF) [43] provides a convenient way to combine both the

conditional intensity distribution of pixel intensities and the

contextual information based on the property of the pixels

which are lying in the neighborhood of others. Conditional

intensity distribution says that the intensity of pixels of

nearly homogeneous region will follow a certain statistical

distribution. Contextual information is based on the prop-

erty that the pixels which are close to other pixels or lying

in the neighborhood will tend to have similar intensity

values. It is a powerful method for modeling spatial con-

tinuity by using a priori contextual information. The task

here is to find out the true label of each pixel or voxel

which may belong to the subset of {GM, WM, CSF}. The

following discussion will outline how the two sources of

information—intensity distribution and contextual infor-

mation—are combined using MRF models to obtain a

powerful decision rule regarding the true label of the pixel.

Any MRF segmentation algorithm includes three main

properties—neighborhood correlations, nonparametric sta-

tistics and signal inhomogeneities. If L denotes a lattice with

dimensions Mx 9 My, s be the lattice point or pixel and let Ns

denotes the neighborhood of s and S is the total set. In the case

of MRF, the neighborhood system should satisfy two condi-

tions: the first being that the site should not be a neighbor of

itself and second, the sites follow the property of symmetry. In

this respect a clique in graph theory is a subset of vertices such

that every two vertices in the subset are connected by an edge.

Hence from the concept of neighborhood clique is defined as a

subset of points c belonging to total set C, which are all

neighbors of each other.

Gibbs distribution with respect to Ns is a probability

measure given as

P xð Þ ¼ 1

Z
exp �U xð Þ

T

� �
ð5Þ

where x is the value of random field vector F, called the

configuration, and all possible configurations are present in

X; T is a positive constant that controls the size of

clustering; Z is a normalizing constant, also known as

partitioning function, which is given as

Z ¼
X

x2X
exp U xð Þf g: ð6Þ
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And U(x) is the energy function referring to Gibbs energy,

UðxÞ ¼
X

c2C

VcðxÞ: ð7Þ

It is the sum of energies associated with all cliques in the

graph, where Vc is the potential function associated with

the clique. They can be one-node cliques, two-node or

three-node cliques. Presently, two-node cliques are used for

experimentation.

MRF is defined by the following two properties:

PðxÞ[ 0; 8x 2 X Positive definiteness;

P xijxS� sif g
� �

¼ P xijxNi
ð Þ Markov property:

ð8Þ

The Markov property can be stated as the probability of

labeling of a pixel, given all the labels in the image are equal to

the probability of the label given and the labels of its neighbors

only. Thus, the probability distribution of a variable is only

related with the random variables within its neighborhood.

Bayes’ principle along with Hammersley–Clifford [43] theory

is used to come up with a decision rule.

If the observed image y is a realization of a random field

Y, and x̂ indicates the estimate of true unknown label of the

observed pixels, then the main objective is to find x̂ given

the observed image y. Assuming that P(X) is our prior

knowledge, P(Y|X) is the probability of realizing the

observed image and posterior is P(X|Y), then by using

Bayes’ theorem, we have

P X=Yð Þ / P Y=Xð ÞP Xð Þ ð9Þ

Gaussian distribution is used for the modeling observed

image intensity distribution; hence,

PðY ¼ y=XÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2pr2

is

p exp � y� lsð Þ
r2

s

	 

ð10Þ

where ls is the mean and rs is the variance. The prior

knowledge is described by the MRF from (5), which is

given as

PðXÞ ¼ 1

Z
exp �UðXÞ

T

� �
: ð11Þ

The x̂ is obtained by computing the maximum a

posterior (MAP) estimate. Maximizing the logarithm of

the posterior gives

x̂ ¼ max
x

log p y=xð Þ þ log p xð Þf g: ð12Þ

From (10)–(12),

x̂ ¼ max
x
� y� ls

rs
� 1

2
log 2pr2

s

� �
� UðxÞ

T

� �
: ð13Þ

This maximization is called optimization, and a number

of methods have been proposed to solve this problem.

They are either deterministic or stochastic approaches.

We considered (1) iterated conditional modes (ICM), which

is Besag’s deterministic approach [44], and (2) stochastic

approaches—Gibbs sampling [45, 46].

Deterministic methods are highly based on initial seg-

mentation that is obtained from thresholding. These

thresholding methods are intensively used for the initial

segmentation of images prior to more sophisticated seg-

mentation method for the purpose of reduction in conver-

gence time.

3 Proposed image fusion scheme

The image fusion involves the combination of information

from different sensors to get more complete information

compared to the information obtained by a single sensor.

Naturally, the process of image fusion may be accom-

plished among the images of an object acquired by dif-

ferent sources in the same viewing reference frame or

among the images of same object acquired by a single

sensor at different imaging conditions and of different

viewing frames. Advanced image fusion approaches based

on multiscale representation have emerged and received

attention to the researchers. Most of these approaches are

based on the implementation of the multiscale decompo-

sitions (MSD) of the source images. In multiscale analysis,

integration of complementary features from different input

images can be achieved with relatively low loss of infor-

mation than in the case of single resolution processing. The

fusion processes described in many papers are generally

choose max (CM) scheme for high-frequency subbands of

multiscale decomposed image. CM scheme just picks the

coefficient with larger intensity pixel and discards the other

[47, 48]. Another coefficient combining scheme is the

weighted average (WA) scheme [49, 50].

In the present application, we have done an experiment

with MR PD, MR T1 and MR T2 modalities of images of

same region of section of human brain to implement the

proposed fusion scheme. When the images of same cross-

section of human brain are acquired by different modalities,

the image registration [51–54] process has to be performed as

a crucial prior step of fusion process. In the present applica-

tion, the registration process [51] is a nonlinear 2D/2D affine

transformation, which has been achieved by maximization

of a similarity metric and by choosing search strategy by

optimization.

3.1 Overall procedure for medical image fusion

The framework of a generic image fusion scheme based on

multiscale analysis has been illustrated in Fig. 1. The basic

idea is to perform a multiscale decomposition MSD of each

source images and also to provide a composite multilevel
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representation of them. Fusion procedure introduces dif-

ferent techniques where the combination of coefficients is

considered for desired approaches. Finally, fused image is

obtained by taking an inverse multiscale transform (IMST).

The overall image fusion scheme of the proposed

algorithm involves the decomposition of input segmented

and registered images, computation of genetic-based

selection methodology, implementation of fusion rules and

then reconstruction of the fused image as shown in Fig. 2.

Apart from simple CM- or WA-based coefficient com-

bining schemes, soft computing techniques may improve

the robustness and performances of the fusion approaches.

The proposed fusion algorithm utilizes a frequently used

Haar wavelet-based MSD method for the source images

and then implements and evaluates the new aspects of

coefficient combining approaches. Among them, fuzzy

clustering technique and evolutionary algorithms are

mainly adapted to collect and maximize the appropriate

complementary features, respectively.

3.2 The proposed algorithm constitutes

of the following steps:

• Haar wavelet-based MSD of input registered images

• Implementation of appropriate fusion procedure with-

out marking manual interpretation of fiducial points

• Implementation of different soft computing approaches

to combine the approximate and detail coefficients

obtained from MSD method

• Reconstruction of the composite fused image taking

inverse multiscale transforms.

The proposed approach starts with two registered images as

input. The region of interests of these input images is then

segmented using any one of FCM, Gibbs or ICM approa-

ches. The segmented images (A and B) are decomposed

into high (DA and DB) and low (CA and CB) frequency

subbands by HAAR wavelet transform. At a particular

decomposition level, both subbands must carry out the

information about that particular resolution. Genetic

searching algorithm is then applied for collecting maxi-

mum information from the image subbands DA and DB.

The low-frequency subbands CA and CB, produced by

DWT (discrete Wavelet transform), are then averaged for

accumulating the gross structure of fused image. Thus, the

selection rule considered for this algorithm can be descri-

bed as

C j
Fðu; vÞ ¼ mean C j

Aðu; vÞ; C j
Bðu; vÞ

� �
ð14Þ

where the superscript j denotes the jth level of resolution.

D j
Fðu; vÞ ¼ max of D j

Aðu; vÞ; D j
Bðu; vÞ

� �
ð15Þ

Finally, by applying the inverse wavelet transform on

the selected image subbands, the fused image can be

reproduced. It is noted that the proposed approach can

initiate without mention of any fiducial points and it is an

efficient, automatic and robust fusion technique using soft

computing approaches.

3.3 Multiscale/multiresolution decomposition

of images

In an image, if both small and large objects or low- and

high-contrast objects are present simultaneously, it is

advantageous to study them at several resolutions. This is

the fundamental motivation for multiresolution processing.

Multiscale/multiresolution image processing techniques, as

mentioned in the previous section, are the basis for the

majority of sophisticated image fusion algorithms. The

ideas behind multiresolution approach are described below:

Fig. 1 Block diagram of a generic image fusion scheme

Fig. 2 Block diagram of image fusion scheme
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3.3.1 Image pyramid

A powerful but simple structure for representing images at

more than one scale/resolution is the image pyramid. An

image pyramid is a collection of decreasing resolution

images arranged in the shape of a pyramid as shown in

Fig. 3. Figure 4 shows a simple system for constructing

image pyramids. This produces the level J - 1 approxi-

mation and level J prediction residual results. For passes

j = J - 1, J - 2,…, J - P ? 1, the previous iteration’s

level j - 1 approximation output is used as the input. Each

pass is composed of the following three steps:

• Compute a reduced resolution approximation of the

input image. It may be done by filtering the input and

then downsampling (subsampling) the filtered result by

a factor of 2. Different types of filtering operations may

be used, including neighborhood averaging, low-pass

Gaussian filtering or no filtering. Approximate image

contains only the gross structure of input. The quality

of generated approximation depends on the function of

filter selected.

• Upsample the output of step 1 by a factor of 2 and filter

the result. This creates a prediction image with the

same resolution as the input. Interpolation filter

produces the accurate prediction approximation of the

original input image.

• Compute the difference between prediction of step 2

and original input image. This difference is labeled as

level j prediction residual.

In multiresolution analysis (MRA), scaling function is

used to create a series of approximations of an image, each

differing by a factor of 2 from its nearest neighboring

approximations. Additional functions, called wavelets, are

then used to encode the difference in information between

adjacent approximations.

Present methodology uses Haar transform, discrete

wavelet transform (DWT) and inverse discrete wavelet

transform (IDWT).

Wavelet series expansion maps a function of continuous

variable into a sequence of coefficients. If the function

being expanded is a sequence of numbers, like samples of a

continuous function f(x), the resulting coefficients are

called the discrete wavelet transform (DWT) of f(x). In this

case, scaling or approximation coefficients and wavelet or

detail coefficients are expressed as

Wuðj0; kÞ ¼
1ffiffiffiffiffi
M
p
	 


�
X

x

f ðxÞuj0;kðxÞ ð16Þ

Wwðj; kÞ ¼
1ffiffiffiffiffi
M
p
	 


�
X

x

f ðxÞwj;kðxÞ ð17Þ

for j C j0 and f(x) is obtained via the inverse discrete

wavelet transform (IDWT)

f ðxÞ ¼ 1ffiffiffiffiffi
M
p
	 


�
X

k

Wuðuj0; kÞuj0;kðxÞþ
1ffiffiffiffiffi
M
p
	 


�
X1

j¼j0

X

k

Wwðj; kÞwj;kðxÞ: ð18Þ

Here, f(x), uj0, k(x) and Wj, k(x) are functions of the discrete

variable, x = 0, 1, 2, …, M - 1. Normally, it is considered

that j0 = 0 and M is selected as a power of 2 (i.e., M = 2J)

so that the summations are performed over x = 0, 1, 2,…,

M - 1, j = 0, 1, 2, …, J - 1 and k = 0, 1, 2, 2j - 1. For

Haar wavelets, the discretized scaling and wavelet func-

tions are employed in the transform (i.e., the basis func-

tions), correspond to the rows of the M 9 M Haar

transformation matrix. The transform itself is composed

of M coefficients with minimum scale to be zero and

maximum J - 1.

Fig. 3 A pyramidal image structure

Fig. 4 System for constructing image pyramids
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The 1D transforms of DWT are easily extended to 2D

functions like images. In 2D wavelet transform, a 2D

scaling function, u(x,y), and three 2D wavelets, WH(x,y),

WV(x,y), WD(x,y), are required. The separable scaling

function and directionally sensitive wavelets are expres-

sed as

uðx; yÞ ¼ uðxÞuðyÞ ð19Þ

WHðx; yÞ ¼ WðxÞuðyÞ ð20Þ

WVðx; yÞ ¼ uðxÞWðyÞ ð21Þ

WDðx; yÞ ¼ WðxÞWðyÞ: ð22Þ

The wavelet WH measures intensity variations along

columns (like horizontal edges), WV responds to the

intensity variations along rows (like vertical edges) and

WD corresponds to variations along diagonals. For given

separable 2D scaling and wavelet functions, extension of

1D DWT to 2D is straightforward and corresponding basis

functions are expressed as

uj;m;nðx; yÞ ¼ 2
j
2uð2 jx� m; 2 jy� nÞ ð23Þ

wi
j;m;nðx; yÞ ¼ 2

j
2wið2 jx� m; 2 jy� nÞ; i ¼ fH; V ; Dg

ð24Þ

where index i indicates the directional wavelets.

The discrete wavelet transform of function f(x,y) of size

M 9 N is then

Wuðj0;m; nÞ ¼
1ffiffiffiffiffiffiffiffi
MN
p
	 


�
XM�1

x¼0

XN�1

y¼0

f ðx; yÞuj0;m;nðx; yÞ

ð25Þ

Wi
wðj;m; nÞ ¼

1ffiffiffiffiffiffiffiffi
MN
p
	 


�
XM�1

x¼0

XN�1

y�0

f ðx; yÞwi
j;m;nðx; yÞ; i ¼ fH;V;Dg: ð26Þ

As in the 1D case, j0 is an arbitrary starting scale and

Wu (j0,m,n) coefficients define an approximation of f(x,y)

at scale j0. The WW(j,m,n) coefficients represent

horizontal, vertical and diagonal details for scales

j C j0. It is generally assumed that j0 = 0 and

N = M = 2J, so that j = 0, 1, 2,…, J - 1 and m, n = 0, 1,

2,….2j - 1.

For given Wu and WW, f(x,y) is obtained via IDWT,

f ðx; yÞ ¼ 1ffiffiffiffiffiffiffiffi
MN
p
	 


�
X

m

X

n

Wuðj0;m; nÞuj0:m:nðx; yÞ

þ 1ffiffiffiffiffiffiffiffi
MN
p
	 
 X

i¼H;V ;D

X1

j¼j0

X

m

X

n

wi
j;m;nw

i
j;m;nðx; yÞ

ð27Þ

3.4 Maximization of HF subbands components

In the proposed fusion rule, maximization of HF compo-

nents has been achieved by genetic searching algorithms.

Averaging technique has been implemented for low-

frequency subbands. The maximization and averaging

process are independent of manual marking of fiducial

points or any prior knowledge of seed points.

3.4.1 Genetic algorithm for optimization

Genetic algorithm is a search algorithm based on the

mechanism of natural selection and natural genetics. The

parameters that are to be optimized are represented as the

binary coded string structures called the chromosomes. A

collection of possible chromosomes then forms a popula-

tion, which produces next generation through a natural

search process. This searching algorithm considers ‘the

fittest survives’ rule after a structured yet randomized

information exchange within the existing generation to

yield a new generation. Genetic algorithm efficiently

exploits the information to speculate on new search points

with expected improved performance using three opera-

tors—selection (or reproduction), crossover and muta-

tion—to achieve the goal of evolution. GA differs from the

conventional optimization techniques in three ways:

• GA optimizes through a population of points, not by a

single point. Thus, the probability of finding a false

local peak is reduced over the conventional methods

that go through point-to-point search.

• GA has no need for any auxiliary information.

• To perform an effective optimization, GA only requires

objective function values associated with individual

strings. This characteristic makes GA a more robust

method with respect to many conventional optimization

schemes.

In the present approach, GA has been utilized for

maximization of detail coefficients of the input images

(A,B) at a particular resolution to achieve the improved

results. GA is capable of preserving the important detail

features into the fused image. The steps of GA are executed

iteratively as described below:

• Generate initial population of GA by randomly choos-

ing the detail coefficients from each of the HF subbands

DA and DB (50% population from DA and 50% from

DB)

• Calculate the average (avg1) and maximum (max1)

value of the members of current population

• Select mating members from the current population

based on the fitness value/objective function of the

corresponding members (the individual values of each
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member (detail coefficients) play the role of objective

function)

• Encode the eligible members by simple binary numbers

to form the chromosomes

• Perform three basic genetic operators—crossover and

mutation to create new generation chromosomes

• Decode the new generation chromosomes to form the

updated population of detail coefficients

• Calculate the new average (avg2) and maximum (max2)

value of the updated population

• If the difference between ‘avg1’ and ‘avg2’ and ‘max1’

and ‘max2’ is less than a predefined threshold value (T),

respectively, stop the iteration; otherwise, replace the

value of ‘avg1’ and ‘max1’ by ‘avg2’ and ‘max2’,

respectively, and go to step 3

In the present study, selected initial population size

= 40, crossover rate = 0.95, mutation rate = 0.1 and

T = 0.001 to meet the goal of convergence.

3.5 Evaluation of fusion qualities

Mutual information is a basic concept from information

theory, measuring the statistical dependence between two

random variables or the amount of information that one

variable contains about the other. In this study, MI is used

for evaluating the quality of the fused image. It is also used

for comparing the superiority of the proposed methodology

over the pixel-wise fusion technique.

The joint probability distribution of two images is

estimated by calculating a normalized joint histogram of

the gray values. The definition of the MI of two images A

and B combines the marginal entropy, pA(a) and pB(b)

and joint entropy pAB(a,b) of the images in the following

manner:

IðA;BÞ ¼
X

a;b

pABða; bÞ log
pABða; bÞ

pAðaÞpBðbÞ
: ð28Þ

MI is related to entropy by the equation

IðA;BÞ ¼ HðAÞ þ HðBÞ � HðA;BÞ ð29Þ

with H(A) and H(B) being the marginal entropy of A and B,

respectively, and H(A,B) be their joint entropy.

HðAÞ ¼ �
X

a

pAðaÞ log pAðaÞ ð30Þ

HðA;BÞ ¼ �
X

a;b

pABða; bÞ log pABða; bÞ ð31Þ

Fig. 5 a Original image used for the segmentation, b histogram of the original image, c ground truth showing WM in yellow, GM in green and

CSF in blue (color figure online)

Fig. 6 Segmentation results

a FCM, b ICM, c Gibbs

sampling
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4 Experimental results

To get the experimental results of the proposed fusion

scheme, we have used PD-, T1- and T2-weighted MR

images of section of human brain. To demonstrate the seg-

mentation process, let us start with an image of MR T1 slice

of section of human brain. In the present problem, we have

used brain MR images that provide the ground truth. The

original image, the histogram and ground truth are shown in

Fig. 5a–c. In the ground truth different gray shades represent

different cortical tissues. The most lightest gray shade rep-

resents white matter, next dark shade represents gray matter

and the darkest gray shade represents cerebrospinal fluid.

The MR brain image has been segmented into GM, WM

and CSF. Figure 6a shows the segmented image using

fuzzy C-means clustering, and the corresponding histogram

is shown in Fig. 7a. To implement the process of seg-

mentation using iterated conditional modes (ICM), the

image is initially segmented using the thresholding

(T) method. This is accomplished by analyzing the histo-

gram of the image and finding the intensity points that

divide the image into regions. These values are passed to

label the pixels of the image into different regions. Thus,

the image is initially labeled into three different classes

{GM, WM, CSF}. This image, along with the original

image, is taken as input for ICM with the constant T set to

1.7. The segmentation result using ICM and its histogram

Fig. 7 Histograms of segmented images. a FCM, b ICM, c Gibbs

sampling

Table 1 Computation time for the three methods on Intel core 2 duo,

4 GB RAM machine

Method FCM ICM Gibbs sampling

Time (s) 2.25 6.973 12.901

Table 2 MR T1 versus MR T2 fusion

MI F1 (ICM) F2 (GIBBS) F3 (FCM)

I1 1.4757 1.4036 1.5010

I2 1.5816 1.7374 1.4889

I1 ? I2 3.0573 3.141 2.9899

Table 3 MR PD versus MR T2 fusion

MI F1 (ICM) F2 (GIBBS) F3 (FCM)

I1 1.6161 1.6010 1.3281

I2 1.9895 1.8999 1.7783

I1 ? I2 3.6056 3.5009 3.1064

Table 4 MR PD versus MR T1 fusion

MI F1 (ICM) F2 (GIBBS) F3 (FCM)

I1 1.4096 1.3756 1.4348

I2 1.5694 1.6094 0.9983

I1 ? I2 2.979 2.985 2.4331
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are shown in Figs. 6b and 7b, respectively. Gibbs sampling

is based on stochastic approaches of Markov random field

model which have been inspired by physical annealing

process that occurs in matter. The segmented image using

Gibbs sampling and its histogram are shown in Figs. 6c

and 7c respectively.

For the analytical comparison of the segmentation

algorithms, the computation time, user interaction and

reproducibility have been considered. The computation

times for the three algorithms are shown in Table 1. The

algorithms are run on Intel core 2 duo, 4 GB RAM machine.

The time for Markov random field-based approaches is

noted for 1 iteration each.

We have presented the results of segmentation of MR

T1, MR T2 and MR PD (axial proton density MR image)

brain images of the same patient to study the proposed

fusion schemes. The images are registered and then have

been segmented using FCM and MRF (ICM and Gibbs)

algorithms. These segmented images are then analyzed

using multiresolution approach to combine information

extracted from each segmented images into the fused

image. According to the proposed fusion rule, biologically

inspired genetic evolutionary algorithm searched out all

information in details of high-frequency subbands.

The performance of different segmentation-based fusion

approaches are measured and compared using MI as sim-

ilarity metric. Both ICM and Gibbs segmentation tech-

niques produce the comparable performance index, but

FCM segmentation approach exhibits poorer index.

Tables 2, 3, and 4 describe the comparative study of fusion

process using ICM, Gibbs and FCM segmentation.

The results of segmentation of MR T1, MR T2 and MRI

PD images using FCM, ICM and Gibbs sampling are

shown in Fig. 8. The results of the fusion process on each

set of segmented images have been demonstrated in

Fig. 9a–c between the MR T1 and MR T2. Similarly,

Fig. 10a–c demonstrate the fusion process of segmented

images of MR T2 and MR PD brain images and Fig. 11a–c

demonstrate the same using MR T1 and MR PD brain

images.

MRI T1 Image                  FCM                            ICM                         Gibbs sampling

MRI T2 Image      FCM        ICM                  Gibbs sampling

MRI PD Image               FCM                         ICM                            Gibbs sampling 

Fig. 8 The segmentation of different modality MR images using FCM, ICM and Gibbs sampling processes
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The MI-based comparative study of the fusion tech-

niques is given in Table 2 for a set of images of MR T1 and

MR T2 modalities. I1 and I2 are the computed MI for MR

T1 and MR T2 images of the same patient, respectively.

F1, F2 and F3 denote the image fusion techniques using

ICM, Gibbs and FCM segmentation, respectively.

The MI-based comparative study of fusion techniques is

given in Table 3. I1 and I2 are MI for MR PD and MR

T2 images of the same patient, respectively. F1, F2 and

F3 denote the image fusion techniques using ICM, Gibbs

and FCM segmentation, respectively. The MI-based

comparative study of fusion techniques is given in Table 4.

I1 and I2 are MI of MR PD and MR T1 images of the same

patient, respectively. F1, F2 and F3 denote the image

fusion techniques using ICM, Gibbs and FCM segmenta-

tion, respectively.

5 Conclusion

In the present research, MSD-based medical image fusion

procedure has been described using genetic algorithm GA.

MR T2    Genetic  Fused  Image 

MR T1 MR T2 Genetic Fused Image 

 MR T1

MR T1           MR T2      Genetic Fused Image 

(a)

(b)

(c)

Fig. 9 Demonstrate the

GA-based fusion of segmented

images of MR T1 and MR T2

modalities. a Fusion of MR T1

versus MR T2 for ICM

Segmentation (F1). b Fusion of

MR T1 versus MR T2 for Gibbs

segmentation (F2). c Fusion of

MR T1 versus MR T2 for FCM

Segmentation (F3)
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This study focuses on how to use the MSD coefficients of

the source images to produce a composite fused image that

should be more informative for human interpretation. In the

present experiments, two levels of MSD methods in every

fusion scheme have been applied. However, increase in

decomposition levels may not necessarily produce better

results. Maximization of HF components has been

achieved by genetic searching algorithms because GAs are

the evolutionary techniques that naturally better suited for

discrete search spaces. Since digitized intensity values of

HF subbands play the role of objective function, it is

obvious that GA will be more efficient to collect the

important complimentary information from multimodal

images. In the present study, GA maximizes the coeffi-

cients of HF subbands after 14–16 iterations. Maximization

of the detail coefficients collects useful information and

reduces the effect of noises. Simple CM method of com-

bining techniques just selects the maximum values between

the two images. Since the high-frequency wavelet com-

ponents also include noise of the image along with the

useful details, CM rule incorporates noise in the fused

result. In contrary, GA-based combining method maxi-

mizes the average weight of the population, which in turns

reduces the effect of noise into the fused image.

    MR PD                            MR T2       Genetic Fused Image 

MR PD               MR T2     Genetic Fused Image 

 MR PD              MR T2                Genetic Fused Image 

(a)

(b)

(c)

Fig. 10 Demonstrate the

GA-based fusion of segmented

images for MR T2 and MR PD

modalities. a Fusion of MR PD

versus MR T2 for ICM

segmentation (F1). b Fusion of

MR PD versus MR T2 for Gibbs

segmentation (F2). c Fusion of

MR PD versus MR T2 for FCM

segmentation (F3)
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In the present article, the authors have attempted to

present fusion schemes to fuse segmented information

obtained from different modality brain MR images (PD, T1

weighted and T2 weighted) using multiresolution- and

genetic algorithm-based techniques. Prior to the fusion

process, the images are segmented using FCM and MRF

models in different brain tissue regions like GM, WM and

CSF. Earlier research [29] on data fusion of multimodal

brain image shows the results of FCM-based segmentation

prior to context dependent (CD) image fusion. In the

present study, we have focused not only on the fusion

process but also on the segmentation techniques that are

having a great role for more effective fusion operation for

multimodality medical imaging. In our experiment we have

presented the experimental facts that MRF-based tech-

niques like ICM and Gibbs sampling yield better results

than FCM-based segmentation for further implementation

of fusion operators on the segmented images. To establish

the efficacy of segmentation processes in the combined

fusion scheme, MI-based index has been computed as

similarity metric measure. The value of this index shows

the efficiency of the techniques for a recommended fusion

MR PD

MR PD       

MR PD              MR T1      Genetic Fused Image 

    MR T1  Genetic Fused Image 

   MR T1        Genetic Fused Image 

(a)

(b)

(c)

Fig. 11 Demonstrate the

GA-based fusion of segmented

images of MR T1 and MR PD

modalities. a Fusion MR PD

versus MR T1 for ICM

segmentation (F1). b Fusion of

MR PD versus MR T1 for Gibbs

segmentation (F2). c Fusion of

MR PD versus MR T1 for FCM

segmentation (F3)
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scheme and which may be considered by the physicians to

determine their diagnostic procedures and therapeutic

planning.
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