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Abstract Steganography is the science of hiding infor-

mation in a media such as video, image or audio files. On

the other hand, the aim of steganalysis is to detect the

presence of embedded data in a given media. In this paper, a

steganalysis method is presented for the colored joint pho-

tographic experts group images in which the statistical

moments of contourlet transform coefficients are used as the

features. In this way, binary particle swarm optimization

algorithm is also employed as a closed-loop feature selec-

tion method to select the efficient features in tandem with

improvement of the detection rate. Nonlinear support vector

machine and two variants of radial basis neural networks,

i.e., radial basis function and probabilistic neural network,

are used as the classification tools and their performance is

compared in detecting the stego and clean images. Experi-

mental results show that even for low embedding rates, the

detection accuracy of the proposed method is more than

80% along with 30% reduction in the size of feature set.

Keywords Steganalysis � Contourlet transform �
Binary particle swarm optimization � Radial basis

neural networks � Support vector machine

1 Introduction

In the recent decades, increasingly usage of the information

technology and growth of data transmission have drawn the

researchers’ attention to data hiding methods and their

detection. Steganography is the science of hiding infor-

mation in a cover media such as video, image or audio files.

The statistical undetectability is the main requirement of

steganography. To accomplish this, two class of techniques

have been proposed: spatial-domain techniques such as

least significant bit (LSB) [1] and LSB matching [2, 3], and

transform domain techniques such as F5 [4], OutGuess [5],

JpHide [6], StegHide [7], and YASS [8].

On the other hand, the aim of steganalysis is to detect

the presence of embedded data in a given media. Steg-

analysis has been widely used in computer forensics, cyber

warfare, and criminal activities detection over the internet

[9, 10]. In this paper, a steganalysis method is presented for

the colored joint photographic experts group (JPEG)

images.

Steganalysis techniques have been classified into two

major categories: blind steganalysis which is independent

of the steganography method and the specific steganalysis

which attempts to detect a specific steganographic media.

The blind steganalysis discovers the presence of the hidden

messages through extracting sensitive features, such as

Markov transition probability matrix [11], statistical

moments of characteristic function of sub-band histograms

[12], and the merging feature set [13]. The specific steg-

analysis could reveal the secret messages or even estimate

the embedding rate. For example, RS [14], WAM [15], and

its modified version [16] can detect the spatial steganog-

raphy reliably.

Generally, three stages of steganalysis are: feature

extraction, feature selection, and classification. The features
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are mainly extracted directly from the spatial domain or

from a transform domain such as discrete wavelet transform

(DWT), discrete cosine transform (DCT), and contourlet

transform (CT). The feature selection (FS) is the process of

choosing a subset of the original feature spaces according to

discrimination capability to improve the quality of data.

Also, various types of classifiers such as artificial neural

networks (ANNs) and support vector machines (SVMs)

have been used in steganalysis systems [17].

In the feature extraction stage, two-dimensional DWT

offers a decomposition of approximation coefficients of

each level to four components: the approximation, and the

details only in three orientations (horizontal, vertical, and

diagonal). In this way, the features are extracted from the

sub-band coefficients at each level of decomposition. On

the other hand, in the contourlet transform more directional

information can be captured by decomposing an image into

directional sub-images at different scales, so this transform

can capture heterogeneities and smooth contours more

accurately than DWT.

In this study, we use the features that have been pro-

posed in [18]. The extracted features are statistical

moments (mean, variance, skewness, and kurtosis) of the

contourlet coefficients. Also, the linear prediction of

magnitude coefficients is performed based on [19] and the

statistical moments of log error between the actual and

linear predicted coefficients of contourlet transform are

used as the features.

In addition, feature selection (FS) is the process of

choosing a subset of the original feature space according to

discrimination capability to improve the quality of data.

Unlike feature transform techniques, the fewer dimensions

obtained by feature selection facilitate exploratory of

results in data analysis. Due to this predominance, FS has

now been widely applied to many domains, such as pattern

recognition and time-series forecasting [20]. In this paper,

binary particle swarm optimization (BPSO) is used to

reduce the size of feature set [21].

Two neural-based classifiers, radial basis function neural

network (RBFNN) and probabilistic neural network (PNN),

are used to measure the detection accuracy of proposed

steganalysis system. In another experiment in this study,

the steganalysis method that has been proposed in [18] is

applied to a color image database, Uncompressed color

image database (UCID), with embedding rates of 5, 10, and

25% of maximum capacity for steganography methods.

Then, we apply the BPSO feature selection technique to the

reported work in [18] to evaluate the effect of feature

selection on the performance. Finally, as another aim of

this study, the performance of three classifiers for different

embedding ratios is compared in terms of true positive (TP)

and false positive (FP) rates. These classifiers are SVM,

which has been used in [18], and two neural-based ones;

RBFNN and PNN. In this way, the confusion matrices are

also reported when using the mentioned classifiers to solve

the two-class (stego/clean image) problem at different

embedding rates.

This paper is organized as follows. In Sect. 2, the related

works are reviewed. The proposed scheme including

feature extraction, feature selection, and classification

stages are introduced in Sect. 3. The experimental results

are reported in Sect. 4, and the conclusions are drawn in

Sect. 5.

2 Related works

This section gives a review of some recent steganalysis

schemes including different methods for feature extraction,

feature selection, and pattern classification.

As sample researches in using different feature extrac-

tion methods in this field, Lie and Lin [22] have merged the

features of spatial and DCT domains; i.e., gradient energy

(as a spatial-domain feature), and the mean and variance of

the Laplacian parameters (as the DCT-domain features).

Pevny and Fridrich [13] have used a new merging feature

set of DCT and calibrated Markov features and also SVM

as a binary-classifier and also a multi-classifier for the

images with different quality factors. Xuan et al. [23] have

proposed a steganalysis method that was based on the

statistical moments of characteristic functions of wavelet

sub-bands and a Bayes classifier. Zhou and Hui [24] have

used Markov transition matrix to capture the correlations

between the adjacent coefficients in both intra-block and

inter-block senses. Lyu and Farid [25] have used statistical-

model features including the first- and higher-order mag-

nitude statistics and the phase statistics from wavelet and

local angular harmonic and also three classifiers; i.e., linear

SVM, nonlinear SVM, and one-class SVM. Wang and

Moulin [12] have used the empirical moments of proba-

bility density function (pdf) and the empirical characteristic

function (CF) moments of the pdf in different wavelet sub-

band coefficients and their sub-band prediction errors.

Bhattacharyya distance was used for feature evaluation to

improve the classification performance of Fisher linear

discriminator. The contourlet domain has been investigated

in steganalysis, too. Sajedi and Jamzad [18] have used the

statistical moments of eight sub-bands in the third level of

contourlet and the statistical moments of difference

between actual and linear predicted coefficients of con-

tourlet as the features. The JPEG steganography performs

data hiding in DCT domains [26]. In this way, binary

similarity measures have been used in JPEG steganalysis.

For example, Lin and Zhong [27] have captured the 7th

and 8th bit planes of the nonzero DCT coefficients from

JPEG images and computed 14 features of each image
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based on binary similarity measures. Bhat et al. [28] have

used a combined feature set including Huffman bit code

length (HBCL) statistics and file-size to resolution ratio

(FR index), called Huffman bit file index resolution

(HUBFIRE).

As sample researches in using different feature selection

methods in this field, the genetic algorithm (GA) has been

also used to select a subset of candidate features, trans-

formations, and coefficients of the logistic regression

classifier model for blind image steganalysis [29]. Also,

localized generalization error model (L-GEM) has been

used for feature selection in steganalysis systems [30].

As sample researches in using different classification

methods in this field, multi-classifier models based on the

steganalysis results of decomposed image blocks [31] or a

hierarchical ensemble of classifiers [32] have been

proposed. Also, boosted fusion methods have been used to

aggregate outputs of multiple steganalyzers [33]. Blind

steganalysis based on one-class SVM (OC-SVM) with

simulated annealing clustering algorithm has also been

proposed which can create more reasonable multi-sphere

by finding global optimum solutions in the clustering

process [34].

As other sample reported steganalysis systems in the

recent decade, we can mention the following systems:

Wang et al. [35] with the aim of detecting the popular

JPEG steganography algorithms have proposed a steg-

analysis scheme in which a kind of transition probability

matrix is constructed to describe correlations of the quan-

tized DCT coefficients in multi-directions. They have

extracted a 96-dimensional feature vector and trained SVM

to build the steganalyzer. Also, pixel-value differencing is

a steganalysis technique in the spatial domain in which

embedding is performed in the difference of the values of

pixel pairs. Sabeti et al. [36] have identified a number of

characteristics in the difference histogram that show

meaningful changes when an image is embedded. They

have also used five different multilayer perceptrons (MLPs)

to detect different levels of embedding. Liu et al. [37] have

used the features on the joint distributions of the DCT and

DWT coefficients and the features on the polynomial fitting

errors of the histogram of DCT coefficients, which they

called original expanded features (EPF). To handle the

large number of developed features, support vector

machine-recursive feature elimination (SVM-RFE) method

has been used for binary classification. Also, SVMs have

been applied to the selected features for detecting stego

images. Also, Liu et al. [38] have used the combination of a

dynamic evolving neural fuzzy inference system (DENFIS)

with mentioned SVM-RFE feature selection method for

steganalysis of LSB matching steganography in grayscale

images. Raval [39] has proposed a simple tactic for secure

steganography in which a matrix based on the image

content has been derived. This matrix is used by quanti-

zation index modulation (QIM)-based encoder and deco-

der. Wahab et al. [40] have proposed a steganalysis

technique based on the conditional probability statistics.

This technique performs better than Markov process-based

technique in terms of classification accuracy on F5

software. The length of embedded message has been cal-

culated using SVM to classify the cover and stego images,

as well [41].

3 Proposed scheme

3.1 Feature extraction stage

We use the statistical features of coefficients and co-

occurrence metrics of sub-band images as the features from

contourlet domain. Contourlet is a multi-scale and multi-

direction transformation which includes two major parts:

Laplacian pyramid which produces multi-scale decompo-

sitions and the directional filter bank which produces multi-

direction decomposition.

Laplacian pyramid is first used to capture the point

discontinuities, and then followed by a directional filter

bank to link point discontinuities into linear structures.

Laplacian pyramid, at each level, generates a down-sam-

pled low-pass version of the original and a difference

between the original signal and the prediction, resulting in

a bandpass image.

The second decomposition, directional filter bank, con-

tains two serial building blocks. The first building block is

a two-channel quincunx filter bank with fan filters that

divides a 2-D spectrum into two directions: horizontal and

vertical. The second building block of directional filter

bank is a shearing operator, which amounts to reordering of

image samples [42]. Contourlet filter bank is a combination

of a Laplacian pyramid and a directional filter bank.

Figure 1 shows the contourlet filter bank in one level. As

shown in Fig. 1, the bandpass images from the Laplacian

pyramid (multi-scale decomposition into octave bands) are

passed through a directional filter bank, so that directional

information can be captured. This scheme can be iterated

on the coarse image. This combination is a double iterated

filter bank structure, which decomposes images into

directional sub-bands at multiple scales.

In this study, discrete contourlet transformation is

applied to images in 3 levels and 8 directions. For example,

contourlet decomposition of an UCID image sample

(UCID00015) with two scales, and four and eight direc-

tions is shown in Fig. 2. Four statistical moments (mean,

variance, skewness, and kurtosis) are extracted from the

third level coefficients of the contourlet transform and from

its predicted log error [18, 19] as follows:
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where xk is a data point in the feature vector, and n is the

dimension of feature vector.

3.2 Feature selection stage

Irrelevant and redundant features degrade the performance

of classification [43, 44]. A good feature selection method

has several advantages for a learning algorithm such as

reducing computational cost, increasing its classifier

accuracy, and improving result comprehensibility [45]. So,

most of the machine learning algorithms rely on feature

selection techniques in order to perform effective classifi-

cation in different applications such as pattern classifica-

tion [46–48], biomedical engineering [43, 49–52], intrusion

detection in computer networks [53, 54], bioinformatics

[55], remote sensing [56], texture classification [57], audio

classification [58], attribute selection in data mining [59],

emotion recognition from speech signal [60, 61], text

sentiment classification [62], software fault prediction [63],

short-term electricity load forecasting [20], and bank fail-

ure prediction [64].

In this way, it has been shown that the accuracy, sen-

sitivity, and specificity is improved, even with more than

50% of the input features eliminated [51]. Also, the number

of input training parameters for neural networks should be

kept small, because of maintaining the optimal general-

ization ability of the networks.

As mentioned earlier, binary particle swarm optimiza-

tion (BPSO) is used as a closed-loop feature selection

algorithm in this study. This algorithm selects the feature

subset based on the classifier feedback. So, it is expected to

get better performance, even with a reduced number of

features.

PSO is a population-based algorithm to find solutions of

an optimization problem. The search space is constructed

based on the variables of problem. The flowchart of PSO

algorithm is illustrated in Fig. 3. In BPSO, since the vari-

ables indicate existence or nonexistence of a feature, the

search space is a binary space. Positions of the particles are

updated based on updating their velocity according to the

following equations:

vij t þ 1ð Þ ¼ wvij tð Þ þ C1R1 Pbestij
� xij tð Þ

� �

þ C2R2 Gbestj
� xij tð Þ

� �
ð5Þ

xij t þ 1ð Þ ¼ xij tð Þ þ vij t þ 1ð Þ ð6Þ

where vij(t) indicates the velocity of jth component of ith

particle at the position xij(t) in tth iteration. w is the velocity

coefficient, R1 and R2 are two random numbers. Pbestij
is the

jth component of ith particle which minimizes the cost

function as compared to the previous iterations. The Gbestj

indicates jth component of the best particle in the

minimization of cost function as compared to previous

iterations. Hence, C1 and C2 are the weights of local and

global terms of search algorithm. BPSO has been

introduced in 1997 [65]. Like genetic algorithm (GA),

BPSO could be effectively utilized in binary optimization

problems. In the BPSO technique, the probability of the

particle being as 0 or 1 is specified by the velocity value

using sigmoid function. The conversion of continuous PSO

to BPSO is performed as follows [21]:

xijðt þ 1Þ ¼ 0 if randðÞ� Sðvijðt þ 1ÞÞ
1 if randðÞ\Sðvijðt þ 1ÞÞ

�
ð7Þ

where rand() is the random numbers uniformly distributed

between 0 and 1. S(�) is the sigmoid function and is given

as follows:

S vij t þ 1ð Þ
� �

¼ 1

1þ e�vijðtþ1Þ ð8Þ

In this way, the continuous positions are converted to

binary positions. Binary position ‘‘1’’ is assigned to

effective features and binary position ‘‘0’’ to noneffective

features in distinguishing stego from clean images.

In our simulations, the number of particles is set to 10,

and the values of these particles are taken as 0 at the

beginning of the process. In the optimization process,

training and test sets are composed considering the features

Fig. 1 The contourlet filter bank [42]
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defined by the particles, and the classifiers (RBFNN, PNN,

and SVM) are trained and tested using datasets. As a result,

classification accuracy rate and training error rate are

obtained for each particle. The success rate of each particle

is calculated using the following fitness function:

f ðiÞ ¼ AðiÞ � EðiÞ ð9Þ

where f(i) is the success rate, A(i) is the classification

accuracy rate and E(i) is the training error rate of ith par-

ticle. Velocity of the particles is calculated using (5) and

vmin and vmax are set to -6 and 6, respectively. For each

iteration, Pbestij
and Gbestj

is updated if necessary. At the

end of the optimization process, Gbestj
is found as the

optimum solution. In our simulations, BPSO algorithm is

iterated 100 times to find the optimum subset of features. In

(5), w is set to 0.2, and it is assumed that C1 = C2 = 2

[66].

3.3 Classification stage

3.3.1 Support vector machine

In this study, SVM which is a supervised learning method

[67] is used as one of the classification techniques. Given a

set of instance label pairs xi; yið Þ; xi 2 Rn; yi 2 �1; 1f g; i ¼
1; . . .;m; SVM maps the training vectors xi into a higher

dimensional space. In other words, SVM constructs a

separating line which maximizes the margin in this higher

Fig. 2 Contourlet

decomposition of an UCID

image sample (UCID00015)

with two scales, and four and

eight directions
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dimensional feature space. Also, the hyperplane is formed

according to the selected kernel. Using a nonlinear kernel

function allows the algorithm to fit the maximum margin

hyperplane in a transformed feature space. If the nonlinear

kernel used is a Gaussian radial basis function (RBF), the

corresponding feature space is a Hilbert space of infinite

dimension [68]. Maximum margin classifiers are well

regularized, so Gaussian RBFs have received significant

attention.

Classical techniques utilizing radial basis functions

employ some methods of determining a subset of centers.

Typically a method of clustering is first employed to select a

subset of centers. An attractive feature of the SVM is that

these selections are implicit, with each support vector con-

tributing one local Gaussian function, centered at that data

point. We have used SVM with Gaussian RBFs kernel [69]:

k xi; xj

� �
¼ exp

jjxi � xjjj2

2r2

 !
ð10Þ

where xj and xj are the data points, and r is the spread of

Gaussian function. In our simulations, we set 2r2 to 1.

3.3.2 Radial basis function neural network

Radial basis function neural network (RBFNN) is a feed-

forward neural network. RBFNN consists of an input layer,

a radial basis function layer (hidden layer), and an output

layer [70]. The number of input layer nodes is equal to the

number of selected features, and output layer has one

neuron. The single neuron of output layer indicates the data

classes (clean or stego). The weighted input to the radial

basis transfer functions of the hidden layer is the Euclidian

distance between the input vector and the weight matrix of

links connecting the input nodes to hidden layer nodes,

multiplied by a bias value (which affects the spread of

radial basis function, inversely). Decreasing the distance

between the weight vector and the input vector, results in

increasing the output. The weights and biases are obtained

by training the neural network to minimize the misclassi-

fication error in a mean square error (MSE) sense [71].

3.3.3 Probabilistic neural network

PNN is a neural network that is suited for classification

applications. It consists of an input layer, a hidden layer

called pattern layer, another hidden layer called summation

layer, and an output layer [72]. The input layer units are

distribution units that supply the same input values to all of

the pattern units. It is noted that the number of neurons in

pattern layer is equal to the number of training data. The

number of neurons in summation layer is equal to the

number of classes, as well. Membership of a test data (x) to

each class is computed as the summation of closeness of

x to all members of that class (which are the training

samples that belong to that class). Usually, the membership

function of the pattern layer neurons is considered as

normal distribution function. The structure of PNN is

shown in Fig. 4.

4 Simulation and experimental results

In our simulations, we have used uncompressed color

image database (UCID), which contains 1338 color TIFF

Initialize position and velocity of particles

Evaluate particles to determine the search 
space constrained ones by limitations of 

variables

Determine Pi and G

t < Tmax

Update vi and xi

No

Yes

Fig. 3 Flowchart of the PSO algorithm

Fig. 4 Structure of PNN [72]
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images [73]. The images were converted from TIFF to

JPEG images with a quality factor of 80, in order to be used

in steganographic methods.

In order to obtain stego dataset, Jsteg [74], OutGuess

[75], model-based algorithm [76] and JPHS software [77]

have been applied to the JPEG images to embed the ran-

domly secret message with 5, 10, and 25% of maximum

embedding capacity of steganography methods. For each

embedding rate, we have four steganography methods. So,

there are 5352 stego images. 1338 stego images have been

randomly selected from stego image dataset. Also, 1338

clean JPEG images of UCID database have been used to

organize an equal-size two-class dataset.

Ninety-six features have been extracted from the third

level of contourlet transform in eight directions and three

color channels. Also, the linear prediction of magnitude

coefficients is performed and the statistical moments of log

error between actual and linear predicted coefficients of

contourlet transform have been determined. In this way, 96

supplementary features have been achieved.

BPSO, as a closed-loop feature selection method, is used

to select the most efficient features in tandem with

improvement of the detection rate. In this work, the feature

set size is reduced from 192 to a reduced feature set with

the size of 106–125 features as reported in Tables 1, 2

and 3, when the confusion matrices for three embedding

rates (25, 10, and 5%) are reported. It is noted that the

information hiding ratio or embedding rate is a well-known

metric for evaluating steganalysis performance [78]. As

can be seen, the number of selected features by BPSO

algorithm when using RBFNN is 108, 110, and 106 fea-

tures for the three mentioned embedding rates, respec-

tively. Also, the number of selected features when using

PNN classifier is 120, 118, and 112 features, respectively.

It is noted that the significance of features and the detection

performance depend not only on the embedding rate, but

also on the image complexity [78].

In this study, random subsampling validation has been

used as the cross-validation method. The average ratio of

the training and test dataset size used in similar works, for

example reported in [18, 38, 79], is used in our simulations

as a criterion to make the results comparable with others. In

this way, 86% of data is selected randomly for training and

the remained 14% is used for test. This procedure is

repeated 100 times. Due to using random subsampling

validation method, the test images are also selected ran-

domly in each of the mentioned iterations. The overall

performance of proposed steganalysis method, when

applying all of the test datasets of different steganography

algorithms, is evaluated by employing RBFNN, PNN, and

SVM classifiers to solve the two-class (stego/clean image)

problem (Tables 1, 2, 3 for RBFNN and PNN, and

Tables 7, 8 and 9 for SVM).

The receiver operating characteristic (ROC) curves for

test data, when using RBFNN and PNN, are depicted in

Figs. 5 and 6, respectively. The ROC curve shows the

percentage of correctly detected stego images (true posi-

tive) versus the percentage of cover images detected as

stego images (false positive). In this way, the detection

accuracy is calculated using (11) with the subsequent

descriptions:

Accuracy ¼ TPþ TNð Þ= Pþ Nð Þ ð11Þ

True positive (TP) Ratio of stego images that correctly

classified as stego,

False positive (FP) Ratio of clean images that

incorrectly classified as stego,

Table 1 Confusion matrix using RBFNN and PNN, embedding

rate = 25%

Actual Predicted

RBFNN PNN

Stego Clean Stego Clean

Stego 99.10 0.90 77.44 22.56

Clean 1.19 98.81 26.72 73.28

Number of selected

features by BPSO

108 120

Table 2 Confusion matrix using RBFNN and PNN, embedding

rate = 10%

Actual Predicted

RBFNN PNN

Stego Clean Stego Clean

Stego 85.56 14.44 64.99 35.01

Clean 16.84 83.16 38.34 61.66

Number of selected

features by BPSO

110 118

Table 3 Confusion matrix using RBFNN and PNN, embedding

rate = 5%

Actual Predicted

RBFNN PNN

Stego Clean Stego Clean

Stego 83.06 16.94 59.26 40.74

Clean 23.59 76.41 41.12 58.88

Number of selected

features by BPSO

106 112
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True negative (TN) Ratio of clean images that correctly

classified as clean,

False negative (FN) Ratio of stego images that

incorrectly classified as clean

In this work, the simulations are run on a PC powered by

an Intel� core2 Dou, 2.2 GHz CPU, and 2 GB of RAM. In

another experiment, we apply the BPSO feature selection

technique to the steganalysis method that has been pro-

posed in [18] to evaluate the effect of feature selection on

the performance. For SVM simulation, LIBSVM package

[67] is used in our simulations. We have used m-soft margin

support vector classifier (m-SVC) in which a parameter, m,

controls the number of support vectors and training errors.

The value of m in the range of (0, 1] is an upper bound on

the fraction of training errors and a lower bound on the

fraction of support vectors. We set m to 0.2. The spread

constant for the radial basis layer is set to 2 for RBFNN and

0.2 for PNN, respectively.

As shown in Tables 1, 2, 3, RBFNN classifier results in

higher detection accuracy, however the training time in

PNN is shorter, as compared to RBFNN. The training

time with 192 features when using PNN and RBFNN is

0.2485 and 36.8456 s, respectively. The training time,

when using SVM is 2.6203 s. The true positive and false

positive rates for each of the steganography methods,

when applying the test dataset and using RBFNN, PNN,

and SVM classifiers, are reported in Tables 4, 5 and 6,

respectively.

The confusion matrices of the proposed steganalysis

method in [18], which uses similar feature vectors, and

the effect of using BPSO feature selection algorithm for

three embedding rates are reported in Tables 7, 8, 9,

respectively. The ROC curve, when using BPSO ? SVM

classifier, is depicted for different embedding rates in

Fig. 7, too. As shown in Tables 7, 8, 9, in spite of about

30% reduction in the size of feature set, the detection

accuracy is improved in different embedding rate condi-

tions (Fig. 8).

5 Conclusion

Feature extraction, feature selection, and classification are

the three stages of steganalysis systems. In this paper, a

steganalysis method has been proposed which is based on

the features from the contourlet transform domain. Con-

tourlet has the ability of capturing smooth contours in

images. As compared to some common transforms, such

as wavelet, directionality and anisotropy are the important

advantages of contourlet. In this work, the candidate

features consist of statistical moments of contourlet

coefficients and statistical moments of log error between

actual and linear predicted coefficients of contourlet

transform in the third level and eight directions. The

number of features has been reduced by BPSO feature

selection technique. So, the computational load has been

reduced and the classification accuracy of stego/clean

images has been improved, as well. Radial basis neural

networks, RBFNN and PNN, and also SVM have been

used as classification tools in this work to distinguish

stego from clean images.

Experimental results have shown that in spite of low

embedding rate, the detection accuracy of the proposed

method is more than 80%, when using SVM or RBFNN

which is equipped by BPSO.

Fig. 5 ROC curves for different embedding rates, BPSO ? RBFNN

Fig. 6 ROC curves for different embedding rates, BPSO ? PNN
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The investigations have shown that using BPSO fea-

ture selection algorithm in this classification problem has

led to feature-set size reduction by 30% and higher

detection accuracies have been achieved, as well. In

addition, it is concluded that the performance of m-soft

margin support vector classifier (m-SVC) is better than

RBFNN, because its training time is shorter than

RBFNN. It is noted that the training time of SVM and

RBFNN was 2.6203 and 36.8456 s, respectively. How-

ever, by comparing the results reported in Tables 4 and

6, we conclude that the classification rate of RBFNN is

slightly better than SVM in high embedding rates for

Jsteg, OutGuess, and JPHS steganography algorithms. In

this way, PNN has the shortest training time in this

application; however its classification rate is not com-

petitive. In our future work, we will investigate the effect

Table 4 TP and FP rates for different embedding rates-RBFNN classifier

Steganography

algorithm

Embedding rate = 5% Embedding rate = 10% Embedding rate = 25%

No feature

selection

Feature selection

using BPSO

No feature

selection

Feature selection

using BPSO

No feature

selection

Feature selection

using BPSO

True

positive

False

positive

True

positive

False

positive

True

positive

False

positive

True

positive

False

positive

True

positive

False

positive

True

positive

False

positive

Jsteg 82.21 29.04 82.79 29.08 82.61 18.85 88.55 15.35 97.65 4.87 98.15 4.46

OutGuess 82.98 30.69 83.63 27.55 84.37 9.76 89.57 8.42 98.43 4.33 99.57 4.01

Model-based 83.44 29.18 84.67 27.32 85.47 9.89 90.80 7.32 99.08 4.52 99.98 4.11

JPHS 80.12 27.30 82.16 25.71 85.11 8.51 88.10 7.15 98.51 4.97 99.32 4.54

Table 5 TP and FP rates for different embedding rates-PNN classifier

Steganography

algorithm

Embedding rate = 5% Embedding rate = 10% Embedding rate = 25%

No feature

selection

Feature selection

using BPSO

No feature

selection

Feature selection

using BPSO

No feature

selection

Feature selection

using BPSO

True

positive

False

positive

True

positive

False

positive

True

positive

False

positive

True

positive

False

positive

True

positive

False

positive

True

positive

False

positive

Jsteg 57.73 38.45 58.70 39.30 60.04 37.31 62.31 37.81 68.17 17.21 68.00 17.05

OutGuess 59.90 38.95 59.47 38.21 64.61 37.54 65.21 36.99 75.49 18.13 78.96 15.99

Model-based 65.54 34.19 67.19 29.43 75.10 32.65 75.51 32.39 83.23 17.59 83.79 16.46

JPHS 63.11 31.28 64.98 30.96 73.21 31.43 74.77 34.07 86.56 16.82 90.82 15.47

Table 6 TP and FP rates for different embedding rates-SVM classifier

Steganography

algorithm

Embedding rate = 5% Embedding rate = 10% Embedding rate = 25%

No feature

selection

Feature selection

using BPSO

No feature

selection

Feature selection

using BPSO

No feature

selection

Feature selection

using BPSO

True

positive

False

positive

True

positive

False

positive

True

positive

False

positive

True

positive

False

positive

True

positive

False

positive

True

positive

False

positive

Jsteg 82.50 26.12 83.10 25.68 83.37 16.22 88.79 15.41 96.58 5.29 97.94 4.87

OutGuess 82.84 25.34 84.23 23.86 86.18 9.53 89.19 8.71 98.16 4.63 99.13 4.35

Model-based 83.81 24.90 85.76 24.05 86.92 9.94 90.77 7.40 99.15 4.27 99.98 4.02

JPHS 82.09 25.66 83.41 24.90 86.44 10.31 88.95 8.95 97.89 5.07 99.01 4.86

Table 7 Confusion matrix when using SVM [18] and BPSO ? SVM

(proposed), embedding rate = 25%

Actual Predicted

SVM BPSO ? SVM

Stego Clean Stego Clean

Stego 98.38 1.62 99.48 0.52

Clean 3.66 96.34 0.54 99.46
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of using supplementary features using contourlet

coefficients.
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66. Babaoglu I, Findik O, Ülker E (2010) A comparison of feature

selection models utilizing binary particle swarm optimization and

genetic algorithm in determining coronary artery disease using

support vector machine. Expert Syst Appl 37:3177–3183

67. Chang CC, Lin CJ (2001) LIBSVM: a library for support vector

machines (http://www.csie.ntu.edu.tw/*cjlin/libsvm) Accessed 7

Mar 2010

68. Boser BE, Guyon IM, Vapnik VN (1992) A training algorithm for

optimal margin classifiers. In: The proceedings of the 5th annual

ACM workshop on COLT, pp 144–152

69. Shihong Y, Ping L, Peiyi H (2003) SVM classification: its content

and challenges. Appl Math J Chinese Univ Ser B 18:332–342

70. Moody J (1989) Fast learning in networks of locally-tuned pro-

cessing units. Neural Comput 1:281–294

71. Haykin S (1994) Neural networks: a comprehensive foundation.

Macmillan College Publishing Company, New York

72. Specht DF (1990) Probabilistic neural networks. Neural Netw

3:109–118

73. Schaefer G, Stich M (2004) UCID: An uncompressed colour

image database. Proc. SPIE, Storage and Retrieval Methods and

Application for Multimedia, San Jose, CA 427–480 (http://

vision.cs.aston.ac.uk/datasets/UCID/ucid.html) Accessed 20 Nov

2009

74. Upham D, Jsteg. Software (ftp://ftp.funet.fi/pub/crypt/stegano

graphy) Accessed 6 May 2009

75. Provos N, Outguess Software (www.outguess.org) Accessed 3

Dec 2009

76. Sallee P, Model-Based Steganography (http:\\www.philsallee.com\

mbsteg\index.html) Accessed 3 Dec 2009

77. Latham A, JPHS software (http://linux01.gwdg.de/*alatham/

stego.html) Accessed 3 Dec 2009

78. Liu Q, Sung AH, Ribeiro B, Wei M, Chen Z, Xu J (2008) Image

complexity and feature mining for steganalysis of least significant

bit matching steganography. Inf Sci 178:21–36

79. Geetha S, Sivatha Sindhu SS, Kamaraj N (2009) Blind image

steganalysis based on content independent statistical measures

maximizing the specificity and sensitivity of the system. Comput

Secur 28:683–697

1728 Neural Comput & Applic (2012) 21:1717–1728

123

http://dx.doi.org/10.1007/s00521-011-0643-1
http://dx.doi.org/10.1007/s00521-011-0643-1
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://vision.cs.aston.ac.uk/datasets/UCID/ucid.html
http://vision.cs.aston.ac.uk/datasets/UCID/ucid.html
ftp://ftp.funet.fi/pub/crypt/steganography
ftp://ftp.funet.fi/pub/crypt/steganography
http://www.outguess.org
http://http:\\www.philsallee.com\mbsteg\index.html
http://http:\\www.philsallee.com\mbsteg\index.html
http://linux01.gwdg.de/~alatham/stego.html
http://linux01.gwdg.de/~alatham/stego.html

	Improved contourlet-based steganalysis using binary particle swarm optimization and radial basis neural networks
	Abstract
	Introduction
	Related works
	Proposed scheme
	Feature extraction stage
	Feature selection stage
	Classification stage
	Support vector machine
	Radial basis function neural network
	Probabilistic neural network


	Simulation and experimental results
	Conclusion
	References


