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Abstract Linear discriminant analysis (LDA) often

encounters small sample size (SSS) problem for high-

dimensional data. Null space linear discriminant analysis

(NLDA) and linear discriminant analysis based on gen-

eralized singular value decomposition (LDA/GSVD) are

two popular methods that can solve SSS problem of LDA.

In this paper, we present the relation between NLDA and

LDA/GSVD under a condition and at the same time pro-

pose a modified NLDA (MNLDA) algorithm which has the

same discriminating power as LDA/GSVD and is more

efficient. In addition, we compare the discriminating

capability of NLDA and MNLDA and present our inter-

pretation about this. Experimental results on ORL, FERET,

Yale face databases, and the PolyU FKP database support

our viewpoints.

Keywords Linear discriminant analysis � Small sample

size � Null space linear discriminant analysis �
Linear discriminant analysis based on generalized

singular value decomposition

1 Introduction

In pattern recognition, the data often lie in a high-dimen-

sional space. In order to analyze the data, we need to reduce

the dimensionality and find the most important features.

Feature extraction is an essential technique to deal with this

problem, and it has attracted much attention in computer

vision and pattern recognition because of its great impor-

tance. In the past decades, numerous feature extraction

methods have been proposed [1–12]. Linear discriminant

analysis (LDA) [13] is one of the most popular feature

extraction and dimensionality reduction methods, which has

been widely applied in high-dimensional pattern recogni-

tion problems [14–16]. It seeks to find the optimal projec-

tion vector by maximizing between-class scatter and

minimizing within-class scatter simultaneously. The crite-

rion of LDA is maximizing

JFðWÞ ¼
JbðWÞ
JwðWÞ

¼ traceðWT SbWÞ
traceðWT SwWÞ ; ð1Þ

where Sb is the between-class scatter matrix, Sw is the

within-class scatter matrix, and W is the projection matrix

composed by optimal projection vectors. Suppose that we

have M samples of c classes, Sb, Sw and the global scatter

matrix St can be defined by

Sb ¼
1

M

Xc

i¼1

liðmi � mÞðmi � mÞT ; ð2Þ

Sw ¼
1

M

Xc

i¼1

Xli

j¼1

ðxij � miÞðxij � miÞT ð3Þ

and

St ¼
1

M

Xc

i¼1

Xli

j¼1

ðxij � mÞðxij � mÞT ; ð4Þ

where xij is the training sample j in class i, m is the global

centroid, mi (i = 1, 2, …, c) is centroid of class i, and li
(i = 1, 2, …, c) is the number of training samples in class i.

From formula (3), it can be easily known that the rank of

Sw is not larger than the maximum of the dimensionality of
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samples and the number of training samples. If the

dimensionality of samples is too large, Sw will be singular.

At this time, classical LDA cannot be performed success-

fully. This is so-called small sample size (SSS) problem,

namely the number of training samples is relatively small

compared to the dimensionality of samples. In order to

solve this problem, several approaches have been proposed

in the past few years. Among them, regularized LDA

(RLDA) [17], PCA (principal component analysis) plus

LDA (FDA) [14], null space LDA (NLDA) [18, 19], direct

LDA (DLDA) [20], complete LDA (CLDA) [21, 22],

inverse Fisher discriminant analysis (IFDA) [23], and LDA

based on generalized singular value decomposition (LDA/

GSVD) [24, 25] are the most well-known methods. RLDA

makes Sw nonsingular by adding a diagonal matrix aI

(a[ 0) to Sw. In FDA, PCA [26] is performed first for

dimensionality reduction to make Sw nonsingular before

performing LDA. NLDA assumes that the null space of Sw

contains the most useful discriminative information and

seeks projection vectors in the null space of Sw. DLDA

searches discriminative information in the range space of

Sb and solves the Fisher criterion (1) by diagonalizing Sb

before diagonalizing Sw. CLDA extracts features separately

from the null space of Sw and the range space of Sw. In

IFDA, a restriction is added in PCA procedure and intro-

duces inverse Fisher criterion. LDA/GSVD uses general-

ized singular value decomposition (GSVD) to solve

singular problem in classical LDA.

We analyze NLDA with LDA/GSVD in theory and

show their relationship under a condition which always

holds for high-dimensional data. It can be found from the

analysis that there is only a little difference between NLDA

and LDA/GSVD. If we make a modification for NLDA, it

will become equivalent to LDA/GSVD. As we know, the

disadvantage of LDA/GSVD is its high computational time

and NLDA is much more efficient. Therefore, we propose a

modified NLDA (MNLDA) algorithm in this paper. If the

given condition is satisfied, MNLDA has the same dis-

criminating power as LDA/GSVD but is more efficient. In

addition, we compare the discriminating power of NLDA

and MNLDA. Sometimes NLDA outperforms MNLDA

and MNLDA performs better sometimes. This mainly

depends on the characteristic of the data. We give our

interpretation about this according to the experiments.

The rest of the paper is organized as follows: Sect. 2

describes NLDA and LDA/GSVD. We analyze the relation

between NLDA and LDA/GSVD in Sect. 3. Section 4

proposes MNLDA algorithm and presents the comparison

of MNLDA, LDA/GSVD, and NLDA. Section 5 describes

experiments on ORL, FERET, Yale face databases, and the

Hong Kong polytechnic university finger-knuckle-print

(PolyU FKP) database. Our conclusions are provided in

Sect. 6 at last.

2 NLDA and LDA/GSVD

2.1 NLDA

Chen et al. [18] proved that the null space of Sw contains

the most discriminative information and proposed NLDA

algorithm which searches projection vectors in the null

space of Sw. The criterion of NLDA is defined by

W ¼ arg max
WT SwW¼0

traceðWT SbWÞ: ð5Þ

In order to improve the efficiency of the algorithm, the

authors used a pixel grouping method to reduce the

dimensionality of samples before performing NLDA in

[18]. Based on the observation that the null space of St

does not contain discriminative information, Huang et al.

[27] removed the null space of St first and then perform

NLDA.

NLDA algorithm is summarized as follows:

1. Calculate St by (4). Work out St’s Eigen vectors p1,

p2, …, pd corresponding to nonzero Eigen values.

2. Calculate Sb and Sw by (2) (3). Let P = (p1,

p2, …, pd). We get the new scatter matrices ~Sb ¼
PT SbP and ~Sw ¼ PT SwP after the removal of the null

space of St.

3. Work out ~Sw’s Eigen vectors q1, q2, …, qs correspond-

ing to zero Eigen values and project the data into the

null space of ~Sw. Now the between-class scatter matrix

becomes Ŝb ¼ QT ~SbQ, where Q = (q1, q2, …, qs).

4. Work out Ŝb’s Eigen vectors r1, r2, …, rf correspond-

ing to nonzero Eigen values. Let R = (r1, r2, …, rf).

We have the projection matrix of NLDA Gn = PQR.

5. For a sample x, the new NLDA feature is y = Gn
Tx.

2.2 LDA/GSVD

Howland et al. [24] applied GSVD due to Paige et al. [28]

to solve the SSS problem of LDA. For the n-dimensional

data, we define

Hb ¼
ffiffiffiffi
l1
p
ffiffiffiffiffi
M
p ðm1 � mÞ;

ffiffiffiffi
l2
p
ffiffiffiffiffi
M
p ðm2 � mÞ; . . .;

ffiffiffiffi
lc
p
ffiffiffiffiffi
M
p ðmc � mÞ

� �

ð6Þ

and

Hw ¼
1ffiffiffiffiffi
M
p ½X1 � m1e1;X2 � m2e2; . . .;Xc � mcec�; ð7Þ

where Xi ¼ ½xi1; xi2; . . .; xili � 2 Rn�li is the training sample

matrix of class i and ei ¼ ½1; 1; . . .; 1� 2 R1�li . Then we

have Sb ¼ HbHT
b and Sw ¼ HwHT

w . Through applying

GSVD to HT
b and HT

w, we obtain
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UT
b HT

b V ¼ Cb

z}|{d

; 0
z}|{n�d

2

4

3

5 ð8Þ

and

UT
wHT

wV ¼ Cw

z}|{d

; 0
z}|{n�d

2

4

3

5; ð9Þ

where Ub and Uw are orthogonal, V is nonsingular, CT
b Cb

and CT
wCw are diagonal matrices which satisfy CT

b Cb ?

CT
wCw = I and d is the rank of

HT
b

HT
w

� �
. It follows from (8)

(9) that

ðUT
b HT

b VÞT UT
b HT

b V ¼ VT HbHT
b V ¼ VT SbV

¼ ½Cb; 0�T ½Cb; 0� ¼ CT
b Cb 0

0 0

� �

ð10Þ

and

ðUT
wHT

wVÞT UT
wHT

wV ¼ VT HwHT
wV ¼ VT SwV

¼ ½Cw; 0�T ½Cw; 0� ¼ CT
wCw 0

0 0

� �
:

ð11Þ

Because CT
b Cb and CT

wCw are diagonal and

CT
b Cb ? CT

wCw = I, we have

VT SbV ¼

Ij

Kk

0d�k�j

0n�d

0
BB@

1
CCA ð12Þ

and

VT SwV ¼

0j

Rk

Id�k�j

0n�d

0

BB@

1

CCA; ð13Þ

where Kk � 0 and Rk � 0 are diagonal, Kk ? Rk = Ik and

the subscripts in I, 0, K, and R represent the size of the

square matrices.

From (12) (13), it can be seen that V diagonalizes Sb and

Sw simultaneously. Then the first j ? k columns of V which

form the range space of Sb are selected as projection vec-

tors. According to rank(Sb) = j ? k B c - 1, the projec-

tion matrix of LDA/GSVD is often constructed by the first

c - 1 columns of V.

The algorithm of LDA/GSVD proposed in [25] is

summarized as follows:

1. Compute Hb and Hw by (6) (7).

2. Compute the singular value decomposition (SVD) of

H ¼ HT
b

HT
w

� �
2 RðcþMÞ�n, which is XT HY ¼ Z 0

0 0

� �
.

3. Let d = rank(H) and compute the SVD of X (1:c, 1:d),

which is UT
b X (1:c, 1:d)A = Cb.

4. Compute V ¼ Y
Z�1A 0

0 I

� �
and let Gg ¼

Vð:; 1 : c� 1Þ
5. For a sample x, the new LDA/GSVD feature is

y ¼ GT
g x:

3 From NLDA to LDA/GSVD: their relation

under a condition

NLDA and LDA/GSVD solves SSS problem of LDA by

different ways. They seem to have no connection. In this

section, through analysis we will present the relation

between NLDA and LDA/GSVD under a condition. The

condition usually holds for high-dimensional data.

3.1 A condition

Assume that the columns of training sample matrix X =

[X1, X2, …, Xc] are linearly independent, where Xi ¼
½xi1; xi2; . . .; xili

� 2 Rn�li is the training sample matrix of

class i. As present in [19], under this assumption the fol-

lowing condition always holds:

rankðStÞ ¼ M � 1; rankðSbÞ ¼ c� 1; rankðSwÞ ¼ M � c:

ð14Þ

Because independence is often holds when the data have

high dimensionality, condition (14) holds for high-

dimensional data in many cases. While condition (14) is

satisfied, we have

rankðSbÞ þ rankðSwÞ ¼ rankðStÞ: ð15Þ

In the following analysis, we suppose that condition (14)

is always satisfied.

3.2 Relation between NLDA and LDA/GSVD

From (12) (13), we know

rankðSbÞ ¼ rankðVT SbVÞ ¼ jþ k; ð16Þ

rankðSwÞ ¼ rankðVT SwVÞ ¼ d � k � jþ k ¼ d � j ð17Þ

and
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VT StV ¼ VT SbV þ VT SwV

¼

Ij

Kk þ Rk

Id�j�k

0n�d

0
BBB@

1
CCCA

¼
Id

0n�d

� �
:

ð18Þ

It follows from (18) that

rankðStÞ ¼ rankðVT StVÞ ¼ d: ð19Þ

If condition (14) is satisfied, from (15) (16) (17) we get

d ¼ rankðStÞ ¼ rankðSbÞ þ rankðSwÞ
¼ jþ k þ d � j ¼ d þ k: ð20Þ

It follows from (20) that k = 0. Then (12) (13) become

VT SbV ¼
Ij

0d�j

0n�d

0

@

1

A ð21Þ

and

VT SwV ¼
0j

Id�j

0n�d

0
@

1
A: ð22Þ

As stated in Sect. 2.2, the first j = rank(Sb) = c - 1

columns of V form the projection matrix of LDA/GSVD

Gg. Hence,

GT
g SbGg ¼ Ij ¼ Ic�1 ð23Þ

and

GT
g SwGg ¼ 0j ¼ 0c�1: ð24Þ

From Sect. 2.1, the projection matrix of NLDA

Gn = PQR satisfies

GT
n SbGn ¼ RT QT PT SbPQR ¼ RT QT ~SbQR ¼ RT ŜbR ¼ Kf

ð25Þ

and

GT
n SwGn ¼ RT QT PTSwPQR ¼ RT QT ~SwQR ¼ RT 0sR ¼ 0f :

ð26Þ

And we have f = rank(Sb) = c - 1 under condition

(14). So

GT
n SbGn ¼ Kc�1 ð27Þ

and

GT
n SwGn ¼ 0c�1: ð28Þ

From (23) (24) (27) (28), we can conclude that Gg and

Gn are both derived from intersection of the null space of

Sw and the range space of Sb, and the only difference of two

algorithms is the diagonal matrix Kc-1 and Ic-1.

4 Modified NLDA

In this section, we develop a modified NLDA (MNLDA)

algorithm whose performance is just equivalent to LDA/

GSVD and much more efficient than LDA/GSVD. Further,

the discriminating power and efficiency of MNLDA, LDA/

GSVD, and NLDA are compared.

4.1 The algorithm

From Sect. 3.2, we know that the difference of NLDA and

LDA/GSVD is the scale difference of Kc-1 and Ic-1 when

condition (14) holds. If the scale of NLDA is modified, it

will be equivalent to LDA/GSVD. Now we present the

MNLDA algorithm as follows:

1. Calculate St by (4). Work out St’s Eigen vectors p1,

p2, …, pd corresponding to nonzero Eigen values.

2. Calculate Sb and Sw by (2) (3). Let P = (p1, p2, …, pd)

and K = PTStP. We obtain the new scatter matrices

~Sb ¼ K�
1
2PT SbPK�

1
2 and ~Sw ¼ K�

1
2PT SwPK�

1
2 after the

removal of the null space of St and the normalization

of K.

3. Work out ~Sw’s Eigen vectors q1, q2, …, qs correspond-

ing to 0 Eigen values. The projection matrix of

MNLDA is Gm ¼ PK�
1
2Q, where Q = (q1, q2, …, qs).

4. For a sample x, the new MNLDA feature is y =

GT
mx.

From the MNLDA algorithm, we have

GT
mSwGm ¼ QTK�

1
2PT SwPK�

1
2Q ¼ QT ~SwQ ¼ 0s ð29Þ

and

GT
mStGm ¼ QTK�

1
2PT StPK�

1
2Q ¼ QT IdQ ¼ Is: ð30Þ

It follows that

GT
mSbGm ¼ GT

mStGm � GT
mSwGm ¼ Is � 0s ¼ Is: ð31Þ

Since rank(St) = M - 1 and rank(Sw) = M - c under

condition (14), we have s = (M - 1) - (M - c) = c - 1.

Hence

GT
mSbGm ¼ Ic�1 ð32Þ

and

GT
mSwGm ¼ 0c�1: ð33Þ

From (23) (24) (32) (33), we can make a conclusion that

MNLDA is equivalent to LDA/GSVD.
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4.2 Comparison of MNLDA, LDA/GSVD, and NLDA

The SVD process in step 2 of LDA/GSVD algorithm is

time-consuming especially for high-dimensional data,

whereas the Eigen value decomposition (EVD) process in

MNLDA and NLDA algorithm is very quick. Hence,

NLDA and MNLDA are more efficient than LDA/GSVD.

From the above discussion, it can be known that

MNLDA and LDA/GSVD have the same discriminating

power. Now we compare the discriminating capability of

MNLDA and NLDA. In the literature [19], the authors

indicated that step 4 of NLDA algorithm can be removed

and proposed the improved NLDA (INLDA) algorithm,

which is equivalent to NLDA when condition (14) is sat-

isfied. The only difference between INLDA and MNLDA

is the normalization process after the diagonalization of St.

From the equivalence of NLDA and INLDA, we know that

it is only the normalization process that leads to the dif-

ferent discriminating power of MNLDA and NLDA. In the

experiments, it can be seen that this process increases the

discriminating capability sometimes and reduces it some-

times. It mainly depends on the characteristics of the data.

5 Experiments

In this section, we will verify our viewpoints through face

and finger-knuckle-print recognition experiments. NLDA,

LDA/GSVD, and MNLDA are used for feature extraction

separately. The dimensionality of reduced feature spaces is

kept as c - 1. Then the nearest neighbor classifier with

Euclidean metric is employed for classification.

5.1 Face recognition experiment

5.1.1 Face data sets

ORL [29], FERET [30–32], and Yale [33] face databases

are applied in our experiments.

5.1.1.1 ORL face database ORL face database contains

400 face images of 40 individuals, each providing 10 dif-

ferent images. For some individuals, the images were taken

at different times. The face images are centralized. The

facial expression (open or closed eyes, smiling or

nonsmiling) and facial details (glasses or no glasses) also

vary. The images were taken with a tolerance for some

titling and rotation of the face of up to 20�. Moreover, there

is also some variation in the scale of up to 10%. The

images are all grayscale and normalized to a resolution

92 9 112 pixels. Figure 1 shows ten images of one person.

5.1.1.2 FERET face database The FERET face database

was sponsored by the US Department of Defense through

the DARPA Program. It has become a standard database

for testing and evaluating face recognition algorithms. We

performed algorithms on a subset of the FERET database.

The subset is composed of 1,400 images of 200 individu-

als, and each individual has seven images. It involves

variations in face expression, pose, and illumination. In the

experiment, the facial portion of the original image was

cropped based on the location of eyes and mouth. Then we

resized the cropped images to 80 9 80 pixels. Seven

sample images of one individual are show in Fig. 2.

5.1.1.3 Yale face database The Yale face database was

constructed at the Yale Center for Computational Vision

and Control. It contains 165 gray-scale images of 15

individuals, and each person has 11 different images under

various facial expressions (normal, happy, sad, sleepy,

surprised, and wink), lighting conditions (left-light, center-

light, right-light), and with/without glasses. In the experi-

ment, each image was manually cropped and resized to

100 9 80 pixels. Figure 3 shows sample images of one

person.

5.1.2 Experimental results

On ORL database, three images/people are randomly

selected for training and the remaining images are used for

testing. Features are extracted separately by NLDA, LDA/

GSVD, and MNLDA. Then the nearest neighbor classifier

with Euclidean distance is applied to classify the new

features. Experiment is repeated for 10 times. Figure 4

shows the recognition rates versus the 10 different training

sets. Table 1 lists the average recognition rates and stan-

dard deviations across 10 runs. Table 2 lists the computa-

tional time of each method.

Figure 4 shows that MNLDA has the same recognition

rates as LDA/GSVD consistently and that NLDA

Fig. 1 Sample images of one person on ORL database
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outperforms MNLDA and LDA/GSVD irrespective of the

variation of training sets. From Table 1, we can see that the

average recognition rates of MNLDA and LDA/GSVD are

only 86.1% while NLDA reaches 90.5%. From Table 2, it

can be seen that NLDA and MNLDA are more efficient

than LDA/GSVD. The average computational time of

LDA/GSVD is about two hundred times as much as that of

NLDA.

On FERET database, we select the first a (a varies from

2 to 5) images/people for training and the rest images for

Fig. 2 Sample images of one person on FERET database

Fig. 3 Sample images of one person on YALE database

1 2 3 4 5 6 7 8 9 10
0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

No.of test

R
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og
ni

tio
n 

ra
te

MNLDA

LDA/GSVD

NLDA

Fig. 4 The recognition rates of MNLDA, LDA/GSVD, and NLDA

versus different training sets on ORL database when three images/

people are randomly used for training

Table 1 The average recognition rates (%) and the corresponding

standard deviation of MNLDA, LDA/GSVD, and NLDA on ORL

database across 10 runs when 3 images/individual are randomly used

for training

Methods Average recognition rate SD

MNLDA 85.8 2.8

LDA/GSVD 85.8 2.8

NLDA 91.1 2.6

Table 2 The computational time (s) of MNLDA, LDA/GSVD, and

NLDA on ORL database across 10 runs when three images/individual

are randomly used for training (CPU: pentium 1.8 GHz RAM: 1 Gb)

No. of test MNLDA LDA/GSVD NLDA

1 1.6929 343.1512 1.3603

2 1.8350 321.4875 1.5972

3 2.3750 256.4447 1.5534

4 2.0999 253.8448 2.1527

5 2.1166 247.6787 1.5277

6 2.0889 278.3178 1.4554

7 2.0248 246.8955 1.4778

8 2.2749 273.0403 1.4944

9 2.0333 335.0893 1.4777

10 2.1582 251.4714 1.5194

Average 2.0700 280.7421 1.5616
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testing. After feature extraction by NLDA, LDA/GSVD,

and MNLDA, the nearest neighbor classifier with Euclid-

ean distance is employed for classification. Figure 5 illus-

trates the recognition rates versus training sample size. The

computational time of each method is shown in Table 3.

From Fig. 5, we can also see that MNLDA and LDA/

GSVD have the identical recognition rates and NLDA has

a higher recognition rates than them irrespective of the

training sample size. From Table 3, it can be seen that

MNLDA and NLDA are more efficient than LDA/GSVD

obviously.

On Yale database, the first b (b varies from 2 to 7)

images/people are selected to form the training set and the

remaining 11 - b images are used for testing. NLDA,

LDA/GSVD, and MNLDA are used for feature extraction

separately. After feature extraction, the nearest neighbor

classifier with Euclidean distance is used for classification.

Figure 6 shows the recognition rates versus training sample

size. The computational time of each method is listed in

Table 4.

From Table 4, we can see that MNLDA and NLDA

have higher efficiency than LDA/GSVD. Figure 6 shows

that the recognition rates of MNLDA are the same as LDA/

GSVD irrespective of the variation in training sample size.

These two points are consistent with the experimental

results on ORL and FERET databases. However, from

Fig. 6 we can also find an inconsistent point that NLDA

outperforms MNLDA and LDA/GSVD on Yale database.

What is the reason of the results that NLDA outperforms

MNLDA on ORL and FERET databases and MNLDA

outperforms NLDA on Yale database? We suspect it can be

explained as follows: From Sect. 4, we know that it is only

the normalization process after the diagonalization of St that

leads the different discriminating power of MNLDA and

NLDA. In paper [34], the authors point out that the principal

Eigen vectors of St contain two components: intrinsic dif-

ference (~I) that discriminates different face identity and

transformation difference ( ~T) arising from all kinds of

transformations such as expression and illumination. On

ORL and FERET databases, ~I may be contained on the

principal Eigen vectors corresponding to large Eigen values

while ~T corresponding to small Eigen values. The normal-

ization process after the diagonalization of St will enlarge

the effect of ~T and reduce the effect of ~I which is important

for recognition. So MNLDA involving normalization

2 3 4 5

0.35
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0.55

0.6
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Training sample size

R
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og
ni

tio
n 

ra
te

MNLDA

LDA/GSVD
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Fig. 5 The recognition rates of MNLDA, LDA/GSVD, and NLDA

versus the training sample size on FERET database

Table 3 The computational time (s) of MNLDA, LDA/GSVD, and

NLDA on FERET database when the first a (a varies from 2 to 5)

images are used for training (CPU: pentium 1.8 GHz RAM: 1 Gb)

Training number MNLDA LDA/GSVD NLDA

2 19.6648 139.3869 19.2463

3 44.0312 191.0451 42.2673

4 81.0988 241.3586 76.8765

5 132.0471 321.7521 124.2529

2 3 4 5 6 7
0.88

0.9

0.92

0.94

0.96

0.98

1

Training Number

R
ec

og
ni

tio
n 

ra
te

MNLDA

LDA/GSVD

NLDA

Fig. 6 The recognition rates of MNLDA, LDA/GSVD, and NLDA

versus the training sample size on Yale database

Table 4 The computational time (s) of MNLDA, LDA/GSVD, and

NLDA on Yale database when the first b (b varies from 2 to 7) images

are used for training (CPU: pentium 1.8 GHz RAM: 1 Gb)

Training number MNLDA LDA/GSVD NLDA

2 0.2530 37.2991 0.2016

3 0.3952 48.4797 0.3335

4 0.6056 60.0472 0.5126

5 0.8108 71.4465 0.7250

6 1.0673 82.9715 0.9851

7 1.3731 94.3994 1.2975
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process performs worse. Inversely, on Yale database, ~I

corresponds to small Eigen values while ~T large. So the

normalization process will enlarge the effect of ~I and reduce

the effect of ~T . Hence MNLDA performs better.

5.2 Finger-knuckle-print recognition experiment

on the PolyU FKP database

Finger-knuckle-print (FKP) images on the PolyU FKP

database were collected from 165 volunteers, including 125

men and 40 women. Among them, 143 subjects were

20–30 years old and the others were 30–50 years old. The

samples were collected in two separate sessions. In each

session, the subject was asked to provide 6 images for each

of the left index finger, the left middle finger, the right

index finger, and the right middle finger. Therefore, 48

images from 4 fingers were collected from each subject. In

total, the database contains 7,920 images from 660 differ-

ent fingers. The average time interval between the first and

the second sessions was about 25 days. The maximum and

minimum intervals were 96 and 14 days, respectively. The

images were processed by ROI extraction algorithm

described in [35]. In the experiment, we select 1200 FKP

images of the right index finger of 100 subjects and these

images were resized to 55 9 110 pixels. Figure 7 shows 12

sample images of one right index finger.

The first six images collected in the first session are used

for training and the rest six collected in the second session for

testing. Firstly, LDA/GSVD and MNLDA are performed for

feature extraction. Secondly, the nearest neighbor classifier

is performed for classification. Table 5 lists the recognition

rates and the computational time of two methods. Table 5

shows that MNLDA is much more efficient than LDA/

GSVD. However, from Table 5, it can be seen that LDA/

GSVD and MNLDA obtain different recognition rates. This

is not consistent with the results received from face

recognition experiments. Why this happens? From the

analysis above, we know LDA/GSVD and MNLDA have the

same discriminating capability when condition (14) is sat-

isfied. The number of training samples is 600 in this exper-

iment. We find that rank(St) = 593 = 600 - 1, namely

condition (14) is not satisfied. Therefore, the equivalence of

LDA/GSVD and MNLDA does not hold.

6 Conclusion

In this paper, we analyze NLDA and LDA/GSVD algo-

rithms and show their relationship under a condition which

is often satisfied for high-dimensional data. Based on the

relationship, MNLDA algorithm which is equivalent to

LDA/GSVD is proposed. When the given condition is

satisfied, MNLDA has the same discriminating power as

LDA/GSVD and is more efficient. We also compare the

efficiency and discriminating power of NLDA and LDA/

GSVD. Like MNLDA, NLDA is more efficient than LDA/

GSVD. Face recognition experiments demonstrate the

equivalence of LDA/GSVD and MNLDA under the given

condition and MNLDA is more efficient. FKP recognition

experiment shows that these two algorithms have different

discriminating power when the given condition does not

hold. Moreover, the different discriminating power of

NLDA and MNLDA mainly depends on the characteristic

of the data. We give our interpretation about this through

face recognition experiments.
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