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Abstract The tasks of traffic signs are notifying drivers

about the current state of the road and giving them other

important information for navigation. In this paper, a new

approach for detection, tracking, and recognition such

objects is presented. Road signs are detected using color

thresholding, after that candidate blobs that have specific

criteria are classified based on their geometrical shape and

are tracked trough successive frames based on a new

similarity measure. Candidate blobs that successfully pass

the tracking module are processed for extracting their

fractal features, and final recognition is done based on

support vector machines with kernel function. Results

validate effectiveness of newly employed fractal feature

and show high accuracy with a low false hit rate of this

method and its robustness to illumination changes and road

sign occlusion or scale changes. Also results indicate that

compared to the other pictogram feature representation

techniques, this approach shows a more proper description

of road signs.
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Computer vision-based driver assistance �
Fractal feature extraction � Support vector machines �
Road sign tracking

1 Introduction

The tasks of traffic signs are notifying drivers about the

current state of the road and giving them other important

information for navigation. The information provided by

the road signs (RS) is encoded in their visual traits: shape,

color, and pictogram.

Close to two decades, great amount of research in the

field of automatic road sign detection and recognition

systems (RSR) has been done. Because drivers may not

notice the presence of road signs, one of the main objects

of such systems is to warn them of presence of traffic signs

in different ways. However, it is interesting to pay attention

to some of the common problems that are involved in

traffic-sign detection. The first problem to be overcome is

caused by the variable lighting conditions of a scene in a

natural environment. Another problem to surpass is the

possible rotation of the signs. Although the perfect position

for a road sign is perpendicular to the trajectory of the

vehicle, many times, the sign is not positioned that way.

Therefore, an automatic system must be able to detect signs

in many positions and hence must be invariant to rotation

and translation. The next problem is related to traffic-sign

size because we find signs of different dimensions,

although officially there are only three normal sizes for

nonurban environments [1].

The first paper in the field of road sign recognition

emerged in Japan in 1984. The goal was to try different

methods for the detection of objects in natural scenes.

Since that time, many research groups are paying attention

to the field and great amount of works have been published.

Most efforts have focused on the development of compu-

tational algorithms to detect road signs in each independent

frame, and many works separate the algorithms into two

stages: detection and recognition.
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RS detection are mainly based on color criteria [1–4]

followed by the geometrical edge analysis or shape infor-

mation. As a result, in such systems, the color space plays an

important role. In [3, 4], the popular RGB color space, or

variations based on it such as relations between the color

coefficients are used. However, the RGB space is not opti-

mized for problems such as RSR, because it is susceptible to

lighting changes. Thus, color spaces that are more immune to

such changes are preferred: for instance, the hue saturation

intensity (HSI) family spaces is used in [2] that applied a

threshold over a hue, saturation, value representation of the

image to find regions with a high probability of having a

traffic sign. A more sophisticated method of sign detection

based on genetic algorithms, which also has used HSI, is

proposed in [5]. After color segmentation, road signs are

detected based on using circular and triangular shapes. In

addition to HIS, the YUV color space was used in [6] to

detect blue rectangular signs. However, as [7] demonstrated,

there is not an algorithm robust enough to all difficulties from

outdoor environments.

Once the color segmentation process has been done,

some researches have gone into classifying the candidate

signs according to their shape. For example in [2], shape

discrimination is done by the FFT to deal with change in

rotations and scale. In [4], different methods using the

extracted corners are applied to the traffic-sign shapes, and

in [8], color extraction is complemented with shape fea-

tures using two NNs. Other algorithms used structural

information based on edge detection, rather than color

information. For example, a Laplacian filter with previous

smoothing was used in [9] for grayscale images. Grayscale

images were also used with a Canny edge detector in [10],

and a color image gradient was used in [11]. Recently, a

two-camera system is used in [12]. In this case, two

identical cameras are used to get stereo pairs of images.

Using the epipolar geometry and the predefined calibration

parameters, the region of a detected object on one source is

estimated on its stereo objector. With a similarity criterion

based on normalized correlation, the position of the target

is found. Using this dual redundancy, only the object that is

not observable by either of the cameras is lost. In their

work, fast radial symmetry was used for the detection of

circular signs, and for the case of triangular signs, the

method is based on the Hough transform. However,

detection of traffic signs in only a single image has three

problems: (a) information about positions and sizes of

traffic signs, which is useful to reduce the computational

time, is not available; (b) it is difficult to detect a traffic

sign correctly when a temporary occlusion occurs, and

(c) correctness of the detection is hard to verify [13]. To

maintain high classification accuracy in real-time imple-

mentation, it is advisable to utilize the temporal dimension

and track the traffic sign candidates over time.

After a traffic sign has been detected, it should be rec-

ognized from a wide set of possible classes using some

kind of classification technique. Normally, the pictogram

of detected sign must be suitably represented for a specific

classification method that is usually done by either

extracting some features from the image and using these

features as inputs to the classifier or presenting the part of

the image itself through the sub-sampled pixel intensities.

Examples of methods in the first approach are histograms

[14], FFT computed after a complex log-mapping of

exterior borders [15], and wavelets [16]. Furthermore,

authors in [17] used a method based on a modified Ada-

Boost algorithm that is called SimBoost.

After the choosing of appropriate features, many classi-

fication methods have been proposed. For example, different

kinds of neural networks, such as ART1, ART2, SOM,

Hopfield and Back-Propagation Neuronal Network (NN) as

well as different types of template matching methods, were

applied in many RSR researches for pictogram recognition

stage [3, 16, 18]. In [19], authors used neural network (NN)

and decomposed the multiclass classification problem into a

series of one-to-one problems, each assigned to a separate

network and a similar problem decomposition but using an

error-correcting output code framework was done in [12] and

authors proposed a novel binary classifier through an evo-

lutionary version of AdaBoost. A multiclass learning tech-

nique based on embedding a forest of optimal tree structures

in the error-correcting output code was used for recognition.

Recently, support vector machines (SVMs) have been

reported as a good method to sign recognition due to their

ability to provide good accuracy as well as being sparse

methods. In [2, 4, 20, 21], authors propose a road sign

recognition system based on SVMs, and extracted sign

candidate was classified by two stages: shape classification

and pictogram recognition using Gaussian kernel SVMs.

The authors compare different feature representation of

candidate sign pictogram and usage of other kernel func-

tions for SVM models. Nevertheless, for complete data sets

of traffic signs, the number of operations needed in exiting

methods is still large, whereas the accuracy needs to be

improved. Since feature representation of pictogram play

essential rule in RS recognition accuracy, many other

researches try to evaluate robust methods to rotation,

occlusion, and scale changes for this purpose.

In this paper, we have proposed a new method for traffic

sign tracking to improve precision with a low false nega-

tive rate in detection results, and also we have applied a

method based on fractal feature extraction for road sign

pictogram representation in order to make the traffic sign

recognition task less expensive computationally and

increase its accuracy.

The next section presents an overview of the proposed

system. Sections 3, 4, and 5 discuss the segmentation
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procedure, shape classification, and tracking methods,

respectively. Section 6 discusses about compute feature

vector of inner image based on fractal features, and Sects. 7

and 8 show the representative experimental results and

conclusions.

2 System overview

In this paper, we present a new method for detection,

tracking, and recognition of traffic signs that has been

applied to Iranian traffic signs. An overview of the pro-

posed method is shown in Fig. 1.

This method consists of the following steps: (1) Color

segmentation is performed on HSI space to obtain candi-

date blobs; (2) Features based on the distance from the

outer borders of the blob‘s bounding box along with SVM

classifiers are used to classify the candidate blobs into true

and false candidates; (3) Ring projection is applied to

match blobs across frames for the sake of tracking; (4)

Fractal feature extraction is performed on tracked blobs

following binarization, and then object classification is

conducted with SVM classifiers with kernel function. In the

following, each step of the proposed method is presented in

detail.

3 Sign detection

Color segmentation is a critical step, since errors at this

stage might have fatal consequences for the rest of the

system [18]. Color information is used in the detection

algorithm and segmentation of the image based on two

color used in road signs (red and blue). Thresholding in

HSI color space is an efficient way to find the areas of

interest, which may contain a road sign because of its

similarity to the human perception of colors and besides

two components (Hue and Saturation) encode the color

information, being strongly robust against lighting condi-

tion variations [4].

Thresholds were setup using a set of real traffic scenes

with variable illumination conditions. Thus, the segmen-

tation algorithm is pixel-based classification into three

classes (red, blue, and noise). Consequently, even road

signs with different illumination are correctly processed

and the algorithm is fast. However, negative alarm of color

classification has severe consequences to the classification

result. A set of rules applied to blobs in resulting binary

image for each color to obtain Regions of Interests (ROI’s).

A ROI succeed to next level if it meets the following

criteria:

1. 0.7 * Width(blob) B height(blob) B 1.3 * width(blob)

OR

0.7 * Height(blob) B width(blob) B 1.3 * height(blob)

2. Areamin B area(blob) B areamax

where Height and Width are the height and width of blob‘s

bonding box. In Fig. 2, some results of detection stage are

shown. Figure 2a and d contains the original pictures of

road scenes. Figure 2b and e represents results for color

segmentation, and Fig. 2c and f shows their corresponding

image after removing blobs without criteria mentioned

above.

4 Shape classification

Once areas in an image that may contain a traffic sign have

been detected; morphological dilation is applied to join part

of signs that may have become separated; and then the

shape of each ROI is recognized using linear SVMs.

Support vector machines are the classifiers that are for-

mulated for a two-class problem and are known to have

high generalization. So an N-class problem must be con-

verted into N two-class problems. In the ith two-class

problem, class i is separated from the remaining classes.

Namely, in the ith problem, the class labels of input vector

x that belongs to class i are set as y = 1, and the class

labels of remaining data are set as y = -1.Fig. 1 Illustration of the proposed method
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The basic concept of SVMs is to transform the input

vectors to a higher dimensional space Z by a nonlinear

transform, and then an optimal hyper-plane that separates

the data can be found. This hyperplane should have the best

generalization capability. As shown in Fig. 3, the black

dots and the white dots are the training dataset that belong

to two classes. If a hyper-plane {w, b} separates the two

classes, the points that lie on it satisfy x � wT ? b = 0,

where w is normal to the hyperplane, |b|/||w|| is the per-

pendicular distance from the hyper-plane to the origin, and

||w|| is the Euclidean norm of w. The optimal plane H is

found by maximizing the margin value 2/||w||. Hyperplanes

H1 and H2 are the planes on the border of each class and

also parallel to the optimal hyper-plane H. The data located

on H1 and H2 are called support vectors. The function of

hyper-plane is as follow:

f xð Þ ¼ sgn ðx � wT þ bÞ ð1Þ
The points for which the equality in (1) holds give us the

scale factor for w and b or, equivalently, a constant dif-

ference of the unity. These points lay on both hyper-planes

H1 and H2.

In this paper, we use distance to border as input feature

vector to the linear SVMs, as introduced in [22]. In their

work, DtBs are the distances from the external edge of the

blob to its bounding box. Figure 4 shows four DtB vectors

of 6 components that have been used for a triangular shape

based on the previous color detection. DtBs are feed to

specific SVMs to diagnose the possible geometric shapes.

Since we seek for blue sign and sings with red ribbon, we

consider 2 possible shapes and eight SVMs are needed to

classify each DtB vector. Therefore, four favorable votes

are gathered for each shape. A majority voting method has

been used in order to get the classification with a threshold;

if the result does not relate to desired shapes, blob is

rejected as a noisy shape. Figure 5 shows some results for

shape classification of signs with different lighting condi-

tions. As pointed out in [22], due to normalization of ROI

scale to specific size, this method is invariant to scale

changes. Since four feature vectors are used to characterize

blobs, and linear SVMs have high robustness to noisy data,

shape classification results are invariant to rotation and

occlusion of the sign.

5 Tracking

In suggested system, to have precision with a low false

negative rate in detection results, a tracking algorithm is

applied to assign blobs that appear in the frame (t) to the

Fig. 2 a, d The original pictures of road scenes. b, e Results for color segmentation. c and f Corresponding images after removing blobs without

criteria mentioned in Sect. 3

Fig. 3 The SVM binary classification

Fig. 4 DtBs for a triangular

shape
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blobs in the previous frames (t - T), T C 1 which are

candidate as a traffic sign. Two blob tracking method

were merged, which were (a) Multi-Resolution Blob

Tracking [23] and (b) Two-Layered Blob Tracking [13].

In [23], tracking is performed by matching blobs

between the frames. The sizes of blobs are expected to

increase from frame to frame and the positions might

change according to the movement of the vehicle. Due

to the temporal occlusion and/or missed sign detection,

blobs in frame (t) may not have a corresponding blob in

some of the previous frames. To overcome this problem,

the blob identification needs to be maintained to be able

to track the exact blob that may occur in future frames.

Once a ROI is resulted by shape classification module,

matching hypotheses are generated, resulting in the

instantiation of links between known tracked blobs in the

previous time slice and potential blobs in the current

time slice. Hypotheses are given a measure of confidence

derived from a blob dissimilarity measure. Hence by

specifying a threshold on the measure of confidence,

only possible hypotheses are formed. The similarity

measure used here is an approximation, based on dis-

tance function [24], normalized area difference and

centroid distance.

The matching distance between the two corresponding

blobs in the current frame and the corresponding one is

conducted by the Ring Partitioned Matching method [13],

which provides a fast and robust matching of the images

under problems of the scale varying, rotation, and partial

occlusion. In this method, the image is partitioned into

several ring-shaped areas as shown in Fig. 6.

So the matching distance between two target instances

(blobs) x and y in two consecutive time slices (t) and

(t - Dt) is defined as:

dNO
ðx;yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

i

wi
pNi

pNi þ qNi
� pOi

pOi þ qOi

� �

s 2

ð2Þ

where pNi and qNi is the number of white and black pixels

in the ring i of the blob x, pOi and qOi is the number of

white and black pixels in the ring i of the corresponding

blob y and wi is the associated weight for that ring.

Normalized area difference and centroid distance between

two blobs in successive frames is calculated by (3).

Kðx; yÞ ¼ 1� Dðx; yÞ
Dm

Sðx; yÞ ð3Þ

where D(x, y) B Dm and K(x, y) = 0 otherwise. In (3), S(x,

y) is the difference between the area of two blobs, D(x, y) is

the centroid distance for two blobs (x and y), and Dm is

maximum distance threshold proportional to the image

dimensions given as in (4).

Dm ¼
blobwidth þ blobheight

2
ð4Þ

Finally, the similarity measure for matching the two

blobs x and y is given by (5), respectively:

CMðx;yÞ ¼ a 1�
dNO
ðx;yÞ
ffiffiffiffiffiffiffiffiffiffiffiffi

P

i wi

p

 !

þ ð1� aÞkðx;yÞ ð5Þ

where dNO
ðx;yÞ and kðx;yÞ for these two blobs is calculated using (2)

and (3), respectively. There are three relationships between

the blobs in the successive frames, i.e., tracked, leaving and

entering blobs. Leaving blobs are blobs in the frame (t - 1)

that are not identified as a match pair in frame (t), i.e., the blobs

in the frame (t - 1) that disappear in the frame (t); blobs that

have a match pair in frames (t - T), 1 B T B Ttotal are

tracked blobs, respectively. Here, threshold variables a and

Ttotal are determined experimentally.

A road sign is successfully tracked if it labeled tracked

at least in specific number of T B Ttotal recent frames and

the variable S in (6) becomes above certain value.

S ¼
X

t

m¼t�T

CMm
ðx;yÞ ð6Þ

In (6), CMm
ðx;yÞ is the blob (x) similarity measure to its

pair (y), in frame m that is calculated using (5) and

Fig. 5 Some results for shape classification of signs with different lighting conditions

Fig. 6 Ring partition

Neural Comput & Applic (2013) 22:615–625 619

123



t indicates present time. Blobs that successfully tracked are

processed for pictogram feature extraction and final

recognition.

6 Compute feature vector of inner image based on XFF

In our study, the area of signs where the pictogram is

placed follows certain standards. With these standards in

mind, the pictogram has been extracted from its frame and

after binarization processed for classification. The method

of binarization has great impact on correctness of traffic

sign recognition. We used self-adaptive image segmenta-

tion [25] to extract binary inner pictogram of detected

traffic signs. Equation (7) describe this method‘s formula

as follows:

Pði; jÞ ¼ 1; if Iðiþ Hh; jþ LhÞ � w
0; otherwise

�

ð7Þ

and

w ¼ a � avgRgn þ b � min
Rgn

where Hh and Lh represent row and column coordinates of

top and left corner of the detected traffic sign region,

I(i ? Hh, j ? Lh) shows pixel’s illumination channel value

on location (i ? Hh, j ? Lh) of original natural scene

image. avgRgn and minRgn, respectively, represent average

and minimal value of all pixel’s gray value in traffic sign

region. a and b are definite value coefficients in the interval

[0, 1]. Since each ROI is normalized to 50 9 50 pixel, this

method is robust to scale variation. In Fig. 7, some

examples of road sign pictogram binarization using self-

adaptive image segmentation method in adverse lighting

condition are shown. After binarization of detected sign‘s

pictogram, feature extraction and classification procedures

begin.

In pattern recognition, features are used to distinguish

one pattern from the others. To design a good sign recog-

nizer, many parameters should be taken into consideration

for feature extraction. Firstly, it should present a good

discriminative power and low computational cost.

Secondly, it should be robust to the geometrical status of

sign, such as the vertical or horizontal orientation and the

size or the position variation. Thirdly, it should be robust to

noise. We use automatic extraction of fractal features

(XFF) method [26] for pictogram feature extraction as

novel contribution in RSR field.

In XFF method, the Collage Theorem was applied to

extract the meaningful aspects of a 2-D black and white bi-

level or gray-level image discriminate fractal encodings

that are encoded by iterated function system (IFS). If we

consider the bidimensional space R2 and let x~ be a point in

R2, an affine transformation has the general form of (8):

MðxÞ ¼ a b
c d

� �

x~þ e
f

� �

ð8Þ

where a, b, c, and d express a combination of rotations,

scaling, and shears while the values e and f encode the

translations. Given (9) an example of such transformation

is shown in Fig. 8.

M
x
y

� �

¼
1
2

� 1
2

1
2

1
2

� �

x~þ 4

0

� �

ð9Þ

The principle underlying XFF is the same as that

underlying fractal compression system, looking for a set of

transformations that encode the given image. The main

difference stands in the fact that it is inspired by the Col-

lage Theorem as originally stated by Barnsley and not by

the Collage Theorem for Local IFS. In particular, while the

compression systems encode a whole image by searching

for a set of transformations that turn parts of an image into

other parts of it, XFF focuses only on the shape that is

represented; i.e., it looks for IFS that describes the shape

discarding the background. As a consequence, the repre-

sentations obtained are more concise than those obtained in

the case of compression [27]. In XFF, image is uniquely

identified by the parameters of the IFS whose fixed point is

the image itself. The parameters of such approximation,

IFSappr, will be used as descriptive features for the pro-

cessed image. Since XFF focuses on representing isolated

objects, in this case, we used this method to represent the

features of K objects with the biggest area in each

Fig. 8 E is mapped on E0 by means of (9)
Fig. 7 Results for pictogram binarization with Self-adaptive image

segmentation method in different lighting condition
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pictogram In Fig. 9, the flowchart for extracting XFF fea-

tures from a detected sign’s pictogram has been described.

IFSappr for each object in the pictogram of detected sign

is obtained by covering the object with a number of con-

tractions of it. In XFF first, a set of transformations that are

parametric is built that is called proto-transformations. The

proto-transformations are obtained either by rotating a

scaled copy of the original image or by flipping a previ-

ously built proto-transformation around the X or around the

Y axes. The scaling factor, the number of proto-transfor-

mations, and the angles that define the rotations are decided

experimentally. The same scaling factor is used to reduce

both the width and the height of the image. Once the proto-

transformations are ready, the encoding phase for the

object can start. In Fig. 10, the pseudo code for extracting

XFF features for each object in pictogram of detected sign

has been described.

In Fig. 10, width and height are the width and the height

of the original object in pictogram. In words, at each iter-

ation, a set of candidate transformations is produced on a

regular grid of points, then a scoring criterion is applied to

each candidate transformation, the best one is selected and

added to IFSappr, and the pixels that are covered by the

selected transformation are marked. Note that IFSappr can

contain different instantiations of the same proto-

transformation.

The stop criterion is, alternatively, a test on the number

of iterations (go on until N transformations have been

selected) or a test on the amount of foreground that has

been covered (go on until %N of the foreground pixels

have been covered).

The outcome of XFF is an IFS {M1,.., Mm}. Each trans-

formation Mk is coded by three numbers, an identifier of the

proto-transformation it derives from (this is possible because

the number of proto-transformations is finite) and parameters

e and f. Thus, the number of features required to encode

K object in pictogram is K 9 m 9 3. Figure 11a contains the

original pictures of some detected signs in real road scenes

with different conditions. Figure 11b represents binaries

instances of the pictogram and in Fig. 11c and d four self-

affine transformations and fractal reconstruction of objects in
Fig. 9 Flowchart for extracting XFF features from pictogram of

detected sign

Fig. 10 The pseudo code for

extracting XFF features for each

object in pictogram of detected

sign
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pictogram using 16 contracted copies of it is shown,

respectively.

7 Sign classification

In the proposed method, after successfully extracting the

pictogram features, sign classification module relate these

features to one of the target sign classes. For sign recog-

nition, we used C type SVM with kernel function. A

solution in cases the data cannot be separated by a linear

function is to map the input data into a different space uðxÞ
by using kernel function. Due to the fact that the training

data are used through a dot product, if there is a ‘‘kernel

function,’’ so that we satisfy K xi; xj

� 	

¼ uðxiÞ;uðxjÞ

 �

, we

can avoid computing uðxÞ explicitly and use the kernel

function K(xi, xj).

In this work, we used a radial basis function (RBF)

kernel since other kernels gave worse results and also for

its excellent performance, as follows:

Kðxi; xjÞ ¼ e�c xi�xjj j2 ð10Þ

Given input vector x, C type SVM find the minimum

value of uðxÞ in (11) for binary classification:

uðwÞ ¼ 1

2
wTwþ C

X

l

i¼1

ni ð11Þ

Subject to

yi wTuðxiÞ þ b
� 	

þ ni� 1; ni� 0; i¼1;...l ð12Þ

Whereas ni can be understood as the error of the

classification, C is the penalty parameter for this term, and

l is the number of training samples. Then, the decision

function (1) can be revised as (13):

f ðxÞ ¼ sgn
X

Ns

i¼1

kiyiKðxi;XÞ þ b

" #

ð13Þ

where Ns is the number of support vectors, X is input

vector, xi are the support vectors, and Kðxi;XÞ is the kernel

function. To search for the decision region, all feature

vectors of a specific class are grouped together against all

vectors corresponding to the rest of classes (including noisy

objects), following the one versus all classification algo-

rithm. The following procedure is performed to obtain the

best performance in the training procedure:

1. Calculate the feature vector from candidate signs.

2. Use cross-validation to find the best parameter C and c
3. Use the best parameter C and c to train the whole

training set

8 Results

In order to assess the effectiveness of proposed method and

comparison to other methods for road sign detection and

recognition, experiments were run and conducted results

are described here.

In general, the quality of the results obtained by any

study on RSR varies from one research group to another

mainly due to the lack of a standard database of road

images [18]. For example, it is impossible to know how

well one system is robust to variation of illumination of the

images, because in the different studies, usage of images

with low illumination in experiments is usually not speci-

fied. Also, some other researches are based on a small set

of images, as the task of collection of a set of road scene

images with different condition takes much time. For

example, authors in [16] and [28] used little more than a

Fig. 11 a Original pictures of

the detected sign. b Binaries

instances of the each sign’s

pictogram. c Four self-affine

transformations of each object

in pictogram. d Fractal

reconstruction of objects in

pictogram using 16 contracted

copies of itself
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hundred sign images. To avoid these problems in our study,

a large road sign image dataset is produced and used to

train and test the detection and shape classification mod-

ules. Also for testing our tracking algorithm, several video

sequences have been captured with fluctuating speed over a

stretch of approximately 15 km and during both the day

and at night using PAL non-interlaced video (frames of

640 9 480 pixels). In addition, these images and video

sequences cover a wide sort of weather conditions

including sunny, cloudy, and rainy with signs that have

temporal occlusion, rotation, and other problems men-

tioned in Sect. 1. This database has been created in asso-

ciation with Dr. Mahdi Yaghoobi from the Artificial

Intelligence group in Islamic Azad University of Mashhad

[29] and is soon to be made freely available to the scientific

community.

Using 38 test sequences containing 438 test candidates,

the results shown in Table 1 obtained for accuracy of the

detection, shape classification, and tracking modules.

Tracking of sings was performed by means of (6), and after

testing several values for parameters, the best output

occurred when the a and Ttotal were set to 0.55 and 13,

respectively. In addition, in our experiments, the value of

each wi in (2) was set to 1, 1, 0.5, and 0.25 for i = 1, 2, 3,

and 4. According to the results, almost all road signs have

been correctly detected. Table 1 also shows the total

number of traffic signs that appear in each lighting

condition and the number of correctly tracked signs (each

sign is detected multiple times in the sequence) and shows

the accuracy of 96% in detection process. Also the con-

fused shape classification can be attributed to objects with

color and shape similar to traffic signs that are appear in

road scenes and have been rejected by the recognition

module. As Table 1 indicates, in night lighting condition

due to absence of noisy objects in road scenes and because

of high reflectivity of light in road signs, the false alarm

value becomes less compare to other lighting conditions.

As Fig. 12 shows, there are three types of sign we

consider for classification here: type I and type II represent

circular giving orders and triangular with white back-

ground signs and type III represents circular mandatory

signs. The experimental data used to training and testing

the SVM models for pictogram classification were selected

from our image database of manually cropped road signs

that consist of 1,650 data samples. Data samples contained

10 categories of type I, 15 categories of type II, and 8

categories of type III road signs. Each category had 50

samples and divided randomly into two data sets, 30 for

training and 20 for testing in each experiment.

Using these data samples, in order to determine the

proper scaling factor in XFF coding procedure, which

concludes satisfactory approximation of whole pictogram,

we repeat our experiment with different values and the

accuracy of pictogram classification for each one is shown

in Fig. 13. Obviously for values less than 0.2, the XFF

method becomes more sensitive to noise in objects and

may give deferent fractal code for little changes in their

shape. Furthermore, we evaluate the performance of the

XFF feature representation method in comparison with

existent methods such as the geometric and Zernike

moments, principal component analysis (PCA), and binary

representation as used in [20] and [4, 21], respectively in

accuracy for pictogram classification. All experiments were

run on a Pentium 4 3.2 GHz PC with 1,024 MB DRAM,

Table 1 The accuracy rate for detection and tracking modules

Weather conditions Sunny

(daylight)

Cloudy

(rainy)

Night

Traffic signs 153 145 140

Successfully tracked 150 141 138

False alarm 31 23 12

Confused shape

classification

11 8 5

Fig. 12 Types of road sign considered to classification: Type I and Type II represent circular giving orders and triangular with white background

signs and Type III represents circular mandatory signs
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and the SVMs software used is SVM_V0.51 [30]. Results

of these experiments are shown in Table 2.

Results in Table 2 lead us to a number of conclusions:

PCA does not seem to be a satisfactory method for clas-

sifying similar classes because it only takes into account

the total variance of the data instead of class membership.

Also, the AdaBoost classifier with Haar Features, despite

being more complex, did not outperform XFF method.

Binary representation method is not invariant to rotation

and occlusion, so its performance becomes low for large

datasets with such samples.

With regard to the execution speed, the recognition

module with an average single-image processing time

lower than 75 ms can easily be integrated in a real-time

road sign recognition system.

9 Conclusion

This paper has presented a new method to detect, track, and

recognize traffic signs in a video sequence, considering all

the difficulties for this field. A new similarity measure has

also been introduced to track detected blobs, and pictogram

classification has been based on fractal features, which is a

novel contribution in this field. For comparative examination

of XFF feature selection algorithm, a number of separate

experiments by using other popular methods for represen-

tation of road sign’s pictogram have been performed. In the

experiments, the proposed method has been compared with

the other methods and the result is promising.

In addition for tracking the sign, the system presents

information about its state and so the confidence of

detection process for each sign is known. This will help the

recognition module in a constant mode when the same sign

appears in several images. Due to this awareness of the sign

state, the system can be useful for other applications such

as maintenance and inventories of traffic sign in highways

and or cities. We consider using other shape classification

techniques and SVM classifier structures as extension of

this work.
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