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Abstract In this paper, we apply intelligent optimization

method to the challenge of intelligent price-responsive

management of residential energy use, with an emphasis on

home battery use connected to the power grid. For this

purpose, a self-learning scheme that can learn from the user

demand and the environment is developed for the resi-

dential energy system control and management. The idea is

built upon a self-learning architecture with only a single

critic neural network instead of the action-critic dual net-

work architecture of typical adaptive dynamic program-

ming. The single critic design eliminates the iterative

training loops between the action and the critic networks

and greatly simplifies the training process. The advantage

of the proposed control scheme is its ability to effectively

improve the performance as it learns and gains more

experience in real-time operations under uncertain changes

of the environment. Therefore, the scheme has the adapt-

ability to obtain the optimal control strategy for different

users based on the demand and system configuration.

Simulation results demonstrate that the proposed scheme

can financially benefit the residential customers with the

minimum electricity cost.

Keywords Adaptive dynamic programming (ADP) �
Residential energy management � Battery storage �
Scheduling � Price-responsive management �
Real-time pricing � Smart grid

1 Introduction

Over the last decade, the human beings have become more

and more dependent on the electricity for their daily life.

The rising cost, the environmental concerns, and the reli-

ability issues all underlie the needs and the opportunities for

developing new intelligent control and management system

of residential hybrid energy usage. There has been consid-

erable discussion of the importance of distributed energy

storage, including batteries in the home, as a way to create

more price-responsive demand and as a way to integrate

more renewable energy resources more effectively into

power grids. It is envisioned that distributed energy storage

technologies could reduce the combustion of fossil fuel,

supply reliable energy in concert with other energy sources

and financially benefit residential customers.

The development of an intelligent power grid, i.e., the

smart grid, has attracted significant amount of attention

recently. Considerable research and development activities

have been carried out in both industry and academia [1, 17,

20, 23, 31, 33, 39, 41]. Along with the development of

smart grid, more and more intelligence has been required in

the design of the residential energy management system.

Smart residential energy management system provides end

users the optimal management of energy usage by means of

robust communication capability, smart metering and

advanced optimization technology.

There are extensive research efforts in adaptive dynamic

programming (ADP) in the past three decades [3, 4, 7, 14,
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15, 24, 25, 35, 37, 42, 43, 46, 47]. ADP is defined as

designs that approximates dynamic programming solutions

in the general case, i.e., approximates optimal control over

time in nonlinear environments. Many practical problems

in real world can be formulated as cost minimization

problems, such as energy optimization, error minimization

and minimum time controls. Dynamic programming which

provides truly optimal solutions to these problems is very

useful. However, due to the ‘‘curse of dimensionality’’ [5],

for real-world multidimensional problems it is often com-

putationally intractable to run the backward numerical

process required to obtain the dynamic programming

solutions. Over the years, progress has been made to cir-

cumvent the ‘‘curse of dimensionality’’ by building a sys-

tem, called ‘‘critic,’’ to approximate the cost function in

dynamic programming. The idea is to approximate

dynamic programming solutions by using a function

approximation structure such as neural networks to

approximate the cost function. Interest in ADP has grown

in the power sector, and a few applications have appeared

for generators and grid management [29, 32, 36, 38], which

focus mainly on the industrial customers. Very few

research address the issues of residential energy system

control and management. This would be the first applica-

tion to price-responsive residential demand of any kind.

The main focus of this paper is on proposing a com-

putationally feasible and self-learning optimization-based

optimal operating control scheme for the residential energy

system with batteries. We aim to minimize the total oper-

ating cost over the scheduling period in a residential

household by optimally scheduling the operation of bat-

teries, while satisfying a set of constraints imposed by the

requirements on the system and the capacities of individual

components of the system. Operational scheduling of

storage resources in the power system has been the subject

of many studies. The simplest and most straightforward

strategies are predefined rule-based [6, 11, 19, 34]. A set of

IF–THEN rules are created according to the corresponding

scenarios. When a specific scenario happens, the operating

strategy employs some predetermined rules. Rule-based

strategies are relatively simple and can be adapted to a lot

of scenarios. However, limitation is obvious that every

scenario has to be considered in advance, which is not

practical, especially for large complex systems. A large

number of more complex optimization techniques have

been applied to solve this problem, such as dynamic pro-

gramming [2, 27, 30, 45], linear programming [10, 13],

Lagrange relaxation [28] and nonlinear programming [40].

These techniques aim at reducing either computation time

or memory requirements. Recently, computational intelli-

gence methodologies including fuzzy optimization, genetic

algorithm, simulated annealing method and particle swarm

optimization approach have been employed to deal with

the operation cost of hybrid energy systems with storage

systems [8, 9, 16, 21, 44]. Generally, these heuristic

approaches can provide a reasonable solution. However,

these approaches are not able to adapt to frequent and swift

load changes and real-time pricing due to their static nature.

Therefore, we develop in the present paper an operational

scheme with self-learning ability and adaptability to opti-

mize residential energy systems according to system con-

figurations and user demand. The self-learning scheme

based on ADP has the capability to learn from the envi-

ronment and the residential demand so that the performance

of the algorithm will be improved through further learning.

This paper is organized as follows. In Sect. 2, the resi-

dential energy system used in the paper is briefly described.

The control and management problem of residential energy

system is formulated. In Sect. 3, the ADP scheme that is

suitable for the application to the residential energy system

control and management problem is introduced. In Sect. 4,

our self-learning control algorithm for grid-connected

energy system in residential households is developed. The

present work will assume the use of artificial neural net-

works as a means for function approximation in the

implementation of ADP. In particular, multilayer feedfor-

ward neural networks are considered, even though other

types of neural networks are also applicable in this case. In

Sect. 5, the performance of our algorithm is studied

through simulations. The simulation results indicate that

the proposed self-learning algorithm is effective in

achieving the optimal cost. Finally, in Sect. 6, the paper

will be concluded with a few remarks.

2 Description of the residential energy system

The objective of this paper is to apply ADP intelligent

optimization method to the challenge of intelligent price-

responsive management of residential energy use. Specif-

ically, it is to minimize the sum of system operational cost

over the scheduling period, subject to technological and

operational constraints of grids and storage resource gen-

erators and subject to the system constraints such as power

balance and reliability. For this purpose, we focus our

research on finding the optimal battery charge/discharge

strategy of the residential energy system with batteries and

power grids configuration.

2.1 Residential energy system

The residential energy system uses AC utility grid as the

primary source of electricity and is intended to operate in

parallel with the battery storage system. Figure 1 depicts

the schematic diagram of a residential energy system. The

system consists of power grids, a sinewave inverter,
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a battery system and a power management unit. The battery

storage system is connected to power management system

through an inverter. The inverter functions as both charger

and discharger for the battery. The construction of the

inverter is based upon power MOSFET technology and

pulse-width modulation technique [16]. The quality of the

inverter output is comparable to that delivered from the

power grids. The battery storage system consists of lead

acid batteries, which are the most commonly used

rechargeable battery type. The optimum battery size for a

particular residential household can be obtained by per-

forming various test scenarios, which is beyond the scope of

the present paper. Generally, the battery is sized to enable it

to supply power to the residential load for a period of 12 h.

There are three operational modes for the residential

energy system under consideration.

1. Charging mode: when system load is low and the

electricity price is inexpensive, the power grids will

supply the residential load directly and, at the same

time, charge the batteries.

2. Idle mode: the power grids will directly supply the

residential load at certain hours when, from the

economical point of view, it is more cost-effective to

use the fully charged batteries in the evening peak

hours.

3. Discharging mode: by taking the subsequent load

demands and time-varying electricity rate into account,

batteries alone supplies the residential load at hours

when the cost of grid power is high.

This system can easily be expanded; i.e., other power

sources along with the power grid and batteries like PV

panels or wind generators can be integrated into the system

when they are available.

2.2 Load profile

For this study, the optimal scheduling problem is treated as

a discrete time problem with the time step as 1-h and it is

assumed that the residential load over each hourly time step

is varying with noise. Thus, the daily load profile is divided

into 24 h periods to represent each hour of the day. Each

day can be divided into a greater number of periods to have

higher resolution. However, for simplicity and agreement

with existing literature [2, 9, 13, 28], we use a 24 h period

each day in this work. A typical weekday load profile is

shown in Fig. 2. The load factor PL is expressed as PL(t)

during hour t (t ¼ 1; 2; . . .; 24). For instance, at time

t = 19, the load is 7.8 kW which would require 7.8 kWh

of energy. Since the load profile is divided into 1 h steps,

the units of the power of energy sources can be represented

equally by kW or kWh.

2.3 Real-time pricing

Residential real-time pricing is one of the load manage-

ment policies used to shift electricity usage from peak load

hours to light load hours in order to improve power system

efficiency and allow new power system construction pro-

jects [21]. With real-time pricing, the electricity rate varies

from hour to hour based on wholesale market prices.

Hourly, market-based electricity prices typically change as

the demand for electricity changes; higher demand usually

means higher hourly prices. In general, there tends to be a

small price spike in the morning and another slightly larger

spike in the evening when the corresponding demand is

high. Figure 3 demonstrates a typical daily real-time pric-

ing from [12]. The varying electricity rate is expressed as
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Residential Load
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Flow
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Fig. 1 Grid-connected residential energy system with battery storage
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Fig. 2 A typical residential load profile
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C(t), the energy cost during the hour t in cents. For the

residential customer with real-time pricing, energy charges

are functions of the time of electricity use. Therefore, for

the situation where batteries are charged during the low

rate hours and discharged during high rate hours, one may

expect, from an economical point of view, the profits will

be made by storing energy during low rate hours and

releasing it during the high rate hours. In this way, the

battery storage system can be used to reduce the total

electricity cost for residential household.

2.4 Battery model

The energy stored in a battery can be expressed as [21, 48]:

EbðtÞ ¼ Eb0 �
Xt

i¼0

PbðiÞ ð1Þ

PbðiÞ ¼ V0IaðiÞ ð2Þ

aðiÞ ¼ 1 ði� i0Þ
K1ðIÞdV0=di ði [ i0Þ

�
ð3Þ

V0 ¼ Vs � ðKcðQ=ðQ� JiÞ þ NÞJ þ Aexpð�BQ�1JiÞÞ
ð4Þ

where Eb(t) is the battery energy at time t, Eb0 is the peak

energy level when the battery is fully charged (capacity of

the battery), Pb(i) is the battery power output at time i, V0

is the terminal voltage of the battery, I is the battery dis-

charge current, a(i) is the current weight factor as a func-

tion of discharge time, i0 is the battery manufacturer

specified length of time for constant power output under

constant discharge current rate, K1(I) is the weight factor as

a function of the magnitude of the current, Vs is the battery

internal voltage, Kc is the polarization coefficient (ohm

cm2), Q is the available amount of active material (cou-

lombs per cm2), J is the apparent current density (amperes

per cm2), N is the internal resistance per cm2, and A and B

are constants.

Apart from the battery itself, the loss of other equip-

ments such as inverters, transformers and transmission

lines should also be considered in the battery model. The

efficiency of these devices was derived in [48] as:

gðPbðtÞÞ ¼ 0:898� 0:173 jPbðtÞj=Prate; Prate [ 0 ð5Þ

where Prate is the rated power output of the battery, g(Pb(t))

is the total efficiency of all the auxiliary equipments in the

battery system.

Assume that all the losses caused by these equipments

occur during the charging period. The battery model used

in this work is expressed as follows: when the battery is

charged

Ebðt þ 1Þ ¼ EbðtÞ � Pbðt þ 1Þ � gðPbðt þ 1ÞÞ;
Pbðt þ 1Þ\0 ð6Þ

and when the battery discharges

Ebðt þ 1Þ ¼ EbðtÞ � Pbðt þ 1Þ; Pbðt þ 1Þ[ 0: ð7Þ

In general, to improve battery efficiency and extend the

battery’s lifetime as far as possible, two constraints need to

be considered:

1. Battery has storage limit. A battery lifetime may be

reduced if it operated at lower amount of charge. In

order to avoid damage, the energy stored in the battery

must always meet constraint as follows:

Emin
b �EbðtÞ�Emax

b : ð8Þ

2. For safety, battery cannot be charged or discharged at

rate exceeding the maximum and minimum values to

prevent damage. This constraint represents the upper

and lower limit for the hourly charging and

discharging power. A negative Pb(t) means that the

battery is being charged, while a positive Pb(t) means

the battery is discharging,

Pmin
b �PbðtÞ�Pmax

b : ð9Þ

2.5 Load balance

At any time, the sum of the power from the power grids

and the batteries must be equal to the demand of residential

user

PLðtÞ ¼ PbðtÞ þ PgðtÞ; ð10Þ

where Pg(t) is the power from the power grids, Pb(t) can be

positive (in the case of batteries discharging) or negative

(batteries charging) or zero (idle). It explains the fact that

the power generation (power grids and batteries) must
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Fig. 3 A typical daily real-time pricing
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balance the load demand for each hour in the scheduling

period. We assume here that the supply from power grids is

enough for the residential demand.

2.6 Optimization objectives

The objective of the optimization policy is, given the res-

idential load profile and real-time pricing, to find the

optimal battery charge/discharge/idle schedule at each time

step which minimize the total cost

CT ¼
XT

t¼1

CðtÞ � PgðtÞ ð11Þ

while satisfying the load balance equation (10) and the

operational constraints (5)–(9). CT represents the opera-

tional cost to the residential customer in a period of T

hours. To make the best possible use of batteries for the

benefit of residential customers, with time of day pricing

signals, it is a complex multistage stochastic optimization

problem. Adaptive dynamic programming (ADP) which

provides approximate optimal solutions to dynamic pro-

gramming is applicable to this problem. Using ADP, we

will develop a self-learning optimization strategy for resi-

dential energy system control and management. During

real-time operations under uncertain changes in the envi-

ronment, the performance of the optimal strategy can be

further refined and improved through continuous learning

and adaptation.

3 Adaptive dynamic programming

In this section, a brief introduction to ADP is presented

[25]. Based on Bellman’s principle of optimality [5],

dynamic programming is an approach to find an optimal

sequence of actions for solving complex optimization

problems. Suppose that the following discrete time non-

linear system is given

xðt þ 1Þ ¼ F½xðtÞ; uðtÞ; t� ð12Þ

where x 2 Rn denotes the state vector of the system, u 2 Rm

represents the control action, and F is a transition from the

current state x(t) to the next state x(t ? 1) under given

control action u(t) at time t. Suppose that this system is

associated with the performance cost

J½xðiÞ; i� ¼
X1

k¼i

ck�iU½xðkÞ; uðkÞ; k� ð13Þ

where U is called the utility function and c is the discount

factor with 0 \ c B 1. It is important to realize that J

depends on the initial time i and the initial state x(i). The

performance cost J is also referred to as the cost-to-go of

state x(i). The objective of dynamic programming problem

is to choose a sequence of control actions uðkÞ; k ¼ i;

iþ 1; . . ., so that the performance cost J in (13) is

minimized. According to Bellman, the optimal cost from

the initial time i on is equal to J�½xðiÞ; i� ¼ minuðiÞ U½xðiÞ;ð
uðiÞ; i� þ cJ�½xðiþ 1Þ; iþ 1�Þ. The optimal control u*(i) at

time i is the u(i) that achieves this minimum, i.e.,

u�ðiÞ ¼ arg min
uðiÞ

U½xðiÞ; uðiÞ; i� þ cJ�½xðiþ 1Þ; iþ 1�ð Þ:

ð14Þ

ADP is the design based on the algorithm that iterates

between a policy improvement routine and a value

determination operation to approximate dynamic

programming solutions. Generally speaking, there are

three design families of ADP: heuristic dynamic

programming (HDP), dual heuristic programming (DHP)

and globalized dual heuristic dynamic programming

(GDHP). The design of ADP we consider in the present

paper is called action-dependent heuristic dynamic

programming (ADHDP) that does not require the explicit

use of a model network in the design. Consider the

ADHDP shown in Fig. 4 [24], the critic network in this

case will be trained by minimizing the following error

measure over time,

kEqk ¼
X

t

EqðtÞ

¼
X

t

Qðt � 1Þ � UðtÞ � cQðtÞ½ �2 ð15Þ

where Q(t) represents the critic network output. When

Eq(t) = 0 for all time t, (15) implies that

Qðt � 1Þ ¼ UðtÞ þ cQðtÞ
¼ UðtÞ þ c½Uðt þ 1Þ þ cQðt þ 1Þ�
¼ � � �

¼
X1

k¼t

ck�tUðkÞ: ð16Þ

Clearly, comparing (13) and (16), we have Q(t - 1) =

J[x(t),t]. Therefore, after the minimization of error function

in (15), the output of neural network trained becomes an

estimate of the performance cost defined in dynamic pro-

gramming for i = t ? 1, i.e., the value of the performance

cost in the immediate future.

The input-output relationship of the critic network in

Fig. 4 is given by

QðtÞ ¼ Q xðtÞ; uðtÞ; t;WC½ �

where WC represents the weight vector of the critic net-

work. According to the error function (15), there are two

approaches to train the critic network in the present case

[24]. We will use the so-called forward-in-time approach.
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The critic network is trained at time t - 1, with the

output target given by U(t) ? c Q(t). The training of the

critic network is to realize the mapping given by

Cf :
xðt � 1Þ
uðt � 1Þ

� �
! fUðtÞ þ cQðtÞg: ð17Þ

In this case, we consider Q(t - 1) as the output from the

network to be trained and x(t - 1) and u(t - 1) as the

input to the network to be trained. We calculate the target

output value for the training of the critic network by using

its output at time t as indicated in (17). The goal of learning

the function given by (17) is to have the critic network

output satisfy

Qðt � 1Þ � UðtÞ þ cQðtÞ for all t

which is required by (16) for approximating dynamic

programming solutions.

Using the strategy of [22], the training procedure for the

critic network is presented in the following steps:

Step 1 initialize two critic networks: cnet1 = cnet2;

Step 2 collect data as in (17) including states and action

for training;

Step 3 use cnet2 to get Q(t), and then train cnet1 for five

epochs using the Levenberg–Marquardt algorithm

[18];

Step 4 copy cnet1 to cnet2, i.e., let cnet2 = cnet1;

Step 5 repeat Steps 3 and 4, e.g., five times;

Step 6 repeat Steps 2–5, e.g., fifty times;

Step 7 pick the best cnet1 as the trained critic network.

After the training of critic network is completed, we start

the action network’s training with the objective of mini-

mizing the critic network output Q(t). In this case, the target

of the action network training can be chosen as zero, i.e., the

action networks weights will be updated so that the critic

network output becomes as small as possible. In general, if

U(t) is nonnegative, the output of a good critic network

should not be negative. The training of the action network in

the present ADP is to realize the desired mapping given by

A: fxðtÞg ! f0ðtÞg ð18Þ

where 0(t) represents the target values of zero for the critic

network output. It is important to realize that the action

network will be connected to the critic network during the

training as shown in Fig. 4. The target 0(t) in (18) is for

the output of the whole ADP network, i.e., the output of the

critic network after it is connected to the action network as

shown in Fig. 4 [25].

After the action network’s training is completed, one

may check the system’s performance, then stop or continue

the training procedure by going back to the critic network’s

training cycle again, if the performance is not acceptable

yet.

4 Self-learning scheme for residential energy system

The learning control architecture for residential energy

system control and management is based on ADP. How-

ever, only a single module will be used instead of two or

three modules in the original scheme. The single critic

module technique retains all the powerful features of the

original ADP, while eliminating the action module com-

pletely. There is no need for the iterative training loops

between the action and the critic networks and, thus, greatly

simplify the training process. There exists a class of prob-

lems in realistic applications that have a finite dimensional

control action space. Typical examples include inverted

pendulum or the cart-pole problem, where the control action

only takes a few finite values. When there is only a finite

control action space in the application, the decisions that

can be made are constrained to a limited number of choices,

e.g., a ternary choice in the case of residential energy

control and management problem. When there is a power

demand from the residential household, the decisions can be

made are constrained to three choices, i.e., to discharge

batteries, to charge batteries, or to do nothing to batteries.

Let us denote the three options by using u(t) = 1 for

‘‘discharge’’, u(t) = -1 for ‘‘charge’’, and u(t) = 0 for

‘‘idle’’. In the present case, we note that the control actions

are limited to a ternary choice, or to only three possible

options. Therefore, we can further simplify the ADP

introduced in Fig. 4 so that only the critic network is needed

in the ADP design. Figure 5 illustrates our self-learning

control scheme for residential energy system control and

management using ADP. The control scheme works in this

way: when there is a power demand from the residential

household, we will first ask the critic network to see which

action (discharge, charge and idle) generates the smallest

output value of the critic network; then, the control action

from u(t) = 1, -1, 0 that generates the smallest critic

network output will be chosen. As in the case of Fig. 4,

Plant

z

Action Network

Critic Network

Q(t)

u(t) x(t+1)

x(t)
−1

Fig. 4 A typical scheme of an ADHDP
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the critic network in our ADP design will also need the

system states as input variables. It is important to realize

that Fig. 5 is only a diagrammatic layout that illustrates how

the computation takes place while making battery control

and management decisions. In Fig. 5, the three blocks for

the critic network stand for the same critic network or

computer program. From the block diagram in Fig. 5, it is

clear that the critic network will be utilized three times in

calculations with different values of u(t) to make a decision

about whether to discharge or charge batteries or keep it

idle. The previous description is based on the assumption

that the critic network has been successfully trained. Once

the critic network is learned and obtained (offline or online),

it will be applied to perform the task of residential energy

system control and management as in Fig. 5. The perfor-

mance of the overall system can be further refined and

improved through continuous learning as it learns more

experience in real-time operations when needed. In this

way, the overall residential energy system will achieve

optimal individual performance now and in the future

environments under uncertain changes.

In stationary environment, where residential energy

system configuration remains unchanged, a set of simple

static if–then rules will be able to achieve the optimal

scheduling as described previously. However, system con-

figuration including user power demand, capacity of the

battery, power rate, etc., may be significantly different from

time to time. To cope with uncertain changes of environ-

ments, static energy control and management algorithm

would not be proper. The present control and management

scheme based on ADP will be capable of coping with

uncertain changes of the environment through continuous

learning. Another advantage of the present self-learning

scheme is that, through further learning as it gains more and

more experience in real-time operations, the algorithm has

the capability to adapt itself and improve performance. We

note that continuous learning and adaptation over the entire

operating regime and system conditions to improve the

performance of the overall system is one of the key prom-

ising attributes of the present method.

The development of the present self-learning scheme for

residential energy system control and management

involves the following four steps.

Step 1 Collecting data: During this stage, whenever there

is a power demand from residential household, we

can take any of the following actions: discharge

batteries, charge batteries or keep batteries idle

and calculate the utility function for the system.

The utility function in the present work is chosen

as:

UðtÞ ¼ the electricity charge at time t

the possible maximum cost
ð19Þ

During the data collection step, we simply choose actions

1, -1, 0 randomly with the same probability of 1/3. In the

meanwhile, the states corresponding to each action are

collected. The environmental states we collect for each

action are the electricity rate, the residential load, and the

energy level of the battery.

Step 2 Training the critic network: We use the data

collected to train the critic network as presented

in the previous section. The input variables

chosen for the critic network are states including

the electricity rate, the residential load, the

energy level of the battery and the action.

Step 3 Applying the critic network: We apply the trained

critic network as illustrated in Fig. 5. Three values

of action u(t) will be provided to the critic network

at each time step. The action with the smallest

output of the critic network is the one the system

is going to take.

Step 4 Further updating critic network: We will update the

critic network as needed while it is applied in the

residential energy system to cope with environmen-

tal changes, for example, user demand changes or

new requirements for the system. We note that the

data has to be collected again and the training of

critic network has to be performed as well. In such a

case, the previous three steps will be repeated.

Once the training data is collected, we use the forward-

in-time method described in the previous section, to train

Power Need?

Try u(t)=1

Compare
Values

Try u(t)=-1Try u(t)=0

Critic Network Critic NetworkCritic Network

Minimum is 1
Choose u(t)=1

Discharge

Minimum is -1
Choose u(t)=-1

Charge

Minimum is 0
Choose u(t)=0

Idle

Fig. 5 Block diagram of the single critic approach
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the critic network. Note that the training for the critic

network we describe here can be applied to both the initial

training of the critic network and further training of the

critic network when needed in the future.

5 Simulation studies

The performance of the proposed algorithm is demon-

strated by simulation studies for a typical residential

family. The objective is to minimize the electricity cost

from power grids over one week horizon by finding the

optimal battery operational strategy of the energy system

while satisfying load conditions and system constraints.

The focus of the present paper is on residential energy

system with home batteries connected to the power grids.

For the residential energy system, the cost to be mini-

mized is a function of real-time pricing and residential

power demands. The optimal battery operation strategy

refers to the strategy of when to charge batteries, when

to discharge batteries and when to keep batteries idle

to achieve minimum electricity cost for the residential

user.

The residential energy system consists of power grids,

an inverter, batteries and a power management unit as

shown in Fig. 1. We assume that the supply from power

grid is guaranteed for the residential user demand at any

time. The capacity of batteries used in the simulations is

100 kWh and a minimum of 20% of the charge is to be

retained. The rated power output of batteries and the

maximum charge/discharge rate is 16 kWh. The initial

charge of batteries is at 80% of batteries’ full-charge. We

assume that the batteries and the power grids will not

simultaneously provide power to the residential user. At

any time, residential power demand is supplied by either

batteries or power grids. The power girds would provide

the supply to the residential user and, at the same time,

charge batteries. It is expected that batteries are charged

during the low-rate hours, idle in some mid-rate hours,

discharged during high rate hours. In this way, energy and

cost savings are both achieved.

The critic network in the present application is a mul-

tilayer feedforward neural network with 4–9–1 structure,

i.e., four neurons at the input layer, nine neurons at the

hidden layer, and one linear neuron at the output layer. The

hidden layer uses the hyperbolic tangent function as the

activation function. The critic network outputs function Q,

which is an approximation to the function J(t) defined as in

(13). The four inputs to the critic network are: energy level

of batteries, residential power demand, real-time pricing

and the action of operation (1 for discharging batteries, -1

for charging batteries, 0 for keeping batteries idle). The

local utility function defined in (13) is

UðtÞ ¼ CðtÞ � PgðtÞ
Umax

where C(t) is real-time pricing rate, Pg(t) is the supply from

power grids for residential power demand and Umax is the

possible maximum cost for all time. The utility function

chosen in this way will lead to a control objective of

minimizing the overall cost for the residential user.

The typical residential load profile in one week is shown

in Fig. 6 [12]. We add up to ±10% random noise in the

load curve. From the load curve, we can see that, during

weekdays, there are two load peaks occurring in the period

of 7:00–8:00 and 18:00–20:00, while during weekend, the

residential demand gradually increases until the peak

appears at 19:00. Thus, the residential demand pattern

during weekdays and during weekend is different. Figure 7

shows the change of the electrical energy level in batteries

during a typical one week residential load. From Fig. 7, it

can be seen that batteries are fully charged during the

midnight when the price of electricity is cheap. After that,

batteries discharge during peak load hours or medium load

hours, and are charged again during the midnight light load

hours. This cycle repeats, which means that the scheme is

optimized with evenly charging and discharging. There-

fore, the peak of the load curve is shaved by the output of

batteries, which results in less consumption of power from

the power girds. Figure 8 illustrates the optimal scheduling

of home batteries. The bars in Fig. 8 represent the power

output of batteries, while the dotted line denotes the elec-

tricity rate in real time. From Fig. 8, we can see that bat-

teries are charged during hours from 23:00 to 5:00 next day

when the electricity rate is in the lowest range and dis-

charge when the price of electricity is expensive. It is

0 20 40 60 80 100 120 140 160
0

1

2

3

4

5

6

7

8

9

Time  (Hours)

Lo
ad

 (
kW

)

Fig. 6 A typical residential load profile in one week
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observed that batteries discharge from 6:00 to 20:00 during

weekdays and from 7:00 to 19:00 during weekend to

supply the residential power demand. The difference lies in

the fact that the power demand during the weekend is

generally bigger than the weekdays’ demand, which dem-

onstrates that the present scheme can adapt to varying load

conditions. From Fig. 8, we can also see that there are

some hours that the batteries are idle, such as from 3:00 to

5:00 and from 21:00 to 22:00. Obviously, the self-learning

algorithm believe that, considering the subsequent load

demand and electricity rate, keeping batteries idle during

these hours will achieve the most economic return which

result in the lowest overall cost to the customer. The cost of

serving this typical residential load in one week is 2866.64

cents. Comparing to the cost using the power grids alone to

supply the residential load which is 4124.13 cents, it gives

a savings of 1257.49 cents in a week period. This illustrates

that a considerable saving on the electricity cost is

achieved. In this case, the self-learning scheme has the

ability to learn the system characteristics and provide the

minimum cost to the residential user.

In order to better evaluate the performance of the self-

learning scheme, we conduct comparison studies with a

fixed daily cycle scheme. The daily cycle scheme charges

batteries during the day time and releases the energy into

the residential user load when required during the expen-

sive peak hours at night. Figure 9 shows the scheduling of

batteries by the fixed daily cycle scheme. The overall cost

is 3284.37 cents. This demonstrates that the present ADP

scheme has lower cost. Comparing Fig. 8 with Fig. 9, we

can see the self-learning scheme is able to discharge bat-

teries 1 h late from 7:00 to 19:00 during the weekend

instead of from 6:00 to 20:00 during weekdays to achieve

optimal performance, while the fixed daily cycle scheme

ignore the differences of the demand between weekdays

and weekend due to the static nature of the algorithm.

Therefore, we conclude that the present self-learning

algorithm performs better than the fixed algorithm due to

the fact that the self-learning scheme can adapt to the

varying load consideration and environmental changes.

6 Conclusions

In this paper, we developed a self-learning scheme based

on ADP for the new application of residential energy
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system control and management. Such a neural network

scheme will be obtained after a specially designed learning

process that performs approximate dynamic programming.

Once the scheme is learned and obtained (offline or

online), it will be applied to perform the task of energy cost

optimization. The simulation results indicate that the pro-

posed self-learning scheme is effective in achieving mini-

mization of the cost through neural network learning. The

key promising feature of the present approach is the ability

of the continuous learning and adaptation to improve the

performance during real-time operations under uncertain

changes in the environment or new system configuration of

the residential household. We note that changes in resi-

dential demand are inevitable in real-time operations.

Therefore, fixed scheme which cannot take demand chan-

ges and system characteristics into account is less prefer-

able in practical applications. Another important benefit of

the present algorithm is that it can be adapted to different

scenarios of different residential customers. Traditional

fixed control strategies apply the same control strategy for

all system configurations, ignoring the different demands

and system configurations. Therefore, this procedure can-

not ensure an optimum system design for all customers.

With continuous learning and adaptation for residential

household energy system, the control scheme based on

ADP can obtain the optimal control strategy according to

the system configuration and energy utilization of the res-

idential customer. This scheme is customer-centered,

unlike the utility-centered, yet effective and simple enough

for a real-life use of residential consumers.
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