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Abstract A special class of recurrent neural network

termed Zhang neural network (ZNN) depicted in the

implicit dynamics has recently been introduced for online

solution of time-varying convex quadratic programming

(QP) problems. Global exponential convergence of such a

ZNN model is achieved theoretically in an error-free situ-

ation. This paper investigates the performance analysis of

the perturbed ZNN model using a special type of activation

functions (namely, power-sum activation functions) when

solving the time-varying QP problems. Robustness analysis

and simulation results demonstrate the superior character-

istics of using power-sum activation functions in the con-

text of large ZNN-implementation errors, compared with

the case of using linear activation functions. Furthermore,

the application to inverse kinematic control of a redundant

robot arm also verifies the feasibility and effectiveness of

the ZNN model for time-varying QP problems solving.

Keywords Recurrent neural network (RNN) �
Implementation error � Activation function � Robustness �
Quadratic programming (QP) � Redundant robot arm

1 Introduction

The problem of quadratic programming (QP) is considered

to be one of the fundamental mathematical optimization

problems [1, 2], which is widely encountered in various

science and engineering areas; e.g., optimal controller

design [3, 4], power transmission scheduling [5], robot-arm

motion planning [6–8], and digital signal processing [9]. In

many engineering applications, the online (or real-time)

solution of QP problems is usually desired. Owing to its

fundamental roles, many algorithms/methods have been

proposed and developed to solve QP problems [1, 10].

Generally speaking, numerical methods performed on

digital computers are often considered to be well-accepted

approaches to linear-equality constrained QP problems. As

one of the most successful numerical methods, sequential

quadratic programming (SQP) is developed and used to

solve nonlinear programming (NLP) problems [11–13].

The basic idea of SQP is to transform the NLP problem

into a QP subproblem that can be solved by using QP

algorithms. Then, the solution to this subproblem can be

employed to construct a sequence of approximations which

converge to a theoretical solution of the NLP problem [11].

Being another general type of solution, neural networks

have played important roles for online computation, which

are regarded as one of the potential promising alternatives

[14, 15]. Due to their parallel-distributed nature and hard-

ware-realization convenience, neural networks can perform

excellently in many application fields [16, 17]. Chua and

Lin [14] developed and investigated a canonical nonlinear

programming circuit for simulating general nonlinear pro-

grams. Kennedy and Chua [15] explored the stability

properties of a dynamic extension of such a canonical

nonlinear programming circuit model.

Recently, a special class of recurrent neural network

(RNN), i.e., Zhang neural network (ZNN), has been pro-

posed as a systematic approach to solving time-varying

problems [18–22]. The design of ZNN is based on the

elimination of every entry of a matrix- or vector-valued

error function. This kind of error function can make the

resultant ZNN model monitor and force every entry of the

error to zero. In addition, ZNN is depicted generally in an
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implicit dynamics, which is more consistent with analog

electronic circuits and systems due to Kirchhoff’s rules.

The implicit dynamic equation can preserve physical

parameters in the coefficient matrices, and it describes the

usual and unusual parts of a dynamic system in the same

form. Furthermore, ZNN exploits the time-derivative

information of coefficient matrices and vectors of a given

problem during its real-time solving process. This is one of

the reasons why ZNN can globally exponentially converge

to the exact solution of time-varying problems.

To the best of the authors’ knowledge, to date, most

reported computational schemes were theoretically/intrin-

sically designed for time-invariant (or termed, static, con-

stant) problems solving and/or related to gradient methods.

Few studies have been published on RNN for solving such

time-varying QP problems in the literature at present stage.

Myung and Kim [23] proposed a time-varying two-phase

(TVTP) algorithm, which, with a finite penalty parameter,

can offer exact feasible solutions to constrained time-

varying nonlinear optimization problems. As presented in

[22], a conventional gradient-based neural network (GNN)

is employed to solve the time-varying QP problems. The-

oretical and simulative results in [22] have demonstrated

that GNN is less effective on time-varying QP problems

solving, compared with the presented ZNN.

In practice, uncertain realization errors always exist in

the hardware-implementation of RNN; for example, the

incapacity of electronic components would limit the per-

formance of RNN and generate various errors (such as

differentiation error and model-implementation error [24]).

Owing to these realization errors, the solution of the circuit

implementation for RNN may not be accurate. In this case,

robustness analysis of neural networks is important and

necessary. This paper presents the general framework of

the ZNN model for solving time-varying QP problems,

and, by using a special type of monotonically increasing

odd activation functions (namely power-sum activation

functions), the ZNN model with superior robustness in the

context of large implementation errors is analyzed and

investigated, which is compared with the ZNN model

activated by linear functions.

The rest of this paper is organized as follows. Section 2

introduces the problem formulation of time-varying linear-

equality constrained QP, and the general framework of the

ZNN model as a real-time QP solver. By using power-sum

activation functions, Sect. 3 presents the robustness anal-

ysis of the ZNN model in the context of large implemen-

tation errors, which is one of the main contributions of this

paper. In Sect. 4, illustrative computer-simulation exam-

ples are shown to verify the superior robustness of the ZNN

model using power-sum activation functions for time-

varying QP problems solving. In Sect. 5, the ZNN model is

applied to inverse kinematic control of a redundant robot

arm via online solution of time-varying QP problems. Final

conclusion remarks are drawn in Sect. 6.

2 Problem formulation and neural-network solver

Consider the following time-varying convex quadratic

program subject to a time-varying linear equality:

minimize xTðtÞPðtÞxðtÞ=2þ qTðtÞxðtÞ; ð1Þ
subject to AðtÞxðtÞ ¼ bðtÞ; ð2Þ

where Hessian matrix PðtÞ 2 Rn�n is smoothly time-varying,

positive-definite and symmetric for any time instant t 2
½0;þ1Þ � R; and coefficient vector qðtÞ 2 Rn is assumed

smoothly time-varying as well. In (1) and (2), the time-varying

decision vector xðtÞ 2 Rn is unknown and to be solved at any

time instant t 2 ½0;þ1Þ: In equality constraint (2), the

coefficient matrix AðtÞ 2 Rm�n being of full row rank and

vector bðtÞ 2 Rm are both assumed smoothly time-varying. As

pointed out by the authors’ previous work [22], the time-

varying QP problem (1)–(2) can be solved as follows:

WðtÞyðtÞ ¼ uðtÞ; ð3Þ

where

WðtÞ :¼ PðtÞ ATðtÞ
AðtÞ 0

� �
2 RðnþmÞ�ðnþmÞ;

yðtÞ :¼
xðtÞ
kðtÞ

� �
2 Rnþm; uðtÞ :¼

�qðtÞ
bðtÞ

� �
2 Rnþm;

with kðtÞ 2 Rm denoting the Lagrange-multiplier vector.

By following ZNN-design method [18–22], we define the

vector-valued error function e(t) := W(t)y(t) - u(t), and

then the time-derivative _eðtÞ of e(t) is constructed

according to the general ZNN-design formula:

_eðtÞ ¼ �cU eðtÞð Þ: ð4Þ

By expanding the above ZNN-design formula (4), we

obtain the following ZNN model for solving online the

time-varying QP problem (1)–(2):

WðtÞ _yðtÞ ¼ � _WðtÞyðtÞ � cU WðtÞyðtÞ � uðtÞð Þ þ _uðtÞ; ð5Þ

where, being the reciprocal of a capacitance parameter, the

design parameter c[0 2 R should be implemented as

large as possible or selected appropriately for simulative

purposes. Besides, the ith-neuron dynamic equation of

ZNN (5) is given below:

_yi ¼ �
Xnþm

k¼1

_wikyk þ
Xnþm

k¼1

ðdik � wikÞ _yk

� c/
Xnþm

k¼1

wikyk � ui

 !
þ _ui; ð6Þ
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where

– yi and _yi, corresponding to the ith neuron of ZNN (5),

denotes the ith element of state vector y(t) and its

derivative _yðtÞ, respectively, i ¼ 1; 2; . . .; nþ m;

– wik and _wik are defined, respectively, as the ikth entries

of matrix W(t) and its derivative matrix _WðtÞ;
– ui and _ui denote the ith elements of vector u(t) and its

derivative vector _uðtÞ, respectively;

– dik is defined as the ikth entry of identity matrix I.

The neurons’ connection architecture of ZNN model

(5) is depicted in Fig. 1, and Fig. 2 shows the corre-

sponding (analog) circuit schematic of such a neural

network model. In addition, Uð�Þ : Rnþm ! Rnþm denotes

an activation-function (vector) array, and the array U �ð Þ is

made of (n ? m) monotonically increasing odd activa-

tion-functions /ð�Þ. The authors’ previous work [18–22]

has introduced and investigated six types of activation

functions (i.e., linear activation functions, power activa-

tion functions, power-sum activation functions, sigmoid

activation functions, power-sigmoid activation functions

and hyperbolic sine activation functions) for the proposed

ZNN models. In this paper, for comparison and for test-

ing, the following two types of activation functions are

used:

1. Linear activation function /(ei) = ei;

2. Power-sum activation function /(ei) =
P

k=1
N ei

2k-1

with integer parameter N [ 1.

y1 y2 yn+ m

Fig. 1 Neurons’ connection-architecture of ZNN model (5)
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Fig. 2 Circuit schematic which

realizes ZNN model (5)
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They are depicted in Fig. 3. For better understanding

and utility, the convergence properties of ZNN (5) are

summarized in the following lemmas [21, 22].

Lemma 1 Consider strictly-convex QP problem (1)–(2).

If a monotonically-increasing odd activation-function

array Uð�Þ is used, then state vector y(t) of ZNN (5),

starting from any initial state yð0Þ 2 Rnþm; globally con-

verges to the unique theoretical solution y*(t) of linear

system (3), with the first n elements constituting the optimal

solution to QP (1)–(2).

Lemma 2 In addition to Lemma 1, if the linear activation

function is used, then the state vector y(t) of ZNN (5)

globally exponentially converges to the unique theoretical

solution y*(t) of linear system (3) with convergence rate c;

and, if the power-sum activation function is used, superior

convergence is achieved for ZNN (5), as compared to the

linear activation function situation. The first n elements of

y*(t) constitute the optimal solution to QP (1)–(2).

Remark 1 The construction of ZNN model (5) allows us

to have many more choices of different activation func-

tions. In many engineering applications, it may be neces-

sary to investigate the impact of different activation

functions in the neural network, in view of the fact that

nonlinear phenomenon may appear, even in the hardware

implementation of a linear activation function, e.g., in the

form of truncation and round-off errors in digital realiza-

tion [24]. The investigation of different activation functions

may give us more insights into the imprecise-implemen-

tation problem of neural networks.

For clear visual effect and illustration, Fig. 4 shows that

the solutions (denoted by solid curves) of ZNN model (5)

converge rapidly to the theoretical solution (denoted by

dotted curves) of a time-varying QP problem (i.e., of the

first example in Sect. 4). In addition, as seen from Fig. 5,

the residual errors (keðtÞ :¼ WðtÞyðtÞ � uðtÞk2) of ZNN (5)

vanish rapidly to zero. From these figures and other ref-

erences [21, 22], we can confirm well the conclusions in

Lemmas 1 and 2. Evidently, as shown in Table 1, the

convergence rate of ZNN model (5) using power-sum

activation functions is faster than that using linear activa-

tion functions. Besides, such a convergence can be expe-

dited by increasing c. For example, by using the linear

activation functions, if c increases from 1 to 10 (or 100),

0

linear

power-sum

ei

φ (ei)

Fig. 3 Activation function /ð�Þ being the ith element of array Uð�Þ
with N = 3 for the power-sum function
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Fig. 4 Online solution of a time-varying QP problem by ZNN model (5) with c = 1. a Using linear activation functions, b using power-sum

functions with N = 3
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the convergence time [with the prescribed convergence

accuracy keðtÞk2\10�2 achieved] can be decreased from

7.3753 to 0.7366 (or 0.0763) s; and, if c increases to

10,000, the convergence time [with the prescribed con-

vergence accuracy keðtÞk2\10�4 achieved] is only 0.0012

s, which may be applicable in real-time situation. Fur-

thermore, as depicted in this table, by using the power-sum

activation functions, the convergence time could be

decreased further when N is increased. In summary, the

above lemmas guarantee the convergence of ZNN model

(5) under the ideal conditions, i.e., with no implementation

errors involved. However, in practice, realization errors

always exist in the hardware implementation. Thus, in the

ensuing sections, the robustness properties of ZNN model

(5) are investigated with large model-implementation

errors considered.

3 Robustness analysis

In this section, we investigate the ZNN robustness by

considering the following vector-valued ZNN-design for-

mula perturbed with a large model-implementation error

Dx 2 Rnþm :

_eðtÞ ¼ �cU eðtÞð Þ þ Dx; ð7Þ

or to say,

WðtÞ _yðtÞ ¼ � _WðtÞyðtÞ � cU WðtÞyðtÞ � uðtÞð Þ þ _uðtÞ
þ Dx: ð8Þ

Evidently, we have the following theorem about the

robustness of perturbed ZNN-design formula (7).

Theorem Consider the above perturbed ZNN-design

formula with a large model-implementation error Dx 2
Rnþm as depicted finally in (7), where kDxk2� e\þ1
for any t 2 ½0;þ1Þ, with e� c (or at least e� c). For (7),

if linear activation functions are exploited, then the steady-

state error limt!1 keðtÞk2 	 ae=c with a :¼
ffiffiffiffiffiffiffiffiffiffiffiffi
nþ m
p

;

whereas, if power-sum activation functions are exploited,

then superior robustness property exists for error

range limt!1 jeij � 1; and the steady-state error

limt!1 keðtÞk2�ðae=cÞ=N with integer parameter N [ 1,

being smaller than that using linear activation functions.

Proof Let us define a Lyapunov function candidate v ¼
keðtÞk2

2=2 ¼ eTðtÞeðtÞ=2� 0 for the perturbed ZNN-design

formula (7). Then,

_vðtÞ ¼ dvðtÞ
dt
¼ eTðtÞ deðtÞ

dt
¼ �ceTUðeÞ þ eTDx

¼ �c
Xnþm

i¼1

ei/ðeiÞ þ
Xnþm

i¼1

eiDxi:
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(a) (b)Fig. 5 Residual errors of ZNN

(5) with c = 1 for a time-

varying QP problem solving.

a Using linear activation

functions, b using power-sum

functions with N = 3

Table 1 Convergence time (s)

of ZNN (5) for a time-varying

QP problem solving

Prescribed convergence

accuracy

Design

parameter (c)

Linear

function

Power-sum function

N = 2 N = 3 N = 5

kWðtÞyðtÞ � uðtÞk2\10�2 1 7.3753 5.3412 5.0711 4.9041

10 0.7366 0.5199 0.4926 0.4785

100 0.0763 0.0516 0.0487 0.0481

kWðtÞyðtÞ � uðtÞk2\10�4 100 0.1222 0.1002 0.0932 0.0923

1,000 0.0119 0.0100 0.0097 0.0091

10,000 0.0012 0.0010 0.0010 0.0010
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In view of kDxk2� e; we have eTDx� e
Pnþm

i¼1 jeij:
Summarizing the above facts and the property of odd-

function /ð�Þ; we have the following derivation:

dv

dt
� � c

Xnþm

i¼1

jeij/ jeijð Þ þ e
Xnþm

i¼1

jeij

¼ �
Xnþm

i¼1

jeijðc/ðjeijÞ � eÞ: ð9Þ

It follows that the time evolution ei(t) may fall into the

following three situations: (i) c/ðjeijÞ � e [ 0; (ii)

c/ðjeijÞ � e ¼ 0; and (iii) c/ðjeijÞ � e\0; which are

detailed below.

– If the trajectory of the system (7) with t in the time

interval [t0, t1) is in the first situation, _v\0 and (9)

implies that e(t) converges toward zero as time t

evolves.

– If at any time t the trajectory of the system (7) is in the

second situation, then _v� 0 which implies that ei

converges toward zero or remains with /ðjeijÞ ¼ e=c;
in view of _v� 0 containing two cases _v\0 and _v ¼ 0 in

this situation.

– For any time t at which the system trajectory falls into

the third situation, it follows from (9) that _v is less than

a positive scalar (containing two cases _v� 0 and

_v [ 0), and thus |ei| may not converge toward zero.

Now let us analyze the worst case, i.e., 0\ _v� �Pnþm
i¼1 jeijðc/ðjeijÞ � eÞ :it is readily known that v and

|ei| would increase, which increases correspondingly

c/ðjeijÞ � e from a negative value to a value with _v ¼ 0

[due to the odd-function property of /(|ei|)], as time t

evolves. So, on average, there exists a certain time

instant t2 such that c/ðjeiðt2ÞjÞ � e ¼ 0 (and then[ 0),

which returns to the second (or the first) situation, i.e,

_v� 0; and the situation has /ðjeijÞ ! e=c:

Summarizing the above analysis, we conclude that in

general the steady-state error satisfies limt!1 /ðjeijÞ 	
e=c: For the large model-implementation error e� c (or at

least e� c), we have limt!1 /ðjeijÞ 	 e=c� 1 (or at least

� 1) and then the following results are obtained readily

for (7).

– If the linear activation function is used in (7), the

steady-state error limt!1 keðtÞk2 ¼ limt!1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnþm
i¼1 jeij2

q
	 ae=c� a (or at least � a) with

a :¼
ffiffiffiffiffiffiffiffiffiffiffiffi
nþ m
p

:

– If the power-sum function is used in (7), in view of

limt!1 /ðjeijÞ ¼
PN

k¼1 jeij2k�1 	 e=c� 1 (or at least

� 1) with integer parameter N [ 1 and for error range

limt!1 jeij � 1; we have

N lim
t!1
keðtÞk2 ¼ lim

t!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXnþm

i¼1

ðNjeijÞ2
vuut

� lim
t!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXnþm

i¼1

XN

k¼1

ðjeij2k�1Þ2
vuut

¼ lim
t!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXnþm

i¼1

/2ðjeijÞ

vuut 	 ae=c:

Thus, we obtain limt!1 keðtÞk2�ðae=cÞ=N; which is at

worst N times smaller than that in the linear-activation-

function case for general N [ 1. Therefore, the steady-state

error limt!1 keðtÞk2�ðae=cÞ=N 
 ae=c (or at least

� ae=c) with a very large integer parameter N. This shows

the superior robustness of ZNN-design formula (7) using

power-sum activation functions with N [ 1, compared with

that using linear activation functions. Moreover, the linear

activation functions can be considered to be a special case of

the power-sum functions when N = 1.

The proof is thus completed. h

Remark 2 In the simulation, modeling and realization of

neural networks, there may be some errors involved,

resulting from truncating/roundoff errors in digital reali-

zation and high-order residual errors of circuit components

in analog realization [19, 20, 24]. The theoretical analysis

of this theorem has guaranteed that superior robustness can

be achieved readily for ZNN formula (7) and model (8) by

using power-sum activation functions, in comparison with

using linear activation functions. Thus, even though the

model-implementation errors are large, the ZNN model (8)

using power-sum activation functions can still solve the

problem quite feasibly and robustly. As a result, the power-

sum activation functions might be used more widely in the

real-time applications than the linear functions.

4 Simulation verification

The previous sections have presented the robustness anal-

ysis of ZNN model (5) [largely perturbed as (8)] for online

solution of time-varying convex QP problem (1)–(2) sub-

ject to a time-varying linear-equality constraint. In this

section, computer-simulation results and observations are

provided to verify the superior characteristics of using

power-sum activation functions in the context of large

ZNN-implementation errors, compared with the charac-

teristics of using linear activation functions. All simula-

tions are carried out in MATLAB environment and on a

personal digital computer with a Duo E4500 2.19GHz

180 Neural Comput & Applic (2013) 22:175–185
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CPU, 2GB memory and a Windows XP Professional

operating system.

Example 1 For illustration and comparison, let us con-

sider the following time-varying convex QP problem (1)–

(2) subject to a time-varying linear-equality constraint:

PðtÞ ¼ 8þ sin t 0:9 cos t

0:9 cos t 10� 0:5 cos t

� �
; qðtÞ ¼ �2 cos 2t

�2 sin 2t

� �
;

AðtÞ ¼ 2 cos 3t sin 3t½ �; bðtÞ ¼ sin t:

It follows from (3) that we have

WðtÞ ¼
8þ sin t 0:9 cos t 2 cos 3t

0:9 cos t 10� 0:5 cos t sin 3t

2 cos 3t sin 3t 0

2
4

3
5;

uðtÞ ¼ 2 cos 2t; 2 sin 2t; sin t½ �T :

To show the robustness characteristics of the perturbed

ZNN model (8), the large model-implementation error

Dx ¼ ½102; 102; 102�T is specially added in (7). Based on

the theoretical results presented above, we know that, when

a large model-implementation error (e.g., kDxk2 	 173:20)

is added to the ZNN model, using the linear activation

functions will result in large residual errors. This is shown

evidently in Fig. 6a. In contrast, when the power-sum

activation functions are used, the steady-state residual

errors of (7) decrease substantially, around 40 times smaller

than that using linear activation functions. This is shown

comparatively in Fig. 6a and b. Moreover, Fig. 6b is about

using power-sum activation functions with design

parameter N = 3, while Fig. 7a and b are about N = 5

and N = 7, respectively. It is observed that, by increasing

N, the steady-state residual error limt!1 keðtÞk2 of (7) is

decreased very effectively (e.g., for N = 7, which is around

75 times smaller than that using linear activation functions).

In addition, if the very large model-implementation error

(e.g., Dx ¼ ½103; 103; 103�T ) is added to the ZNN model,

the robustness results are shown in Fig. 8, from which the

same conclusion can be redrawn; i.e., using power-sum

activation functions has a much smaller steady-state

residual error than that using linear activation functions

(e.g., around 610 times smaller, as seen comparatively from

Fig. 8a, b).

Example 2 Let us consider the following time-varying

Toeplitz matrix P(t) with n = 4:
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(a) (b)Fig. 6 Residual errors of

largely perturbed ZNN model

(8) when solving the time-

varying QP problem in

Example 1 (with c = 1 and

Dx ¼ ½102; 102; 102�T ). a Using

linear activation functions,

b using power-sum functions

with N = 3
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(a) (b)Fig. 7 Residual errors of

largely perturbed ZNN model

(8) when solving the time-

varying QP problem in

Example 1 (with c = 1 and

Dx ¼ ½102; 102; 102�T ). a Using

power-sum functions with

N = 5, b using power-sum

functions with N = 7
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PðtÞ ¼

p1ðtÞ p2ðtÞ p3ðtÞ � � � pnðtÞ
p2ðtÞ p1ðtÞ p2ðtÞ � � � pn�1ðtÞ

p3ðtÞ p2ðtÞ p1ðtÞ . .
. ..

.

..

. ..
. . .

. . .
.

p2ðtÞ
pnðtÞ pn�1ðtÞ � � � p2ðtÞ p1ðtÞ

2
6666664

3
7777775
2 Rn�n;

where pðtÞ ¼ ½p1ðtÞ; p2ðtÞ; p3ðtÞ; . . .; pnðtÞ�T denotes the

first column vector of the matrix P(t). Let p1ðtÞ ¼ 8þ
cosðtÞ and pkðtÞ ¼ sinðtÞ=ðk � 1Þðk ¼ 2; 3; . . .; nÞ. The

other time-varying coefficients of QP (1)–(2) are defined

as follows:

qðtÞ ¼ �2 cosð2tÞ; 2 cosð2t þ p=2Þ; 2 cosð2t þ pÞ; . . .;½
2 cosð2t þ ðn� 1Þp=2Þ�T2 Rn�1;

AðtÞ ¼ sinðtÞ; sinðt � p=3Þ; sinðt � 2p=3Þ; . . .;½
sinðt � ðn� 1Þp=3Þ� 2 R1�n;

bðtÞ ¼ 2 cosð2t þ np=2Þ 2 R:

Besides, the quite large model-implementation error Dx ¼
½500; 500; . . .; 500�T 2 Rðnþ1Þ�1 is added to the resultant

ZNN model. When the design parameter c = 1 and two

types of activation functions are used, the robustness per-

formance of the largely perturbed ZNN model can be seen

from Fig. 9. From this figure, we observe that, even with

quite large model-implementation errors, the computational

error keðtÞk2 synthesized by the perturbed ZNN model (8)

using power-sum activation functions is still bounded and

relatively small. In contrast, using linear activation func-

tions in the context of quite large model-implementation

error will still result in large computational error (e.g., more

than 1,000 as depicted in Fig. 9a). Evidently, compared

with the situation of using linear activation functions,

superior robustness performance is achieved by using

power-sum activation functions under the same simulation

conditions. In summary, these computer-simulation results

substantiate well the theoretical analysis presented in the

previous sections.

5 Application to robot tracking

As we know and experience [6–8], recurrent neural net-

works have been widely exploited in motion planning and

kinematic control of redundant robots with end-effectors

tracking desired trajectories. In this section, the proposed

ZNN model is applied to kinematic control of a redundant

manipulator via online time-varying QP problem solving.

Let us consider a redundant robot manipulator of which

the end-effector position vector rðtÞ 2 Rm in Cartesian

space is related to the joint-space vector hðtÞ 2 Rn through

the following forward kinematic equation
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(a) (b)Fig. 8 Residual errors of

largely perturbed ZNN model

(8) when solving the time-

varying QP problem in Example

1 (with c = 1 and Dx ¼
½103; 103; 103�T ). a Using linear

activation functions, b using

power-sum functions with

N = 5
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(a) (b)Fig. 9 Residual errors of

largely perturbed ZNN model

(8) when solving the time-

varying QP problem in Example

2 (with c = 1, n = 4 and Dx ¼
½500; 500; 500; 500; 500�T ).

a Using linear activation

functions, b using power-sum

functions with N = 3
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rðtÞ ¼ f ðhðtÞÞ; ð10Þ

where f ð�Þ is a continuous nonlinear mapping function with

known structure and parameters for a given manipulator.

The inverse kinematic problem is to find the joint variable

h(t) for any given r(t). By differentiating (10) with respect

to time t, we have a linear relation between the Cartesian

velocity _rðtÞ and joint velocity _hðtÞ as follows:

JðhðtÞÞ _hðtÞ ¼ _rðtÞ; ð11Þ

where JðhðtÞÞ 2 Rm�n is the so-called Jacobian matrix

defined as J(h(t)) = qf(h)/qh. In the redundancy-resolution

problem (i.e., m \ n), (11) is under-determined, admitting

an infinite number of feasible solutions.

As pointed out by the authors’ previous work [7], the

inverse kinematic problem (or called the motion-planning

problem) of robot manipulators can be formulated as the

following time-varying quadratic program subject to a

time-varying linear equality:

minimize xTðtÞPxðtÞ=2þ qTðtÞxðtÞ; ð12Þ
subject to AðtÞxðtÞ ¼ bðtÞ; ð13Þ

with P := I, q(t) := l(h(t) - h(0)), A(t) := J(t), and b(t) :=

_rðtÞ, where hðtÞ 2 Rn denotes the joint variable vec-

tor, l[ 0 is a design parameter used to scale the magni-

tude of the manipulator response to joint displacements,

x(t) corresponds to _hðtÞ 2 Rn which is to be solved online,

and _rðtÞ 2 Rm denotes the desired end-effector velocity

vector.

In this section, as synthesized by ZNN model (5) using

power-sum activation functions, a five-link planar redun-

dant robot manipulator is simulated for further verification

purposes. The five-link robot arm has three redundant

degrees (because n = 5 and m = 2), and the desired path

of its end-effector is an ellipse with the major radius being

0.6 m and the minor radius being 0.3 m. The motion

duration is 10 s, and initial state h(0) = [3p/4, -p/2, -p/4,

p/6, p/3]T rad. Design parameters l and c are set to be 4

and 10, respectively. The simulation results are depicted in

Figs. 10, 11, and 12. Figure 10 illustrates the motion tra-

jectories of the five-link planar robot manipulator operating

in the two-dimensional space. The arrow appearing in

Fig. 10 shows the motion direction. As shown in the right

subplot of Fig. 10, the actual trajectory of the robot’s end-

effector (denoted by blue asterisk-marked curve) is suffi-

ciently close to the desired elliptical path (denoted by red

dashed curve). The transient behaviors of joint variables

and joint velocity variables of the five-link planar robot

manipulator are depicted in Fig. 11. Figure 12a shows the

Cartesian position error of the end-effector. From this

subplot, we see that the maximum position error synthe-

sized by ZNN model (5) is less than 2.13 9 10-6 m.
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(a) (b)Fig. 10 Motion trajectories and

end-effector trajectory of a five-

link planar manipulator

synthesized by ZNN model (5)

using power-sum activation

functions with N = 3 when its

end-effector tracks an elliptical

path
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using power-sum activation
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In addition, the maximum velocity error is less than

4.84 9 10-7 m/s, which is shown in Fig. 12b. It means

that the end-effector path-tracking task synthesized by

ZNN model (5) is accomplished well. These simulation

results verify further the feasibility and effectiveness of the

ZNN model (5) for time-varying QP problem (12)–(13)

solving.

Furthermore, we consider the situation of the five-link

planar robot manipulator’s end-effector path-tracking task

synthesized by ZNN model (8) in the context of large

model-implementation errors Dx ¼ ½100; 100; 100; 100;

100; 100; 100�T . The motion duration, the initial state and

the design parameter l are the same as before. As shown in

Fig. 13, the actual trajectory (denoted by blue asterisk-

marked curve) of the robot’s end-effector cannot coincide

well with the desired elliptical path (denoted by red dashed

curve) when the design parameter c is set to be 105. In

addition, the maximum position error synthesized by ZNN

model (8) in this situation is roughly 0.01 m. According to

the presented theoretical results (i.e., the theorem in Sect.

3), c can be used to improve the performance and robust-

ness of the ZNN model. So, in comparison, as depicted in

Fig. 14, when c increases to 106, the end-effector path-

tracking task can be accomplished well. Moreover, the
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(a) (b)Fig. 12 End-effector position

and velocity errors of a five-link

planar robot manipulator

synthesized by ZNN model (5)

using power-sum activation

functions with N = 3 when

tracking an elliptical path.
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synthesized by largely perturbed
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trajectory, b position errors (m)
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Fig. 14 End-effector trajectory

and position errors of a five-link

planar robot manipulator

synthesized by largely perturbed

ZNN model (8) using power-
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maximum position error can be decreased by 10 times,

which may satisfy the requirement of engineering appli-

cations, and confirm again the theoretical results shown in

Sect. 3.

6 Conclusions

In this paper, the convergence and robustness properties of

Zhang neural network using two types of activation func-

tions have been investigated and analyzed for the online

solution of time-varying convex QP problems. The theo-

retical analysis has guaranteed that superior robustness is

achieved readily for ZNN formulas and models in the

context of (very) large model-implementation errors by

using power-sum activation functions, when compared to

that using linear activation functions. Computer-simulation

results, including those based on a five-link robot manip-

ulator, have further substantiated the feasibility, effective-

ness and robustness of Zhang neural network.

Before ending the paper, it is worth pointing out further

that this paper focuses on the robustness analysis of the

ZNN model for solving time-varying QP problems subject

to time-varying linear-equality constraints. In the future,

we will consider handling other types of constraints (e.g.,

inequality constraints) via the presented ZNN method and

model, which is evidently a future research direction of this

work.
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