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Abstract We propose an adaptive learning algorithm for

cascades of boosted ensembles that is designed to handle

the problem of concept drift in nonstationary environments.

The goal was to create a real-time adaptive algorithm for

dynamic environments that exhibit varying degrees of drift

in high-volume streaming data. This we achieved using a

hybrid of detect-and-retrain and constant-update approa-

ches. The uniqueness of our method is found in two aspects

of our framework. The first is the manner in which indi-

vidual weak classifiers within each cascade layer of an

ensemble are clustered during training and assigned a

competence value. Secondly, the idea of learning optimal

cascade-layer thresholds during runtime, which enables

rapid adaptation to dynamic environments. The proposed

adaptive learning method was applied to a binary-class

problem with rare-event detection characteristics. For this,

we chose the domain of face detection and demonstrate

experimentally the ability of our algorithm to achieve an

effective trade-off between accuracy and speed of adapta-

tions in dense data streams with unknown rates of change.

Keywords Ensemble-based learning �
Adaptive learning � Concept drift � Nonstationary
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1 Introduction

The underlying assumption of classical approaches for

training classifiers has been that their operating domains

are stationary [1, 2]. However, with the advent of streaming

data and long life classification systems, it has become

clear that these assumptions no longer hold. Consequently,

the inadequacy of traditional techniques for application on

emerging domains has become apparent [3, 4].

The data streams in dynamic domains such as e-com-

merce, economic and financial data analysis, sensor sys-

tems, email spam filtering and a host of other burgeoning

fields, possess distributions and class descriptors that con-

stantly change with time, due some hidden context [5].

Therefore, the target concepts from the original training

data may no longer correspond with the current represen-

tations of the target concept. As a result of an increasing

loss of relevance between the concepts’ representations and

current snapshots of data, a deterioration in the runtime

accuracies ensues. This phenomenon is referred to as

concept drift [6].

Variations in data can take a sudden or a gradual form

and may also be recurring, whereby previously active

concepts reappear in a randomly cyclical fashion. Although

an increased understanding about the anticipated types of

drifts improves the chances of devising a successful

adaptive strategy [7], often the magnitude and frequency of

drifting contexts are not known a priori. To a large degree,

training effective classifiers is contingent on formulating

strategies based on foreseen types of changes inherent to an

operating domain. Due to this, training accurate classifiers

for unpredictable nonstationary environments is nontrivial

[8, 9] and is still an open problem.

The situation is further compounded by the fact that

many target concepts we monitor for in streaming data are
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also rare-occurring [2]. Biased-class distribution problems

of this kind can hinder and impose significant limitations

on accuracies attainable by standard learning methods [10]

and are a considerable ongoing challenge [2]. This situation

is encountered in a large and growing list of domains such

as adversarial monitoring environments like network

intrusion, surveillance, and transaction fraud detection.

In addition to the trends that have given rise to

expanding numbers of available data with seemingly

unlimited and continuously flowing streams, there has also

been a tendency for these streams to be dense and high-

speed [11]. This poses difficulties for not only realizing

real-time event detection, but even more so for modeling

and handling concept-drifts in a timely manner. Failure to

expeditiously update models to time-evolving environ-

ments will eventually result in a decrease in prediction

accuracy [2]. For instance, this can be critical in robotics

where there is a reliance on computer vision components.

The incoming data are high-speed and large scale, with

drifting concepts caused by different lighting conditions. A

problem domain of this kind requires real-time processing

and adaptation in order for time-sensitive tasks such as

obstacle avoidance and planning to be effective [12].

1.1 Past research

Ensemble-based techniques have been shown to be an

effective and scalable approach to addressing concept-

drifting challenges in streaming data [11, 13–15]. Ensem-

ble-based systems consist of multiple classifiers that can be

viewed as a committee of experts, whose individual votes

are combined in order to formulate a final classification.

The modularity they afford gives them the ability to retain

relevant historical information as well as to effectively

incorporate new knowledge [16].

Generally, ensemble-classifiers maintain relevance to

current snapshots of/streaming data through either the

constant-update or detect-and-retrain methods [17]. Most

ensemble systems belong to the former category, which

simply assumes that drift is always taking place and con-

sequently, and they continuously adapt the classifiers. This

strategy comes with the loss of responsiveness to sudden

drifts and a high model update-cost [17], while also

introducing the risk of modeling noise. Alternatively, the

detect-and-retrain strategies actively monitor for changes

in the underlying distribution of data and trigger a classifier

update once a predetermined criteria or performance

threshold is surpassed. As a result, they are more respon-

sive to sudden drifts [17].

Ensemble-based systems maintain an updated state

using a combination of strategies. These typically involve

dynamic modifications of classifier weights and voting

techniques, mechanisms that add new competent classifiers

and remove the irrelevant, as well as approaches employing

batch (offline) and instance-based (online) learning [7, 16].

Batch learning approaches train on entire partitions of

incoming streaming data, instead of single data instances.

Recent approaches [1, 14, 16, 18] train new classifiers for

every newly generated batch of data. In these cases, both

the structure of an ensemble and the weights of existing

classifiers are altered. Wang et al. [2] and Scholz and

Klinkenberg [15] recognize the high update costs associ-

ated with continuous global updates of a model in high-

density data streams. They devise a framework for rapidly

revising only relevant components of an ensemble and

initiate the training of new classifiers only when required.

Nishida et al. [9] employ a hybrid approach that com-

bines both batch and online learning. Kolter and Maloof

[19, 20] propose pure online learning approaches that train

and incorporate new experts into the ensemble when the

ensemble makes a collective mistake. Pockock [21] pro-

poses a more optimal extension of Oza’s Online Boosting

[22] algorithm, on the basis that the modified version does

not assume that the streaming data are independent and

identically distributed.

Huang et al. [23] and Pelossof et al. [24] develop

sequential learning algorithms for cascaded face detectors

through a strategy of continuous updates of ensemble

weights. Grabner et al. [25] approach the problem of

concept drift in face detection by developing a hybrid

tracker combined with a classification system.

1.2 Motivation

Our aim is to propose a drift-handling algorithm that can

adapt in real time to evolving concepts in large volume and

high-speed streaming data. We devise a model that makes

no assumptions about the types of drift in its operating

domain and can therefore be equally robust to all forms of

drift. Lastly, we are motivated by the challenges presented

by rare-class distributions to classification in dynamic

domains.

Due to the lacking of robustness of existing artificial

data sets for testing drift handling [8], as well as their

insufficient ability to test scalability [26], we were moti-

vated to create our own real-world dataset. We chose to

apply our algorithm to computer vision and more specifi-

cally to the task of face detection. By implementing

exhaustive raster scanning of a given image frame using

subwindows of increasing sizes, we were able to create a

suitable problem domain. The data set provided us with a

large, high-speed data stream, where accuracy and real-

time drift response are paramount. In addition, the problem

domain met our requirement of possessing a biased-class

distribution as well as naturally occurring concept drifts of

varying magnitude.
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1.3 Our contribution

The following summarizes our paper’s contribution:

1. We propose a novel drift-learning framework for

cascaded ensembles within binary-class problems

2. We introduce a low update-cost approach for ensem-

bles in a cascaded structure, which enables real-time

adaptation in high-speed data streams

3. We present results on a real-world problem data set

involving computer vision and face detection

The algorithm is formulated on the ideas of boosted

cascades in the form of Barczak et al. [27]. The method

constructs clusters of ensembles within each layer that

function as nested cascades. The novelty of our contribu-

tion is found in the unique way that competence values

assigned to each cluster of ensembles within a layer are

used to create optimal layer confidence thresholds. We

show how these layer confidence thresholds can be trained

in order to cope with all forms of drift without global

model updates. The algorithm demonstrates an effective

trade-off between accuracy and adaptation speed, in time-

evolving environments with unknown rates of change and

can process large volume data streams in near real time.

1.4 Paper organization

The structure of this paper is as follows: Sect. 2 describes

the theory and implementation of the stationary cascaded

ensemble-classifier that serves as input to our concept

learning algorithm. This is followed by the detailed

description of the concept-drift-handling algorithm. Sec-

tions 3 and 4 outline the experiment design and its results,

respectively, while Sect. 5 includes a discussion before

concluding remarks.

2 Proposed framework

We first describe the structure and the method for training a

cascaded classifier on static data sets, which serves as input

to our concept-drift-handling algorithm. This is then fol-

lowed by a detailed description of the proposed algorithm

together with related research.

2.1 Building the static cascaded ensemble

Barczak et al. [27] initially proposed a classifier training

structure termed Parallel Strong Classifier within the same

Layer (PSL), seen in Fig. 1. This was the extension of the

work by Viola and Jones [28], who produced the seminal

cascade of boosted ensembles (CoBE), seen in the same

figure. The central idea of the work by Barczak et al. was

to transform the CoBE into a cascade of layers that con-

tained within them a supplementary nested intra-layer

cascade. In effect, this created a quasi two-dimensional

cascaded framework. This novelty was motivated by the

desire to reduce overall training runtimes by accelerating

Fig. 1 The standard cascade structure of Viola–Jones and the PSL structure [27], in which each stage within a layer is comprised of a

predetermined maximum number of weak classifiers
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convergence rates of hit and false acceptance rates to their

specified layer targets. Furthermore, the goal was to design

a strategy capable of guaranteeing 100% hit rates at every

stage of a cascade without artificial threshold adjustments

that are found in other approaches.

The training method for the PSL proceeds as follows: at

the commencement of training for each layer of a cascade,

all positive and negative samples are made available to the

boosting algorithm. After a predetermined number of

boosting rounds, the training for a given intra-layer stage

ceases and a new independent one begins with all sample

weights reset. Subsequently, each succeeding intra-layer

stage is provided with all negative training samples, while

only misclassified positive samples from the previous

rounds are supplied for re-training until enough intra-layer

stages are constructed to correctly classify all positive

samples (Fig. 2).

The convergence to layer targets is rapidly realized

since the size of the positive training data set decreases

rapidly following each intra-layer stage, leaving consider-

ably fewer but also more difficult positive samples to be

learned. At detection time, any instance is classified as a

positive if any one intra-layer stage predicts it as a positive,

while a negative prediction is attained only when a unan-

imous vote among all intra-layer stages is reached.

The idea of a dual-cascaded structure was taken further

in Susnjak et al. [29], in order to implement positive

sample bootstrapping. This enabled the utilization of

potentially massive positive data sets, without the learning

algorithm being exposed to all samples explicitly, a task

that would otherwise be computationally too expensive.

The research showed that it was possible to repeatedly train

each intra-layer stage using only a small subset of the

positive data set. After constructing each intra-layer stage,

the total positive data set would be sampled in order to

create a new positive subset. This set would only consist of

positive samples that were misclassified by all preceding

intra-layer stages. The experiments demonstrated that it

was not only possible to implement bootstrapping, but that

the diversity of each intra-layer stage increased. Since each

intra-layer stage learned on mostly nonoverlapping positive

data sets, each one came to specialize at predicting more

distinct portions of the distribution of the target concept.

Algorithm 1 details the training procedure.

Fig. 2 The propagation of

positive and negative training

samples within each layer of a

PSL nested cascade

Algorithm 1 PSL with Positive

Sample Bootstrapping

674 Neural Comput & Applic (2012) 21:671–682

123



Intuitively, the next step involved recognizing that each

intra-layer stage, made up of a ranging number of weak

classifiers, could be seen as an individual ensemble itself.

Theoretically, the competence level of each intra-layer

stage could then be determined based on its performance

on any combination of the training or validation data sets as

well as streaming data containing drifting concepts. The

process of assigning confidence values to intra-layer stages

transformed the nested cascade within each layer into

ensembles of ensemble-clusters for which the previous

vote-combination strategy had to be revised. The following

section describes the procedure for assigning weights to

each cluster of ensembles and their combination method,

which forms the foundation for our concept-drift-handling

system. There we also introduce the idea of learning layer

confidence thresholds, which form the basis of our pro-

posed algorithm.

2.2 Concept-drift learning algorithm

Algorithm 2 outlines in detail our concept-drift learning

method. Once an initial dual-cascaded classifier according

to the structure of Barczak et al. [27] has been trained on a

static data set (Step 1), it is first validated against it to

gather competence values for its constituent parts (Step 2).

Since each intra-layer stage now becomes interdependent

of others in the same layer and is no longer considered to

be part of a rigid cascade structure, we refer to each one

from now on as an ensemble-cluster as seen in Fig. 3.

In the validation process, it is the performance of each

individual ensemble-cluster that determines the confidence

weight assigned to it. This competence measure is calcu-

lated in the form of alpha values used by Freund and

Schapire [30]:

hija ¼ 0:5 ln
1� errorh

ij

errorh
ij

 !

where each confidence value a is assigned to a jth ensemble

h on an ith cascade layer. Usually, ensemble combination

rules consist of a simple weighted majority vote as in:

HiðxÞ ¼ sign
Xn

j¼1

aijhijðxÞ
 !

where H represents a prediction for a layer i using the sum

of n number of ensembles applied to on an instance

x whose prediction is determined by the sign. We modify

this by defining a unique minimum confidence threshold

value threshi for every layer:

Algorithm 2 Concept Drift

Learning
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HiðxÞ ¼
1 if

Pn
j¼1 aijecijðxÞ[ threshi

0 otherwise

�

in which a sample instance x is positively predicted and

passed to succeeding layers for more rigorous testing only

if the sum of confidence values for the current layer surpass

it thus producing more robust collective decisions.

In contrast to ensemble-cluster confidence weights, the

layer confidence thresholds are computed on the incoming

data streams from the application domain in which drift is

present. In Step 7, an optimal layer threshold thresh_confi
for layer i is computed by first calculating all possible sums

of ensemble-clusters. By treating each distinct sum as a

threshold, a generalization error can then be calculated for

each one. Additionally, the confidence threshold value can

be set to either favor higher hit rates or lower false positive

rates by varying the weights of w and / values in (Step 8).

Once the algorithm has completed classifying all instances

from a current data stream and all layer confidence sums

with their respective errors have been computed, then the

sum with the lowest error rate for each layer is selected as

the optimal threshold (Step 9).

Once threshold learning is finished, the classifier is

ready to be redeployed and begin handling drift (Step 3).

Unlike most ensemble-based methods, our algorithm

makes use of a trigger mechanism to inform it that drift is

occurring in the environment. In its current form, our

algorithm uses the classification error rate as a trigger for

drift handling to begin if the generalization ability falls

beyond a predefined level (Step 4).

Initial experiments have shown that employing layer

confidence thresholds achieves an aggressive strategy for

eliminating false positive detections that can sometimes

also reduce positive hit rates if not applied optimally. We

can combine this observation with the flexibility of

cascaded classifiers, which allows us to use a strategy that

varies the number of layers that utilize confidence thresh-

olds depending on its current generalization. During run-

time, the drift learning algorithm can progressively

increase the number of layers to which layer thresholds are

applied (Step 5) until a sufficient number of false positives

have been eliminated while preceding layers are calculated

in original form. The ability of the framework to progres-

sively increase the number of layers that use confidence

thresholds becomes the algorithm’s facility for handling

gradual drifts.

As data streams begin to drift more acutely, the algo-

rithm activates proportionally larger numbers of layer

confidences in respect to increasing false positive rates.

This proceeds until the drift stabilizes or until all available

layers with confidence thresholds are exhausted. If all layer

thresholds have been deployed and the error rate is still

above an acceptable level, then the layer thresholds have

been rendered irrelevant to current conditions, and subse-

quently, optimal layer threshold learning is reinitiated

(Step 6).

3 Experiment design

We tested our algorithm on a collection of images con-

taining faces. The comparisons were conducted between

our algorithm and the same underlying classifier that was

trained on stationary data without concept learning capa-

bilities. The classifier in question was first trained offline

using the [29] method with Haar-like features. Five thou-

sand positive faces from a combination of FERET1 and

Yale Face Database B [31] data sets were used, against a

α α α α

Fig. 3 Diagram of the concept-

drift learning algorithm

1 http://www.frvt.org/FERET/default.htm
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negative data set of 2,000 samples, bootstrapped from a

pool of 2,500 negative images. The training and test images

used for concept learning were completely independent.

The resulting classifier comprised of 24 layers with 3–6

ensemble-clusters per layer. Table 1 summarizes the

details of the static classifier and its training procedures.

The test data set used for concept learning consisted of

100 images comprising of 640 9 480 pixel dimensions,

collected from a webcam from different and varying

environments. Each frame provided a stream of 336,980

instances in the form of image subwindows that had to be

evaluated. The total number of evaluated samples for the

data set exceeded 33 million, thus simulating a large vol-

ume and high-speed data stream. Initial subwindow size

was 24 9 24 pixels and increased by the factor of 1.2 after

exhaustive raster scanning of an image at an increment of 2

pixels per scan. Table 2 lists properties of the test set and

the properties of the adaptive learning.

In compiling this data set, we sought to include instan-

ces of gradual and abrupt shifts as well as recurring con-

texts and data distribution changes over time. Gradual

shifts were modeled through illumination changes and by

panning the camera in a given environment. Sudden

environment changes in the form of outdoor and indoor

settings were used to model abrupt shifts as were rapid

illumination variations. Recurring contexts were modeled

by repeating similar images from previously seen settings,

while distribution shifts were created by exposing the

algorithm to images with and without faces. Example

images from our test data set can be seen in Fig. 4.

A maximum of one face per image was present in order

to simplify the extraction of the ground truth data con-

cerning face coordinates. The extraction of facial coordi-

nates was assisted by using markers that were used for

distinguishing positives from negatives during learning and

verification phases. All learning was conducted automati-

cally by the algorithm without manual intervention. The

initial frame was programmed to trigger threshold learning

irrespective of the offline trained classifier’s performance.

In order to ascertain optimal learning durations for our

classifier on this domain, five experiments were conducted

in which a different number of frames were utilized for

each training phase. Initial tests relied on learning from a

single frame and extended to the maximum of five con-

secutive frames. Since accuracy analysis was performed

using all images, including the frames that were utilized for

learning, experiments that learned multiple frames applied

their intermediate learning to their current classifier after

each subsequent frame for reasons of fairness. Concept-

drift learning occurred on frames succeeding the initial

frame whose error rate triggered the learning facility.

Due to the rare-event operating environment of face

detectors, higher weights were assigned to positive samples

than to the negatives, when layer thresholds were learned.

The purpose of this was to assist in maintaining high hit

rates; yet, in images where faces were absent, the algorithm

was equally capable of learning. The algorithm initiated

gradual drift adaptability each time false positives were

encountered. Concept learning for abrupt shifts was initi-

ated if a false negative detection occurred or if false pos-

itives continued to occur on the lowest cascade layer set for

calculating thresholds. In our experiments, using a classi-

fier with 24 layers, the eighth layer was set as the lowest for

which layer threshold learning would be performed.

4 Results

Our analysis of experimental results will first involve

accuracy comparisons between the static classifier and the

drift learning classifiers. Since face detection is a rare-

event detection domain, focus will be on the reduction in

the false positive rate. The adaptive classifiers are then

compared with each other in order to yield some insight as

Table 1 Training and data set details together with the classifier

properties for constructing the static classifier

Property Attribute

Positive images 5,000

Negative images 2,500

Boosting algorithm Discrete

AdaBoost

Cascade layers 24

Ensemble-clusters per layer 3–6

Ensemble-cluster size 1–20

Number of Haar-like feature types 8

Maximum Haar-like features per image

subwindow

200,000

Minimum pixel area size per Haar-like feature 16

Table 2 Characteristics of the concept-drift learning data set and the

method

Property Setting

Total images 100

Image size 640 9 480

Subwindow kernel size 24 9 24

Subwindow scale increase factor 1.2

Subwindow raster scan pixel increment 2

Total subwindows per image 336,980

Images used for learning per drift phase 1–5

Subwindow scale increase factor 1.2

Subwindow raster scan pixel increment 2
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to what might be the optimal learning time-window for this

algorithm in similar computer vision domains. The best

performing adaptive classifier is selected for more detailed

accuracy comparisons with the static classifier in addition

to the analysis of runtimes and responsiveness to gradual

and abrupt drifts.

4.1 Analysis of multi-frame concept-drift learning

The results given in Fig. 5 depict the logarithmic rate of

decrease in the total number of false positive detections as

a function of each successive cascade layer. At the end of

each individual accuracy curve, the total number of false

positive detections from each classifier are displayed. From

this figure, the static classifier demonstrates the slowest rate

of decrease in the false positive detections per cascade

layer and ultimately produced the highest number of total

false positive detections. All adaptive classifiers attained a

reduction in the total number of false positive detections

that ranged from 94–99% over those of the static classifier.

On this particular test data set, of the five adaptive classi-

fiers, the best accuracy was achieved by drift-learning

performed on a window containing a single image frame.

The following observations regarding the speed of

responsiveness and adaptation of all classifiers are made

from Fig. 6. This figure approximates the actual runtimes

through curve smoothing for the purpose of readability and

highlighting overall trends. As expected, the figure points to

generally longer runtimes for adaptive learning that takes

place on larger windows. Learning on multiple snapshots of

data proved to be particularly more expensive between

frames 50–75. These frames correspond with images that

presented both patterns of increased difficulty to classify, as

Fig. 4 Sample test image sequence with various forms of drift.

Starting from the top, row (a), example of gradual drifts becoming

abrupt due to illumination changes in an indoor environment, row (b),

succeeded by sudden drifts into an outdoor setting, containing both

data distribution changes through absences of faces and gradual

changes modeled by camera panning into row (c), concluding with a

sudden change to indoors with a combination of the above drifts in

row (d)
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well as a sequence of more frequent abrupt drifts that resulted

in a high concentration of explicit threshold learning.

The total number of explicit learning phases did not vary

significantly between the five adaptive classifiers, with all

classifiers triggering 7–8 learning phases. From this, we

can conclude that learning exposures on larger snapshots of

incoming data did not result in an overall decrease in

runtimes that might have been expected had increased

accuracy occurred since fewer explicit learning phases

would have been initiated. On the contrary, both the

accuracy of classifiers deteriorated when multiple snap-

shots of data were employed, and a vulnerability in run-

times was observed when using multiple data snapshots in

the presence of frequent sudden drifts. On this particular

domain with this pattern and magnitude of environmental

change, the algorithm has demonstrated an ability to rap-

idly adapt to drifting conditions using minimal data. The

subsequent analysis examines in more detail the charac-

teristics of the single-frame adaptive classifier and com-

pares it with the static classifier.

4.2 Results of single-frame concept-drift learning

Given in Fig. 7a, are comparison results of the total num-

ber of false positive detections per frame between the static

and the adaptive classifiers. The figure shows that the false

positive detections for the static classifier seldom stayed at

zero, while the upper range exceeded 50 false detections

per frame. By applying the drift-learning algorithm, the

false positive detections were removed from all but 18% of

the total images, while their total per image never exceeded

two false positive detections. In total, 33 false positive

detections belonging to the single-frame adaptive classifier

were confined to only 18 images, while the distribution of

2,295 false positive detections of the static classifier for all

practical purposes rendered most frames unusable. In

regard to the overall hit rates, the reduction in false positive

detections came at a small price. The static classifier

correctly classified all positive samples while our drift-

handling algorithm produced three false negative

detections.

Recurring contexts were primarily simulated in the first

50 frames and made more challenging by inserting in the

middle an abrupt drift in order to ascertain if concept for-

getting would ensue. From the same figure, we can observe

very low false positive detections occurring for the adap-

tive classifier throughout this phase and affirm that there is

robustness in this algorithm to cyclical environmental

shifts.

4.3 Response patterns to gradual and abrupt drifts

Figure 7b demonstrates the adaptation pattern of our

algorithm to gradual concept drifts per frame. More spe-

cifically, it shows how out of the total 24 layers of the

cascaded classifier, an increasing number of layer thresh-

olds were employed for classification as the accuracy

deteriorated. This is seen in the figure in the manner which

the initial cascade layer for calculating layer thresholds

decreases in response to increasing false positive detec-

tions. This figure is complemented by Fig. 7a referred to
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earlier, by showing the magnitude of false positive detec-

tions that initiate the gradual concept-drift-handling facil-

ity. By noting the removal of subsequent false positive

detections in Fig. 7a, we can see the effectiveness of the

algorithm to handle gradual drifts.

The high concentration of abrupt concept drifts that took

place between frames 50–75, as mentioned earlier, is also

pointed out in Fig. 7b by phases 3–6. These transitions

caused higher error rates to occur, resulting in the initiation

of four layer threshold learning phases in short succession.

Despite this, the algorithm demonstrated robustness in its

responsiveness to frequent sudden drifts in data. This can

be observed in the decrease and rapid stabilization of the

false positive detections after abrupt drifts have taken

place. Figure 8 shows an example of a sequence of images

containing an abrupt drift that was simulated through an

extreme illumination change, which activated a layer

threshold learning phase.

4.4 Learning and detection runtimes

The runtime cost of adapting to drift amounts to 3–4 times

the classification time of the static classifier (Fig. 9a). In

spite of this, there is sufficient scope for optimizing the

learning phase through parallelization that would result in

an overall marginal performance penalty for time critical

applications. We believe that for most applications, the

modest detection time increase is likely to be acceptable in

exchange for a considerable improvement in accuracy.

Contrary to our expectations, we also note that the

detection runtimes of our adaptive classifiers using layer

thresholds are consistently faster on images not being

learned, than that of the static classifier (Fig. 9b). The

detection runtime acceleration of up to 10% is attributed to

the fact that the learned layer thresholds correctly classify

more negative samples in earlier cascade layers, thus pre-

venting their further propagation to subsequent layers and

in the process decreasing computation costs. The faster

detection runtime of our adaptive classifiers mitigates, to

some degree, the increase in runtimes brought on by the

learning phases of layer thresholds.

5 Discussion

Unlike most ensemble-based solutions, the strength of the

proposed approach is that individual ensemble-clusters are

semantically aware. According to the definition of Wang

et al. [2], systems without this characteristic are unable to

correspond individual weak classifiers with a hidden con-

cept. These results in costly global-updates of ensembles,

which makes the methods vulnerable to high-speed data

streams. Our approach possesses this attribute, since each

ensemble-cluster is responsible for independently predict-

ing a subset of samples. Additionally, our method is

semantically aware since the ensemble-clusters are entirely

revisable without affecting other components. They can

also be removed, while new ones may be appended during

Fig. 8 An example of an image sequence containing an abrupt drift due to a significant illumination change, that subsequently triggered a

concept-drift learning phase
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Fig. 9 a An accurate comparison of runtimes between the single-

frame learning classifier and the static classifier. b The percentage of

increased execution runtime of the single-frame learning classifier

over the static classifier

680 Neural Comput & Applic (2012) 21:671–682

123



runtime to allow them to be explicitly associated with

emerging hidden concepts.

The ability of the approach to rapidly adapt in large data

streams is a noteworthy property. Since only layer thresh-

olds are learned and updated, the algorithm achieves a

unique balance between stability and plasticity in learning.

It is strongly robust to recurring contexts, while still being

sufficiently responsive to changes in its operating envi-

ronment. The method has proved itself particularly effec-

tive in rare-event operating domains where extremely low

false positive detections are paramount. Its capacity to

improve accuracies of poorly performing classifiers has

implications that may simplify and accelerate offline

training processes.

Lastly, the algorithm is also capable of adapting without

deterioration when only exposed to negative samples. This

makes it suitable for background modeling. In all cases,

effective adaptation is achieved with minimal data and the

detection runtime has been shown to accelerate when the

learned thresholds are utilized.

The shortcomings of the algorithm lie in its current

inability to explicitly learn novel positive samples or pos-

itives whose class description has been radically modified.

The modularity of the framework does, however, enable it

to address this by augmenting each cascade layer with new

ensemble-clusters. Consequently, although our approach is

restricted to detecting target concepts that do not alter

substantially, the effect is that the algorithm becomes

resistant to incorrectly learning and modeling noise.

In its present form, our algorithm is also confined to

binary-class problems. Nevertheless, since all multi-class

problems can be reformulated as series of two-class clas-

sification tasks [32, 33], our approach can be applied to each

resulting classifier. An additional challenge in our system is

the difficulty in determining the optimal balance of

responsiveness to concept drift between gradual adaptation

and explicit relearning of layer-thresholds. A poor config-

uration will either result in increased classification errors

prior to adaptive learning being initiated or a performance

degradation due to constant layer-threshold updates.

Finally, as is the case in all supervised learning, our

approach is reliant on explicit input of ground truth

describing class labels of new instances. However, this

disadvantage can be alleviated by our algorithm to some

degree in rare-event domains, by periodically exposing the

learning algorithm to negative samples and thereby per-

forming regular background modeling as discussed earlier.

6 Conclusion

The main contribution of this paper was the introduction of

an adaptive learning algorithm for nonstationary

environments that is designed for cascades of boosted

ensembles. Its novelty lies in learning optimal cascade

layer thresholds in order to achieve adaptability, without

resorting to the altering of confidence weights of individual

classifiers. Within each layer, individual classifiers are

amalgamated into ensemble-clusters whose collective

decisions are assigned competence weights based on their

performance on training data. During runtime, a classifi-

cation is attained by combining the decisions of all

ensemble-clusters within each layer in order to produce a

collective value. The comparison of this value with the

learned layer thresholds formulates the final classification.

A foremost aim of the research was to achieve real-time

learning adaptability in problem domains where explicit

training of new ensembles is computationally infeasible

due to large volumes of streaming data as well as data that

are represented by immense dimensionalities. The goal was

to replicate such an operating environment and to demon-

strate the ability of this algorithm to adapt to diverse forms

of drift without inducing concept forgetting.

In our experiments, we showed the ability of our system

to achieve real-time drift learning for a binary-class prob-

lem. We simulated an operating environment with a large

datastream by applying our algorithm to face detection and

found that it was timely and effective in removing false

positive detections. The method was responsive to both

gradual and abrupt concept drifts, and we found that

classifiers whose accuracy in time-evolving environments

degraded beyond usability, became practical by applying

our algorithm. Additionally, our approach did not suffer

from concept forgetting as found in recurring contexts, thus

creating a balance between both plasticity and stability of

learning that is sustainable over time.

Subsequent research will focus on applying this algo-

rithm to other problem domains as well as extending its

learning capabilities that will enable it to also become

incremental in nature by integrating novel target concept

information into its ensemble.
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