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Abstract Within the framework of aging materials

inspection, one of the most important aspects regarding

defects detection in metal welded strips. In this context, it

is important to plan a method able to distinguish the

presence or absence of defects within welds as well as a

robust procedure able to characterize the defect itself. In

this paper, an innovative solution that exploits a rotating

magnetic field is presented. This approach has been carried

out by a finite element model. Within this framework, it is

necessary to consider techniques able to offer advantages

in terms of sensibility of analysis, strong reliability, speed

of carrying out, low costs: its implementation can be a

useful support for inspectors. To this aim, it is necessary to

solve inverse problems which are mostly ill-posed; in this

case, the main problems consist on both the accurate for-

mulation of the direct problem and the correct regulariza-

tion of the inverse electromagnetic problem. We propose a

heuristic inversion, regularizing the problem by the use of

an Elman network. Experimental results are obtained using

a database created through numerical modeling, confirming

the effectiveness of the proposed methodology.

Keywords Elman network � Non destructive testing �
Flawed welding characterization

1 Introduction

In many industrial and civil applications, materials and

structures are subjected to various manufacturing and ser-

vice conditions. It is thus imperative to enhance the pre-

dictive capabilities of modeling various types of defects,

e.g., micro-cracks or micro-voids, which anticipate possi-

ble fracture growth. A typical framework where the prob-

lem can be encountered is the welding process, i.e., the

application of a joint on two or more pieces. In the welding

strip, matter of discontinuity appears at micro-scale as

either spherical or elliptical air bubbles. These disconti-

nuities cause a stress concentration, modifying the consti-

tutive response of the material, or, in other words, building

a damage within the material. The latter phenomenon

represents the initial step to crack extension and, conse-

quently, the voids’ detection and control should be inves-

tigated by means of reliable devices and procedures. The

quality of a welded joint depends on the product allocation.

In fact, some types of welding are suitable for a particular

case, the same type of welding will not be eligible in

another situation. The quality is devised according to the

intended use of the joint, but it takes into account all factors

that may affect the welding. Scientific literature suggests a

lot of different solutions for the problem of material

inspection. Nowadays, the mostly used techniques are

based on non-destructive testing and evaluation (NDT/E),

having a very important role in inspecting aging materials

for industrial applications or within the framework of civil

engineering. Within this context, it is very important to

plan a suitable method able to distinguish the presence or

absence of defects within welds as well as a robust pro-

cedure able to characterize the defect itself: its imple-

mentation can be a useful support for inspectors. But, in

order to characterize the defects within the inspected
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materials, it is necessary to solve an inverse problem that is

mostly ill-posed. In this case, the main problems consist on

both the accurate formulation of the direct problem and the

correct regularization of the inverse electromagnetic

problem. In the last decades, a useful and very performing

way to regularize ill-posed inverse electromagnetic prob-

lems are based on the use of the so-called ‘‘learning by

sample techniques’’. They allow to heuristically solve the

inverse problem, starting from the experience, and so

implementing such intelligent and non-crisp algorithms as

neural networks, fuzzy inference systems and so on. In this

paper, we propose a performance analysis by using heu-

ristic approaches and starting from a well-known way of

inspecting welding strips [7, 12]. The latter exploits a

rotating magnetic field, i.e., a magnetic field generated by a

three-phase system, able to rotate in the time-space

domain. The magnetic field induces eddy currents within

the inspected specimens, which are influenced by the

presence of a possible defect, e.g., voids, and in turn

influences the external magnetic field. Its component nor-

mal to the upper surface of the modeled plate is measured

on the specimen’s surface. In the past, a lot of experi-

mentations [13] and numerical modeling [1, 13, 14] have

been carried out in order to understand the behavior of

eddy currents if a crack occurs into the inspected materials

[13, 14]. In our work, we did not want to focus our

attention to cracks in homogeneous materials, but we used

a finite element method (FEM) in order to characterize

eddy currents into welded objects. We studied the case in

which an air bubble is present into the welding, thus

weakening the strength of the finally obtained object. A

number of simulations have been carried out, involving a

number of welding strips with different elliptical voids,

having varying shapes, locations, and orientations. All the

collected data have been subsequently used in order to train

and test a suitable Elman network, for evaluating the per-

formance of the methodology characterizing the voids. The

performances are satisfying: the approach is able to rec-

ognize position and dimensions of very small cracks. This

paper can be considered an evolution of a previous work

[8], based on a wavelet artificial neural network approach.

1.1 An overview of defectiveness in welding strip

Welding process could induce the following relevant defects,

compromising the structural integrity of the same strips and

consequently, of specific components and structures:

• lack of fusion: if the fusion of the basic metal is

excessive, continue grooves are formed on the sides,

causing a depression along the sides of the cord;

sometimes, the incisions can be eliminated by using a

thin covering material;

• excess of penetration on the top (dripping): if a huge

quantity of metal is caught at the top of the weld, a toe

crack could be determined;

• incomplete penetration: it is caused by a lack of

fusion at the welding apex and seriously reduces the

resistance of the joint; in heading welding made with

one or more rubs, the defect can be eliminated by

chiseling out, and giving an additional rub;

• gluing: it occurs when, during the welding process, the

complete fusion of metal does not take place, i.e., when

the welding metal overlaps the not-yet-fused material to

weld, without a mixing between the metals;

• cracks: the most serious kind of flaws, because they

originate from phenomena of metallurgical nature.

Since they depend on the cracking temperature, they

are named as hot or cold cracks.

Figure 1 shows the most typical defects in metal welded

strips. Sizes can vary, greatly depending on the welding

process and conditions. For instance, according to Euro-

pean laws UNI EN 287-2 and UNI EN 288-4, the

maximum tolerable crack dimension is fixed to 0.5 (mm)

of diameter for a circular defect. In many cases, it is very

difficult to distinguish between the kind of defects starting

from typical NDTs’ measurements. In fact, at the state-of-

the-art, non destructive identification systems allow to

allocate a defect but without being able to determine its

shape. In addition, different kinds of defects can cause

similar signals. Therefore, a soft computing-based

approach can be very useful for an automatic and, for

instance, for real-time classification. In the following

section, rotating magnetic field based on finite element

analysis (FEA) will be described. Subsequently, techniques

used for defect classification will theoretically be

presented.

Fig. 1 Output simulation signal
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2 On the A–w formulation for building the dataset

For our purposes, we need to implement a suitable database,

useful for subsequent regularization of the ill-posed inverse

problem. It can be stated as follows: evaluating the extension

of voids starting from suitable data. The goal is the detection

of defects in the welding and the realization of a data set in

order to train and test a suitable Elman network. Usually,

data are represented by in-lab measurements or numerical

simulations [10]. In our case, we exploited the latter path,

modeling the direct problem through a commercial FEM

software. We aim to analyze the effectiveness of a welding

performed on two slabs of structural steel. The geometry of

the examined case presents a ‘‘V’’ type welding, where a

bubble-shaped defect has been modeled. Geometrical

dimensions of our model are listed in Table 1. For our pur-

pose, we verified the distortion of the magnetic field density

(T) [11, 15] to detect the defect presence of a porosity bub-

ble, formed during welding process. Figure 2 shows the

effect of the presence of defect in our FEM analysis. The

simulations have been carried out by changing the size of the

flaw, and exploiting the phenomenon of magnetic rotating

field, since its main advantage is the insensitivity to crack’s

orientation. In the proposed approach, we exploit the A–w
formulation [16]. In the case of magnetostatic and quasi-

static fields, Ampère–Maxwell’s equation can be written as

r�H ¼ J ð1Þ

where H represents the magnetic field and J the current

density, respectively. If we consider a moving object with

velocity v relative to the reference system, the Lorentz force

equation establishes that the force F per charge q is then

given by

F

q
¼ Eþ v� B ð2Þ

where E represents the electric field; v the instantaneous

velocity of the object derived from the expression of the

Lorentz force and B the magnetic induction. In a conductive

medium, an observer traveling with the geometry sees the

current density (considering that r is the electric

conductivity) J ¼ r Eþ v� Bð Þ þ Je; therefore, we can

rewrite (1) as follows

r�H ¼ r Eþ v� Bð Þ þ Je ð3Þ

where Je [A/m2] is an externally generated current density.

Considering, for a transient analysis, the definitions of

magnetic vector potential A and electric scalar potential V:

B ¼ r� A

E ¼ �rV � oA

ot

ð4Þ

and the constitutive relationships

B ¼ l0lrH, H ¼ l�1
0 l�1

r B ð5Þ

where l0 and lr are free space and relative magnetic

permeability; we may rewrite (3), by substituting (4) and

(5) in it, as

r
oA

ot
þr� l�1

0 l�1
r r�A

� �
� rv� r�Að Þ þ rrV ¼ Je

ð6Þ

Since we are interested in perpendicular induction current,

only the z-component of A is non null. Therefore, the

formulation of the 3-D equation (5) is simplified to

r
oAz

ot
þr� l�1

0 l�1
r r� Az

� �
� rv� r� Azð Þ

¼ r
DV

L
þ Je

z ð7Þ

where DV is the difference of electric potential and L is the

thickness along the z-axis. The partial difference equation

(PDE) formulation of equation (7) can be written as

r
oAz

ot
þr � l�1

0 l�1
r rAz

� �
� rv � rAz ¼ r

DV

L
þ Je

z ð8Þ

In this way, we calculated the magnetic vector potential A

in a generic subdomain X: For our aim, it is necessary to

impose the boundary conditions as follows. Magnetic field

(n�H ¼ n�H0) for boundary of air where acting the

rotating magnetic field; for remaining boundaries, included

the defect, the continuity is assured by the expression

n� H1 �H2ð Þ ¼ 0 [11, 16]. The rotation effect of the

magnetic field vector has been simulated by applying a

uniform B vector, timely rotated according to the following

Euler rotation formulation [18]:

xðt þ sÞ
yðt þ sÞ

� �
¼ cos xtð Þ sin xtð Þ
� sin xtð Þ cos xtð Þ

� �
xðtÞ
yðtÞ

� �
ð9Þ

Table 2 resumes the values of set electrical parameters.

The collected database is composed by 1,000 numerically

simulated signals, characterized by defect’s presence with

different frequency values and 200 numerically simulated

signals showing absence of defect. We added Gaussian

Table 1 General settings of numerical models

Property Setting

Material used for the specimen Stainless steel,

not-magnetic, isotropic

Dimension of specimen 0.2 9 0.01 (m)

Welding thickness 0.02 (m)

Electric conductivity 4.032 9 106 (S/m)

Minimum diameter of the defect 0.5 (mm)

Maximum diameter of the defect 1 (mm)
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noise with different magnitudes to the retained simulation

results.

3 Elman network for the solution of inverse problem

and testing results

Since nowadays, a lot of researchers exploited the afford-

ability of neural networks to inspect and characterize

weldings [3, 6, 17, 19]. In this paper, we approach the

problem of estimate the diameter of the bubble within the

welding starting from experimental measurements. It can

be solved as a typical inverse problem of pattern regression

starting from computed measurements (see the previous

work [2]). Our proposed approach, useful to detect the flaw

presence, exploits a particular version of recurrent neural

networks (RNN), i.e., Elman neural network (ENN) [5].

A simple recurrent network (SRN) is a variation on the

multi-layer perceptron (MLP), sometimes called an

‘‘Elman network’’ due to its invention by Elman [5]. The

ENN commonly is a three-layer network with feedback

from the first-layer output to the first-layer input. This

recurrent connection allows the ENN to both detect and

generate time-varying patterns. A three-layer ENN is

shown in Fig. 3. The ENN has hyperbolic tangent sigmoid

transfer function (tansig in the figure) neurons in its hidden

(recurrent) layer and linear transfer function (purelin in the

figure) neurons in its output layer. This combination is

special in that three-layer networks with these transfer

functions can approximate any function (with a finite

number of discontinuities) with arbitrary accuracy. The

only requirement is that the hidden layer must have enough

neurons. More hidden neurons are needed as the function

being fitted increases in complexity. In our work, a three-

layer network has been used, with the addition of a set of

‘‘context units’’ in the input layer. There are connections

from the middle (hidden) layer to these context units fixed

with a weight of one. At each time step, the input is

propagated in a standard feed-forward fashion, and then a

learning rule (usually back-propagation) is applied. The

fixed back connections result in the context units always

maintaining a copy of the previous values of the hidden

units (since they propagate over the connections before the

learning rule is applied). Thus the network can maintain a

sort of state, allowing it to perform such tasks as sequence

prediction that are beyond the power of a standard MLP. In

a fully recurrent network, every neuron receives inputs

from every other neuron in the network. These networks

are not arranged in layers. Usually, only a subset of the

neurons receive external inputs in addition to the inputs

from all the other neurons, and another disjunct subset of

neurons report their output externally as well as sending it

to all the neurons. These distinctive inputs and outputs

perform the function of the input and output layers of a

feed forward or simple recurrent network and also join all

the other neurons in the recurrent processing. Particularly,

the use of RNNs as system identification networks and

feedback controllers offers a number of potential

Table 2 Electrical parameters

Parameter Dimension

Frequency From 10 to 50 (Hz)

Pulse 2p f (rad/s)

Magnetic field 3 9 10-3 (T) in magnitude

Fig. 2 Categories of discontinuity in metal welded strips

Fig. 3 A graphical depiction of

a generic ENN, having an input

layer, an output layer, and a

recurrent (hidden) layer
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advantages. RNNs provide a means for encoding and rep-

resenting internal or hidden state, albeit in a potentially

distributed fashion, which leads to capabilities that are

similar to those of an observer in modern control theory.

Moreover, RNNs are capable of providing estimations even

in the presence of measurements noise and provide

increasing flexibility for filtering noisy inputs [5]. Proposed

computational intelligence applications utilizes an ENN as

heuristic pattern classifier. We chose this kind of network

since it can store information for future reference, and thus

it is able to learn temporal patterns as well as spatial pat-

terns (our case). The ENN can be trained to respond to, and

to generate, both kinds of patterns.

In order to set the amount of training signals, we made a

trade-off between the requirements of an as large as pos-

sible training subset and a significant availability of testing

signals. Thus, in our experimentations, training set has been

composed by 85 of collected signals. Remaining pulses

compose the test subset. Inputs of the system are the FEM

signals. The output of the system is represented by stan-

dards errors described below. EN having a different number

of neurons for the hidden layer (according to the Kurková’s

theorem [9]) uses a back-propagation (BP) algorithm. Dif-

ferent activation functions have been considered in order to

train test the EN with a consequent analysis of the best

performances by a convenient variation of the training

parameters. Particularly, best performances have been

obtained with log-sigmoid activation function. Here, stan-

dard errors, mean squared error (MSE, 10), mean absolute

error (MAE, 11), root mean squared error (RMSE, 12), root

relative squared error (RRSE, 13), relative absolute error

(RAE, 14), and one regression index, Willmott’s index of

agreement (WIA, 15), are used as derivation measurements

between measured and predicted values. The square of the

so called Pearson’s coefficient of regression [4], i.e., the

regression R value (please, note that R = 1 means perfect

correlation), learning performance indexes, as a conse-

quence of application of the BP algorithm. Generally, WIA

measures the regression degree, and the larger the WIA, the

more accurate are the prediction results.

MSE ¼
Pn

i¼1ðxi � bxiÞ2

n
ð10Þ

MAE ¼ 1

n

Xn

i¼1

jxi � bxi j ¼
1

n

Xn

i¼1

jeij ð11Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
1ðxi � xÞ2

n

s

ð12Þ

RRSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1ðPij � TjÞ2

Pn
j¼1ðTj � TÞ2

vuut ð13Þ

RAE ¼
Pn

j¼1 jPij � TjjPn
j¼1 jTj � T j ð14Þ

WIA ¼
Pn

i¼1ðxi � bxiÞ2
Pn

i¼1ðjx
0
ij � jbxi

0 jÞ2
ð15Þ

where x is the predict result, bx is the measured result of the

network, Pij is the predict value, T is the actually value,

n is the number of considered patterns. Figure 4 below

shows the performances for each one of the considered

setting of the network. A maximum on R and WIA rep-

resents good regression abilities of the network and thus

good performances in terms of estimation voids’ sizes.

Vice versa, the lower the values of MAE, RRSE, RMSE,

RAE, and MAE (representing statistical distribution of

errors between actual and estimated values) the better the

ENN’s performances. Therefore, ENNs having 4, 5, or 6

hidden neurons in recurrent layer represent a good com-

promise for our purposes. Tables 3 and 4 resume values of

evaluation indexes for 4 and 6 hidden neurons in recurrent

layer, respectively.

4 Concluding remarks

On the basis of the numerical method presented in this

paper, the authors have developed a finite element code for

the analysis of the rotating magnetic field for metal welding

strips. For our analysis, we used a classical ‘‘V’’-profile

welding and simulated different sizes of defects according

to the UNI EN law. Specifically, exploiting rotating mag-

netic field using a self implemented FEA code, a bi-

dimensional time-dependent model has been studied to

evaluate the distortion of the magnetic field and the mag-

netic field density due to the defect presence. The variation

of the magnetic field H; induced by the variation of eddy

currents, particularly, the normal component of H; i.e. H?;
is measured by suitable sensors in order to detect the

presence of cracks, since it is not influenced by the exciting

coils. The magnetic rotating field represents an insensitive

solution to the crack’s orientation, which induces variation

of the eddy current density without a mechanical move-

ment, with a remarkable economic saving. With these

information, an ENN-based approach has been exploited in

order to characterized the defect, starting from signals

obtained by computer simulations. Numerically obtained

rotating magnetic field signals have been used to train the

ENN-based regressor. The proposed method provides a

good overall accuracy in reconstructing the defect’s

diameter, as our experimentations demonstrate. This aspect

represents an useful support to the inspector, specially

regarding the detection of defects with small size,
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improving their resolution. At the same time, the procedure

should be validate for defect with different shape. The

presented method can be considered more effective for

dealing with dense training sets. The presented results can

be considered as preliminary results; anyway, they are very

encouraging and suggest the possibility of increasing and

generalizing the performance of the EN-based classifier

just refining its training step, for instance including, within

the training set, rotating magnetic field signals able to

describe flaws with different spatial extension and for

different positions. The authors are actually engaged in this

direction.
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