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Abstract An Electrocardiogram or ECG is an electrical

recording of the heart and is used in the investigation of

heart disease. This ECG can be classified as normal and

abnormal signals. The classification of the ECG signals is

presently performed with the support vector machine. The

generalization performance of the SVM classifier is not

sufficient for the correct classification of ECG signals. To

overcome this problem, the ELM classifier is used which

works by searching for the best value of the parameters that

tune its discriminant function and upstream by looking for

the best subset of features that feed the classifier. The

experiments were conducted on the ECG data from the

Physionet arrhythmia database to classify five kinds of

abnormal waveforms and normal beats. In this paper,

a thorough experimental study was done to show the

superiority of the generalization capability of the Extreme

Learning Machine (ELM) that is presented and compared

with support vector machine (SVM) approach in the

automatic classification of ECG beats. In particular, the

sensitivity of the ELM classifier is tested and that is

compared with SVM combined with two classifiers, and

they are the k-nearest Neighbor Classifier and the radial

basis function neural network classifier, with respect to the

curse of dimensionality and the number of available

training beats. The obtained results clearly confirm the

superiority of the ELM approach as compared with tradi-

tional classifiers.
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1 Introduction

ECG is a technique which captures transthoracic interpre-

tation of the electrical activity of the heart overtime and

externally recorded by skin electrodes. The electrical

potential generated by electrical activity in cardiac tissue is

measured on the surface of the human body. Current flow,

in the form of ions, signals contraction of cardiac muscle

fibers leading to the heart’s pumping action. It is a non-

persistent recording produced by an electrocardiographic

device. The recognition and classification of the ECG beats

is a very important task in the coronary intensive unit,

where the classification of the ECG beats is essential tool

for the diagnosis. ECG offers cardiologists with useful

information about the rhythm and functioning of the heart.

Therefore, its analysis represents an efficient way to detect

and treat different kinds of cardiac diseases Up to now,

many algorithms have been developed for the recognition

and classification of ECG signal. Some of them use time

and some use frequency domain for depiction. Based on

that many specific attributes are defined, allowing the

recognition between the beats belonging to different path-

ological classes. The ECG waveforms may be different for

the same patient to such extent that they are unlike each
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other and at the same time alike for different types of beats

[1]. Artificial Neural Network (ANN) and fuzzy-based

techniques were also employed to exploit their natural

ability in pattern recognition task for successful classifi-

cation of ECG beats [2].

In this paper, the approach to ECG beat classification

presented thorough experimental exploration of the ELM

capabilities for ECG classification. Further, the perfor-

mances of the ELM approach in terms of classification

accuracy are evaluated: (1) by automatically detecting the

best discriminating features from the whole considered

feature space and (2) by solving the model selection issue.

Unlike traditional feature selection methods, where the user

has to specify the number of desired features, the proposed

system gives a method for extraction of features called as

‘‘feature detection’’. Feature selection and feature detection

have the common characteristic of searching for the best

discriminative features. The latter, however, has the

advantage of determining their number automatically. In

other words, feature detection does not require the desired

number of most discriminative features from the user

apriori. The detection process is implemented through AR

Modeling framework that exploits a criterion intrinsically

related to ELM classifier properties. This framework is

formulated in such a way that it also solves the model

selection issue, i.e., to estimate the best values of the ELM

classifier parameters, which are the regularization and

kernel parameters.

The rest of the paper is organized as follows. The AR

method for ECG feature extraction, the basic mathematical

formulation of SVMs for solving binary and multiclass

classification problems, and the working methodology of

ELM are given in Sect. 3. The experimental results

obtained on ECG data from the Massachusetts Institute of

Technology–Beth Israel Hospital (MIT–BIH) arrhythmia

database [9] are reported in Sect. 4. Finally, conclusions

are drawn in Sect. 5.

2 Literature survey

In the literature survey, several methods have been pro-

posed for the automatic classification of ECG signals.

Among the most recently published works are those pre-

sented as follows

Khadra et al. [3] proposed a high-order spectral analysis

technique for quantitative analysis and classification of

cardiac arrhythmias. The algorithm is based upon bispectral

analysis techniques. Autoregressive model is used to esti-

mate the bispectrum, and the frequency support of the

bispectrum is extracted as a quantitative measure to classify

a trial and ventricular tachyarrhythmias. A significant dif-

ference in the parameter values for different arrhythmias is

observed in the result. Furthermore, the bicoherency spec-

trum shows different bicoherency values for normal and

tachycardia patients. The bicoherency indicates in particular

that phase coupling decreases as arrhythmia kicks in. The

simplicity of the classification parameter and the obtained

sensitivity and specificity of the classification scheme reveal

the importance of higher-order spectral analysis in the

classification of life-threatening arrhythmias.

de Chazal et al. [4] investigate the design of an efficient

system for recognition of the premature ventricular con-

traction from the normal beats and other heart diseases.

This system comprises three main modules: denoising

module, feature extraction module, and classifier module.

In the denoising module, it has proposed the stationary

wavelet transform for noise reduction of the electrocar-

diogram signals. In the feature extraction of the ECG

module, a proper combination of the morphological-based

features and timing interval-based features is proposed. As

the classifier, a number of supervised classifiers are

investigated; they are as follows: a number of multilayer

perceptron neural networks with different number of layers

and training algorithms, support vector machines with

different kernel types, radial basis function, and probabi-

listic neural networks. Also, for comparison the proposed

features, the author has considered the wavelet-based fea-

tures. It has done comprehensive simulations to achieve a

high-efficient system for ECG beat classification from 12

files obtained from the MIT–BIH arrhythmia database.

Simulation results show that best results are achieved about

97.14% for classification of ECG beats.

Andreao et al. [5] proposed a novel-embedded mobile

ECG reasoning system that integrates ECG signal reason-

ing and RF identification together to monitor an elderly

patient. As a result, this proposed method has a good

accuracy in heart beat recognition and enables continuous

monitoring and identification of the elderly patient when

alone. Moreover, in order to examine and validate this

proposed system, the author proposes a managerial

research model to test whether it can be implemented in a

medical organization. The results prove that the mobility,

usability, and performance of author’s proposed system

have impacts on the user’s attitude, and there is a signifi-

cant positive relation between the user’s attitude and the

intent to use the proposed system.

Mitra et al. [6] put forth a three stage technique for

detection of premature ventricular contraction (PVC) from

normal beats and other heart diseases. This method

includes a feature extraction module, a denoising module,

and a classification module. In the first module, the author

investigates the application of stationary wavelet transform

(SWT) for noise reduction of the electrocardiogram (ECG)

signals. The feature extraction module finds out 10 ECG

morphological features and one timing interval feature.
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Then, a number of MLP (multilayer perceptron) neural

networks with different number of layers and nine training

algorithms are designed. The network’s performance for

speed of convergence and accuracy classifications are

evaluated for seven files from the MIT–BIH arrhythmia

database. Among the various training algorithms, the

resilient back-propagation (RP) algorithm illustrated the

best convergence rate and the Levenberg–Marquardt (LM)

algorithm achieved the best overall detection accuracy.

Sheng-Wu Xiong et al. [8] proposed in their paper that

fuzzy support vector machines based on fuzzy c-means

clustering. They apply the fuzzy c-means clustering

method to each class of the training set. At the time of the

clustering with a suitable fuzziness parameter q, the much

important samples, such as support vectors, become the

cluster centers, respectively.

Siew et al. [7] give an idea on ELM. In this paper, they

presented Extreme Learning Machine (ELM) for Single-

hidden Layer Feed-forward Neural-networks (SLFNs),

which randomly chooses hidden nodes and analytically

determines the output weights of SLFNs. The ELM avoids

problems like improper learning rate, local minima, and

overfitting commonly faced by iterative learning methods

and completes the training very fast. The author has eval-

uated the multicategory classification performance of ELM

on five different datasets related to bioinformatics namely,

the Breast Cancer Wisconsin dataset, the Pima Diabetes

dataset, the Heart-Statlog dataset, the Hepatitis dataset, and

the Hypothyroid dataset. A detailed analysis of different

activation functions with unreliable number of neurons is

also carried out, which concludes that Algebraic Sigmoid

function outperforms all other activation functions on these

datasets. The evaluation results indicate that ELM provides

better classification accuracy with reduced training time

and implementation complexity compared with earlier

implemented models. Emanet [23] presented an ECG beat

classification by using discrete wavelet transform and

Random Forest algorithm. Wen et al. [24] use GreyART

network for ECG beat classification.

Nazmy et al. [21] present a novel ECG classification

approach. This is an intelligent diagnosis system using

hybrid approach of Adaptive Neuro-Fuzzy Inference Sys-

tem (ANFIS) model for classification of Electrocardiogram

(ECG) signals. Feature extraction using Independent

Component Analysis (ICA) and Power spectrum, together

with the RR interval then serve as input feature vector, this

feature was used as input of ANFIS classifiers. Six types of

ECG signals are normal sinus rhythm (NSR), premature

ventricular contraction (PVC), atrial premature contraction

(APC), Ventricular Tachycardia (VT), Ventricular Fibril-

lation (VF), and Supraventricular Tachycardia (SVT). The

proposed ANFIS model combined the neural network

adaptive capabilities and the fuzzy inference system.

The results indicate a high level of efficient of tools used

with an accuracy level of more than 97%. This section

presented the literature survey on the previous ECG

classification techniques. Sabry et al. [22] proposed a third-

order cumulant signature matching technique for non-

invasive fetal heart beat identification.

3 Methodology

3.1 Feature extraction

Automatic ECG beat recognition and classification [20] are

performed in the part either by the neural network or by the

other recognition systems relying in various features, time

domain representation, extracted from the ECG beat [2], or

the measure of energy in a band of frequencies in the

spectrum (frequency domain representation) [10]. Since

these features are very at risk to variations of ECG mor-

phology and the temporal characteristics of ECG, it is

difficult to distinguish one from the other on the basis of

the time waveform or frequency representation. In this

paper, three different classes of feature set are used

belonging to the isolated ECG beats including third-order

cumulant, autoregressive model parameters, and the vari-

ance of discrete wavelet transform detail coefficients for

the different scales (1–6 scales).

3.1.1 Wavelet transformation

Physiologies used for diagnosis are frequently character-

ized by a non-stationary time behavior. For such patterns,

time and frequency representations are desirable. The fre-

quency characteristics in addition to the temporal behavior

can be described with respect to uncertainty principle. The

wavelet transform can represent signals in different reso-

lutions by dilating and compressing its basis functions.

While the dilated functions adapt to slow wave activity, the

compressed functions capture fast activity and sharp

spikes. The most favorable choice of types of wavelet

functions for preprocessing is problem dependent. In this

paper, Daubechies wavelet function (db5) which is called

compactly supported orthonormal wavelets [11]. By mak-

ing discretization the scaling factor and position factor, the

DWT is obtained. For orthonormal wavelet transform, x(n),

the discrete signal can be expanded into the scaling func-

tion at j level as follows:

xðnÞ ¼ Dj;k½xðnÞ� þ Aj;k½xðnÞ�; n 2 Z

where Dj,k represents the detailed signal at j level. Note that

j controls the dilation or contraction of the scale function

U(t), k denotes the position of the wavelet function W(t),

and n represents the sample number of the x(n). Here,
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n[Z represents the set of integers. The frequency spectrum

of the signal is classified into high frequency and low

frequency for wavelet decomposition as the band increases

(j = 1, …, 6). Wavelet transform is a two-dimensional

timescale processing method for non-stationary signals

with adequate scale values and shifting in time [12].

Multiresolution decomposition can efficiently provide

simultaneous characteristics, in term of the representation

of the signal at multiple resolutions corresponding to dif-

ferent timescales. Feature vectors are constructed by the

normalized variances of detail coefficients of the DWT

which belongs to the related scales.

3.1.2 Higher-order statistics and AR modeling

The main problem in automatic ECG beat recognition and

classification is that related features are very susceptible to

variations of ECG morphology and temporal characteris-

tics of ECG. In the study [1] the set of original QRS

complexes typical for six types of arrhytmia taken from the

MIT/BIH arrhytmia database, there is a great variations of

signal among the same type of beats belonging to the same

type of arrhytmia. Therefore, in order to solve such prob-

lem, the author will rely on the statistical features of the

ECG beats. In this paper for this aim, third-order cumulant

has been taken into account, which can be determined (for

zero mean signals) as follows

C2xðkÞ ¼ E xðnÞxðnþ kÞf g ð2Þ
C3xðk; lÞ ¼ E xðnÞxðnþ kÞxðnþ lÞf g ð3Þ

C4xðk; l;mÞ ¼ E xðnÞxðnþ kÞxðnþ lÞxðnþ mÞf g
� C2xðkÞC2xðm� lÞ � C2xðlÞC2xðm� kÞ
� C2xðmÞC2xðl� kÞ ð4Þ

where E represents the expectation operator, and k, l, and

m are the time lags. In this paper, third-order cumulant of

selected ECG beats is used. Normalized ten points represent

the cumulant evenly distributed with in the range of 25 lags.

Each succeeding samples of a signal as a linear combination

of previous samples, that is, as the output of an all-pole IIR

filter is modeled by linear prediction. This process locates

the coefficients of an nth order autoregressive linear process

that models the time series x as

xðkÞ ¼ �að2Þxðk � 1Þ � að3Þxðk � 2Þ
� � � � � aðnþ 1Þxðk � n� 1Þ ð5Þ

where x represents the real input time series (a vector), and

n is the order of the denominator polynomial a(z). In the

block processing, autocorrelation method is one of the

modeling methods of all-pole modeling to find the linear

prediction coefficients. This method is as well called as the

maximum entropy method (MEM) of spectral analysis.

3.2 Support vector machines

SVM is usually used for classification tasks introduced by

Vapnik [13]. For binary classification, SVM is used to find

an optimal separating hyperplane (OSH), which generates a

maximum margin between two categories of data. To

construct an OSH, SVM maps data into a higher-dimen-

sional feature space. SVM performs this non-linear map-

ping by using a kernel function. Then, SVM constructs a

linear OSH between two categories of data in the higher

feature space. Data vectors which are nearest to the OSH in

the higher feature space are called support vectors (SVs)

and contain all information required for classification. In

brief, the theory of SVM is as follows [13].

Consider training set D ¼ ðxj; yiÞ
� �L

i¼1
with each input n

i x [ Rn and an associated output yi[{-1, ?1}. Each input x

is firstly mapped into a higher dimension feature space F,

by z = u(x) via a non-linear mapping u: Rn ? F. When

data are linearly non-separable in F, there exists a vector

w [ F and a scalar b which define the separating hyperplane

as follows:

YiðW 0 � Zi þ bÞ� 1� ni; 8i ð6Þ

Here, n(C0) are called slack variable. The hyperplane that

optimally separates the data in F is one that

mimimize
1

2
� w0 � wþ C:

subject to YiðW 0 � Zi þ bÞ� 1� ni� 0; 8i
ð7Þ

where C is called regularization parameter that determines

the trade-off between maximum margin and minimum

classification error. By constructing a Lagrangian, the

optimal hyperplane according to (7) may be shown as the

solution of

maximize WðaÞ ¼
XL

i¼1

ai �
1

2

XL

i¼1

XL

j¼1

aiajyiyjkðxi; xjÞ

subject to
XL

i¼1

yiai ¼ 0; 0� ai�C; 8i

where a1,…..,aL is the non-negative Lagrangian

multipliers. The data points i x that correspond to ai [ 0

are SVs. The weight vector w is then given by

w ¼
X

ieSVs

aiyizi ð9Þ

For any test vector x [ Rn, the classification output is then

given by

y ¼ signðw; zþ bÞ ¼ sign
X

ieSVs

aiyiKðxi; xÞ þ b

 !

: ð10Þ
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To build an SVM classifier, a kernel function and its

parameters need to be chosen. So far, no analytical or

empirical studies have established the superiority of one

kernel over another conclusively. The kernel K(�,�) must

satisfy the condition stated in Mercer’s theorem so as to

correspond to some type of inner product in the transformed

(higher) dimensional feature space U(X) [14]. A typical

example kernels used is represented by the following

Gaussian function:

Kðxi; xÞ ¼ exp �y xi � xk k2
� �

ð11Þ

where c is a parameter which is inversely proportional to

the width of the Gaussian kernel.

As described before, SVMs are intrinsically binary

classifiers. But, the classification of ECG signals often

involves the simultaneous discrimination of numerous

information classes. In order to face this issue, a number of

multiclass classification strategies can be adopted [15, 16].

The most popular ones are the one-against-all (OAA) and

the one-against-one (OAO) strategies. The former involves

a reduced number of binary decompositions (and thus, of

SVMs), which are, however, more complex. The latter

requires a shorter training time, but may incur conflicts

between classes due to the nature of the score function used

for decision. Both strategies generally lead to similar

results in terms of classification accuracy. In this paper, the

OAA strategy is considered. Briefly, this strategy is based

on the following procedure. Let X = {x1, x2,…,xT} be

the set of T possible labels (information classes) associated

with the ECG beats that desired to classify. First, an

ensemble of T (parallel) SVM classifiers is trained. Each

classifier aimed at solving a binary classification problem

defined by the discrimination between one information

class xi(i = 1, 2,…,T) against all others (i.e., X - {xi}).

Then, in the classification phase, the new rule is used to

decide which label to assign to each beat which is ‘‘winner-

takes-all’’ rule. This represents that the winning class is the

one that corresponds to the SVM classifier of the ensemble

that shows the highest output (discriminant function value).

3.3 Extreme learning machine

A new learning algorithm called the ELM for SLFNs

supervised batch learning. The output of an SLFN with

*N hidden nodes (additive or RBF nodes) can be repre-

sented by

f ~N Xð Þ ¼
X~N

i¼1

biG ai; bi;Xð Þ; X 2 Rn; ai 2 Rn; ð12Þ

where ai and bi are the learning parameters of hidden

nodes, and bi is the weight connecting the ith hidden node

to the output node. G(ai, bi, X) is the output of the ith

hidden node with respect to the input x. For the additive

hidden node with the activation function g(x): R ? R (e.g.,

sigmoid or threshold), G(ai, bi, X) is given by

G ai; bi;Xð Þ ¼ g ai:X þ bið Þ; bi 2 R ð13Þ

where ai represents the weight vector connecting the input

layer to the ith hidden node, and bi is the bias of the ith

hidden node. ai�x denotes the inner product of vectors ai

and x in Rn. For an RBF hidden node with an activation

function g(x): R ? R (e.g., Gaussian), G(ai, bi, X) is given

by

G ai; bi;Xð Þ ¼ g bi x� aij jj jð Þ; bi 2 Rþ ð14Þ

where ai and bi are the ith RBF node’s center and impact

factor. R? indicates the set of all positive real values. The

RBF network is a special case of the SLFN with RBF

nodes in its hidden layer. Each RBF node has its own

centroid and impact factor and output of it is given by a

radially symmetric function of the distance between the

input and the center.

In the learning algorithms, it uses a finite number of

input–output samples for training. Here, N arbitrary distinct

samples are considered (xi, ti) [ Rn x Rm, where xi is an n 9

1 input vector and ti is an m 9 1 target vector. If an SLFN

with ~N hidden nodes can approximate N samples with zero

error, it then implies that there exist bi, ai, and bi such that

f ~N Xj

� �
¼
X~N

i¼1

biG ai; bj;Xj

� �
¼ tj; j ¼ 1; . . .:;N: ð15Þ

Equation () can be written compactly as

Hb ¼ T ð16Þ

where

Hða1; . . .::; a ~N ; b1; . . .. . .; b ~N ;X1; . . .::;X ~NÞ
Gða1; b1;X1Þ � � � Gða ~N ; b ~N ;X1Þ

..

. . .
. ..

.

Gða1; b1;XNÞ � � � Gða ~N ; b ~N ;XNÞ

2

664

3

775

N� ~N

ð17Þ

b ¼
bT

1

..

.

bT
~N

2

64

3

75 and T ¼
tT
1

..

.

tT
N

2

64

3

75

N�m

: ð18Þ

H is called the hidden layer output matrix of the network

[15]; the ith column of H is the ith hidden node’s output

vector with respect to inputs x1, x2,…, xN and the jth row of

H is the output vector of the hidden layer with respect to

input xj.

In real applications, the number of hidden nodes, ~N; will

always be less than the number of training samples, N, and,

hence, the training error cannot be made exactly zero but

can approach a non-zero training error. The hidden node
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parameters ai and bi (input weights and biases or centers

and impact factors) of SLFNs need not be tuned during

training and may simply be assigned with random values

according to any continuous sampling distribution. Equa-

tion 18 then becomes a linear system, and the output

weights are estimated as

~b ¼ HyT ð19Þ

where Hy the Moore–Penrose is generalized inverse [15] of

the hidden layer output matrix H. The ELM algorithm,

which consists of only three steps, can then be summarized

as

ELM Algorithm: Given a training set @ ¼ fðXi; tiÞjXi 2
Rn; ti 2 Rm; i ¼ 1; . . .;Ng activation function g(x), and

hidden node number ~N;

1. Assign random hidden nodes by randomly generating

parameters (ai, bi) according to any continuous sam-

pling distribution, i = 1,…., ~N
2. Calculate the hidden layer output matrix H.

3. Calculate the output weight b: ~b ¼ HyT

The universal approximation capability of ELM has

been analyzed by Huang et al. [16] using an incremental

method and it shows that single SLFNs with randomly

generated additive or RBF nodes with a wide range of

activation functions can universally approximate any con-

tinuous target functions in any compact subset of the

Euclidean space Rn. g xð Þ ¼ 1
1þe�kx is the sigmoidal function

used as activation function in ELM.

4 Experimental results

4.1 Dataset description

The experiment conducted on the basis of ECG data from

the Physionet database [9]. In particular, the considered

beats refer to the following classes: normal sinus rhythm

(N), atrial premature beat (A), ventricular premature beat

(V), right bundle branch block (RB), left bundle branch

block (LB), and paced beat (/). The beats were selected

from the recordings of 20 patients, which correspond to the

following files: 100, 102, 104, 105, 106, 107, 118, 119,

200, 201, 202, 203, 205, 208, 209, 212, 213, 214, 215, and

217. In order to feed the classification process, in this

paper, the two following kinds of features are adopted: (1)

ECG morphology features and (2) three ECG temporal

features, i.e., the QRS complex duration, the RR interval

(the time span between two consecutive R points repre-

senting the distance between the QRS peaks of the present

and previous beats), and the RR interval averaged over the

ten last beats [4]. In order to extract these features, first the

QRS detection is performed and ECG wave boundary

recognition tasks by means of the well-known ecgpuwave

software available on [17]. Then, after extracting the three

temporal features of interest, normalized to the same

periodic length, the duration of the segmented ECG cycles

according to the procedure is reported in [18]. To this

purpose, the mean beat period was chosen as the normal-

ized periodic length, which was represented by 300 uni-

formly distributed samples. Consequently, the total number

of morphology and temporal features equals 303 for each

beat.

In order to obtain reliable assessments of the classifi-

cation accuracy of the investigated classifiers, in all the

following experiments, three different trials are performed,

each with a new set of randomly selected training beats,

while the test set was kept unchanged. The results of these

three trials obtained on the test set were thus averaged. The

detailed numbers of training and test beats are reported for

each class in Table 1. Classification performance was

evaluated in terms of four measures, which are: (1) the

overall accuracy (OA), which is the percentage of correctly

classified beats among all the beats considered (indepen-

dently of the classes they belong to); (2) the accuracy of

each class that is the percentage of correctly classified beats

among the beats of the considered class; (3) the average

accuracy (AA), which is the average over the classification

accuracies obtained for the different classes; (4) the

McNemar’s test that gives the statistical significance of

differences between the accuracies achieved by the dif-

ferent classification approaches. This test is based on the

standardized normal test statistic [19]

Zij ¼
fij � fjiffiffiffiffiffiffiffiffiffiffiffiffiffi

fij � fji

p ð20Þ

where Zij measures the pairwise statistical significance of

the difference between the accuracies of the ith and jth

classifiers. fij stands for the number of beats classified

correctly and wrongly by the ith and jth classifiers,

respectively. Accordingly, fij and fji are the counts of

classified beats on which the considered ith and jth

classifiers disagree. At the commonly used 5% level of

significance, the difference of accuracies between the ith

and jth classifiers is said statistically significant if

|Zij | [ 1.96.

Table 1 numbers of training and test beats used in the experiments

Class N A V RB / LB Total

Training beats 150 100 100 50 50 50 500

Test beats 24,000 245 3,789 3,893 6,689 1,800 40,416
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4.2 Experimental scheme

The proposed experimental framework was performed

around the following five main experiments. The first

experiment aimed at assessing the effectiveness of the

SVM approach in classifying ECG signals directly in the

whole original hyperdimensional feature space (i.e., by

means of all the 303 available features). The total number

of training beats was fixed to 500, as reported in Table 1.

For comparison purpose, two other reference non-para-

metric classification approaches are implemented, namely,

the kNN and the RBF neural network classifiers. In the

second experiment, it was desired to explore the behavior

of the SVM classifier (compared to the two reference

classifiers) when integrated within a standard classification

scheme based on an AR feature reduction. In particular, the

number of features was varied from 10 to 50 with a step of

10 so as to test this classifier in small as well as high-

dimensional feature subspaces. The third experimental part

had for objective to assess the capability of the proposed

ELM classification system to boost further the accuracy of

the SVM classifier.

The fourth experiment was devoted to analyze the

generalization capability of the SVM, the kNN, and the

RBF classifiers with and without feature reduction, and of

the ELM classification system by decreasing/increasing the

number of available training beats. This analysis was done

through two experimental scenarios, which consisted in

passing from 500 to 250 and 750 training beats, respec-

tively. Finally, in the fifth experiment, the sensitivity of the

ELM classification system is analyzed.

4.3 Experimental settings

In the experiments, the non-linear SVM is considered

based on the popular Gaussian kernel (referred to as

SVM-RBF or simply SVM). The related parameters c and

C for this kernel were varied in the arbitrarily fixed ranges

[10-3, 200] and [10-3, 2] so as to cover high and small

regularization of the classification model, and fat as well

as thin kernels, respectively. In addition, for comparison

purpose, in the first experiment, the SVM classifier with

two other kernels is implemented, which are the linear

and the polynomial kernels, leading thus to two other

SVM classifiers termed as SVM-linear and SVM-poly,

respectively.

The polynomial kernel’s degree d was varied in the

range [2, 5] in order to span polynomials with low and high

flexibility. The K value and the number of hidden nodes

(h) of the kNN and the RBF classifiers were tuned in the

arbitrarily fixed intervals [1, 15] and [10, 60], respectively.

The other RBF parameters, which include the center and

the width of each RBF (kernel), were computed by

applying the K-means clustering algorithm separately to

each class.

In this experiment, the SVM classifier is trained based

on the Gaussian kernel, which proved in the previous

experiments to be the most appropriate kernel for ECG

signal classification, in feature subspaces of various di-

mensionalities. The desired number of features varied from

10 to 50 with a step of 10, namely, from small- to high-

dimensional feature subspaces. Feature reduction was

achieved by the traditional AR modeling, commonly used

in ECG signal classification. In particular, it can be seen

that for all feature subspace dimensionalities except the

lowest (i.e., 10 features), the ELM classifier maintains a

clear superiority over the other two. Its best accuracy was

found using a feature subspace made up of the first 30

components. The corresponding OA and AA accuracies

were 89.74 and 89.78%, respectively. Comparing these

results with those achieved with the SVM classifier based

on the Gaussian kernel in the original feature space (i.e.,

without feature reduction), a slight increase of 1.98% in

terms of OA and 2.30% in terms of AA was obtained,

which is represented in Table 2. From this experiment,

three observations can be made: (1) the SVM classifier

shows a relatively low sensitivity to the curse of dimen-

sionality as compared with the kNN and the RBF classifiers

(2) the SVM classifier still preserve its superiority when

integrated in a feature reduction-based classification

scheme; and (3) though the SVM performs well in the

whole original feature space, its accuracy can still be

improved provided that a subspace of higher generalization

capability can be found.

The Fig. 1 gives the comparison of the accuracy of

classifying the ECG signals by using SVM-rbf and ELM.

This shows that ELM gives much better accuracy for all

datasets given as input in which RB dataset achieves the

maximum accuracy of 97.69%. The Fig. 2 gives the

comparison of the accuracy of classifying the ECG signals

by using SVM-kNN and ELM. This shows that ELM gives

much better accuracy for all datasets given as input. The

Fig. 3 gives the comparison of the accuracy of classifying

Table 2 Overall (OA), average (AA), and class percentage accura-

cies achieved on the test beats with the different investigated classi-

fiers with a total number of 500 training beats

Method OA AA N A V RB / LB

SVM-

linear

79.65 79.87 82.89 80.25 78.84 82.53 81.79 72.58

SVM-poly 85.25 85.75 85.74 83.19 84.48 92.03 79.11 89.94

SVM-rbf 87.76 87.48 88.69 87.39 81.48 95.98 83.47 87.49

RBF 82.74 81.78 87.69 88.96 86.18 77.69 75.58 82.36

kNN 82.63 80.25 81.56 62.76 75.65 94.65 73.98 94.22

ELM 89.74 89.78 89.69 88.96 85.18 97.69 86.58 89.74
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the ECG signals by using SVM-poly and ELM. This shows

that ELM gives much better accuracy for all datasets given

as input.

As described before, the proposed ELM classification

system aimed at enhancing the SVM classification process

from two different viewpoints: (1) by automatically

detecting a feature subspace of higher generalization

capability in order to deal in a more effective way with the

curse of dimensionality, instead of reducing the dimension

of the original feature space basing on reduction algorithm

and (2) by passing from an empirical tuning of the value of

the two SVM parameters to their automatic optimization.

This experiment is aimed at assessing the effectiveness of

this methodological enhancement. To this purpose, the

ELM classifier is applied to the available training beats.

At convergence of the optimization process, the ELM

classifier’s accuracy on the test samples assessed. The

achieved overall and average accuracies were 89.74 and

89.78% corresponding to substantial accuracy gains are

higher as compared with SVM combined with various

kernel functions. Its worst class accuracy was obtained for

normal beat (N) (89.69%), while that of the SVM and the

ELM classifiers was for ventricular premature beats (V) as

they were (81.48%) and (85.18%), respectively. This

shows the capability of the ELM classifier to reduce the

gap between the worst and the best class accuracies while

keeping OA at a high level.

Table 3 shows the number of features detected auto-

matically to discriminate each class from the others. The

average number of features required by the ELM classifier

is 47, while the minimum and maximum numbers of fea-

tures were obtained for the ventricular premature (V) and

normal (N) classes with 32 and 68 features, respectively.

5 Conclusion

In this paper, a novel ECG beat classification system using

ELM is proposed and applied to MIT/BIH data base. The

wavelet transforms variance and AR model parameters

have been used for the features selection. From the

obtained experimental results, it can be strongly recom-

mended the use of the ELM approach for classifying ECG

signals on account of their superior generalization capa-

bility as compared with traditional classification tech-

niques. This capability generally provides them with higher

classification accuracies and a lower sensitivity to the curse

of dimensionality. The results confirm that the ELM clas-

sification system substantially boosts the generalization

capability achievable with the SVM classifier and its

robustness against the problem of limited training beat

availability, which may characterize pathologies of rare

occurrence. Another advantage of the ELM approach can

be found in its high sparseness, which is explained by the

fact that the adopted optimization criterion is based on

minimizing the number of SVs. It can also be seen that

Fig. 1 Comparison of SVM-rbf and ELM accuracy for different

datasets

Fig. 2 Comparison of SVM-kNN and ELM accuracy for different

datasets

Fig. 3 Comparison of SVM-poly and ELM accuracy for different

datasets

Table 3 Number of features detected for each class with the ELM

classification system trained on 500 beats

Class N A V RB / LB Average

#Detected features 68 49 32 50 47 41 47
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ELM accomplishes better and more balanced classification

for individual categories as well in very less training time

comparative to SVM. In future, some advanced neural

network techniques can be used to train the ELM classifier,

and it may enhance the classification accuracy of the ECG

and reduce the training time.
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