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Abstract In this paper, a new bidirectional neural net-

work for better acoustic-articulatory inversion mapping is

proposed. The model is motivated by the parallel structure

of human brain, processing information by having for-

ward–reverse connections. In other words, there would be a

feedback from articulatory system to the acoustic signals

emitted from that organ. Inspired by this mechanism, a new

bidirectional model is developed to map speech represen-

tations to articulatory features. Formation of attractor

dynamics in such bidirectional model is first carried out by

training the reference speaker subspace as the continuous

attractor. Then, it is used to recognize the other speaker’s

speech. In fact, the structure and training of this bidirec-

tional model is designed in such a way that the network

learns to denoise the signal step by step, using properties of

attractors it has formed. In this work, the efficiency of a

nonlinear feedforward network is compared to the same

one with a bidirectional connection. The bidirectional

model increases the accuracy up to approximately 3%

(from 62.09 to 64.91%) in the phone recognition process.

Keywords Bidirectional neural networks (BNNs) �
Feed-forward networks (FFNs) � Time delay neural

networks (TDNNs) � MOCHA-TIMIT database �
Acoustic-articulatory inversion mapping

1 Introduction

Automatic speech recognition (ASR) is strongly concen-

trated on the use of acoustic representations of speech as

input data. Speech engineers believe that the acoustic sig-

nals of speech are the most important means of communi-

cation between humans. However, articulatory movements

have meaningful correlation with acoustic energies emitted

from the corresponding organ. Combined with acoustic

representations, these data generate excellent results for an

enhanced speech recognition, analysis, and synthesis [1].

Some efforts for using articulatory features in quest of

having better speech recognition can be observed in [1, 2].

Before the existence of reliable and precise equipment,

researchers used vocal-tract models or linguistic rules to

produce suitable articulatory gesture representations [3].

Today, we have continuous smooth data measured with

sophisticated equipment. However, the use of such equip-

ment is impossible due to the high cost and complications.

Therefore, efforts are focused on a method to estimate the

articulatory features from the acoustic signal. Various

estimation methods and their challenges have been a

fundamental topic for research in this decade. Some efforts

in the mapping of acoustic to articulatory features are a

trajectory mixture density networks (TMDNs) model [4],
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TMDNs with multiple mixtures [5], multitask learning

perspective [6], modeling the uncertainty in recovering

articulation from acoustics [7], Gaussian mixture model

(GMM) [8], accurate recovery of articulatory positions

from acoustics [9] and Hidden Markov model (HMM)-

based inversion systems to recover articulatory movements

from speech acoustics [10].

Recently, more attempts are reported using artificial

neural networks (ANNs) [5, 11]. Moreover, the human

perception system shows that it has a bidirectional structure

[12]. Therefore, in this paper, we focus on a nonlinear

mapping between the acoustic representations of speech

and the articulatory features by the use of a new bidirec-

tional neural network (BNN) model. This network is

inspired by the parallel structure of human brain, processing

information by having forward–inverse connections. In this

method, the primary recognition is accomplished by reliable

regions. Unreliable regions are corrected afterward. This

action is iterated until recognition is completed, and the

primary recognition is modified using the final recognition

(attractors).

One of the prominent theories that explains these con-

nections is Motor Articulatory Feedback theory [13].

According to this hypothesis, there is a biological feedback

from the acoustic signals of speech to the human articu-

lators. This feedback is controlled by the brain and makes

the speech chain a closed-loop process. Motivated by this

hypothesis, we aim to implement an adaptive neural net-

work model that includes a successful inversion mapping

process. The proposed model offers higher accuracy in

comparison with a standard feed-forward network (FFN)

model.

Several reports confirm the capability of time delay

neural networks (TDNNs) in the phone recognition process

[14]. In this study, we successfully employ a special

structure of the TDNN for recognition processes. We use

past and future inputs instead of using every input, indi-

vidually. Briefly, Both FFN and BNN models apply to map

acoustic representations of speech in the form of electro-

magnetic articulography features. The outputs of these

models are passed to the TDNN model for better phone

recognition. In all neural network structures proposed in

this study, the resilient optimization algorithm is used to

minimize error function.

2 Method and models

2.1 Database and pre-processing

The multichannel articulatory (MOCHA) database is a

corpus of 460 TIMIT sentences of 40 different speakers

[15]. This database includes acoustic signals, laryngograph

(LAR), electropalatograph (EPG), and electromagnetic ar-

ticulograph (EMA). Acoustic signals are recorded with a

sampling frequency of 16,000 Hz. EMA sensors are con-

nected to the upper and lower lips, lower incisor (jaw),

tongue tip (5–10 mm from the tip), tongue blade (approx-

imately 2–3 cm posterior to the tongue tip sensor), tongue

dorsum (approximately 2–3 cm posterior to the tongue

blade sensor) and soft palate. Each of the sensors provides

x and y coordinates. Data recorded from each sensor are

sampled at 500 Hz. Figure 1 shows the location of EMA

sensors.

In our experiments, we use the x–y coordinates of the

upper and lower lip (UL, LL), lower incisor (LI), tongue

tip (TT), tongue blade (TB), tongue dorsum (TD), and

velum (V).

To obtain an acoustic representation, we apply the log-

arithm of the energy in the Hanning critical band filter

banks based on bark scale (LHCB). The bandwidth of any

filter in the filterbank is one bark [16]. Our experimental

database includes 460 sentences from a single female

speaker of British English (subject ID ‘‘fsew’’, southern

dialect) and a male speaker of British English (subject ID

‘‘maps’’, northern dialect) from the MOCHA database. In

all experiments, we use 70% of the first data for training

and the rest for testing.

Acoustic signal representations used in our experiments

are LHCB. An LHCB representation vector containing 18

parameters is extracted from one speech frame. Frames

length is 320 samples with 160 overlapping samples.

LHCB features lie in the range between [0, 1].

The EMA data streams were down-sampled to 100 Hz

to synchronize with parameters of LHCB. The range for

each dimension of EMA is normalized to [0, 1].

The algorithm used to calculate LHCB is similar to the

algorithm used to calculate Mel Frequency Cepstral

Fig. 1 Position of EMA sensors in x and y coordinates
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Coefficients (MFCCs). The fundamental difference

between MFCC and LHCB is the nonlinear scale that is

chosen for the frequency distribution of filters. LHCB and

MFCC use the bark scale and mel scale, respectively [16].

The bandwidth of each filter in LHCB filterbank is one

bark. Pervious works show that in neural network recog-

nition systems, LHCB features can work more efficient

than those of MFCC [12, 16–18]. Therefore, we use LHCB.

LHCB is calculated as follows:

1. Segment into frames of length N = 320 samples and

remove the DC component.

2. Calculate short time Fourier Transform (STFT) of each

frame X(k) and calculate the spectral power XðkÞj j.
3. Filter the spectral power using the square Hanning

filterbank. For 0� k�M, the DFT of a Hanning filter

is wðkÞ.

wðkÞ ¼ 0:5� 0:5 cos 2pk
M

� �
; 0� k�M

0; otherwise

�
; ð1Þ

where M is total number of filters (M = 18).

4. Calculate the logarithm of the output energy Ej of each

filter.

Ej ¼
XN

k¼1

wjðkÞ
�� ��2 XðkÞj j2; j ¼ 0; 1; . . .; 18 ð2Þ

and

Cj ¼ log 1þ Ej

� �
ð3Þ

5. LHCB features are obtained as follows:

cm ¼
XM

j¼1

lnð1þ EjÞ � cos m
ð2j� 1Þ

2

� �
p
M

� �
;

1�m� L

ð4Þ

where L is number of coefficient in the cepstrum

domain (L = 15).

2.2 Motor-articulatory feedback theory

Motor-articulatory feedback theory is a neural-based the-

ory that explains the reason of Alphabetic system disorder

in phonological dyslexia. Dyslexia is a disability charac-

terized by difficulty with reading text. This disorder

includes at least two prominent subtypes: surface dyslexia

(individuals cannot correctly utter the irregular words) and

phonological dyslexia (individuals cannot correctly utter

nonwords) [19, 20]. The latter is more common [19].

Phonological dyslexia is diagnosed in individuals who

cannot use the Alphabetic system (learning the speech

sounds that are related with letters), so they cannot cor-

rectly utter nonwords.

Indeed, patients have a problem in making a connection

between sounds and Alphabetic symbols [13]. This reading

disorder might be related to different neuropsychological

or neurobiological pathologies [20]. Many different theo-

ries have attempted to explain the disorder, one of which is

motor-articulatory feedback theory.

According to the theory, awareness of the positions and

movements of articulatory system (lip, tongue, and jaw)

would allow normal individuals to parse a word into its

component phonemes. In phonological dyslexia, patients are

not aware of the positions and movements of the articulators

and are unable to utter a specific word [21]. This implies that

there is feedback between the articulatory system and the

brain in normal individuals. By using this feedback, better

speech perception is probable and individuals could utter a

word correctly. In other words, normal individuals have a

bidirectional association between heard acoustic signals and

articulatory movements. This association is controlled by

brain. Inspired by this human perception operation, we

propose a bidirectional neural network model for acoustic-

articulatory inversion mapping.

2.3 Attractor dynamics

Suppose that an m dimensional discrete signal �sðpÞ is

trained to an auto-associative neural network, the structure

of which is shown in Fig. 2. Suppose that the order of

samples is not concerned, that is, �sðpÞ, �s are considered as

P samples in the input space which are trained to the net-

work. At first, the activation function of neurons is sup-

posed to be hard limit step function. In such a network,

each neuron forms a hyperplane in its input space (the

output space of the previous layer), and the input space is

quantized by these hyperplanes. Every area constructed by

quantizing hyperplanes is indicated with a unique binary

code, i.e. if a sample in an area is affected by noise but it is

still in the same area, the changes will not come into sight

Fig. 2 Structure of an auto-associative neural network used to extract

principal components
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in the next layer (Fig. 3). This quality is gained by the

generalization of one point to an area (interpolation).

Practically, we decompose the input signal into its

components using a series of basis functions ujð�xÞ. Here,

ujð�xÞ is a hyperplane corresponding to jth neuron which

would be fired (1) or not fired (0).

In this case, some important issues must be considered:

first, the position of each hyperplane should be determined

so that the input sample would be placed in the center of

the area to be able to tolerate the maximum disturbance.

Second, the hyperplanes should be placed in a way that

they can discriminate all samples in the input space, and

this discrimination in the last layer leads to reconstructing

the input samples with the least error.

Now, the activation functions of neurons are supposed to

be a soft nonlinear function such as sigmoid, for instance.

Therefore, the back-propagation algorithm can be used to

train the network, and the boundaries will be soft and

fuzzy. The output of each neuron is a continuous value

dependent on the position of the �sðpÞ in the input space and

each input sample �sðpÞ has an indication in each layer with

these neurons.

At first, we suppose that only one sample is trained to

the network with soft activation function. Only one neuron

in the hidden layer is enough to indicate this sample, and

for more neurons, their output will become equal after

training [18].

In this case, the soft (fuzzy) hyperplanes are set in a way

that the network achieves better representation for the

sample, and the sample is reconstructed in the output space

with nearly zero error. Besides, a cluster will be made

around the attractor, which is constructed by soft hyper-

planes. The input space is interpolated with these hyper-

planes and every other point s0ðpÞ ¼ �sðpÞ þ �nðpÞ (�nðpÞ
indicates a noisy pattern) in this space will be projected on

this unitary component. However, the value of hidden

layer neuron for this noisy pattern is less than that for the

original one. Due to the interpolation realized by the uni-

tary kernel function uð�xÞ, this value is dependent on the

distance and similarity between the noisy sample and the

original one.

�sðpÞ ) umaxð�xÞ ð5Þ
�sðpÞ þ �nðpÞ ) uð�xÞ\umaxð�xÞ ) ~sðpÞ þ ~nðpÞ ð6Þ

where ~sðpÞ þ ~nðpÞ (clean signal ? noisy pattern) is the

final output of hidden layer. Corresponding to the original

pattern here named �sðpÞ, the kernel function uð�xÞwill be

maximum; umaxð�xÞ. Now, if the sample is added to noise,

�sðpÞ þ �nðpÞ, the value of uð�xÞ will be less than umaxð�xÞ.
This value of hidden layer results in an output which can

be considered as ~sðpÞ þ ~nðpÞ where ~nðpÞk k\ �nðpÞk k, that

is, the noise is reduced. The noise reduction happens

because there is no unit in the network to represent the

nonlinear principal components of the noise, but such a

unit exists for the pattern. Therefore, the noise will be

filtered nonlinearly. This output is again given to the

input, and by cycling the noise will be reduced more and

more. In every cycle, the noisy pattern moves toward the

original pattern for one step. The cycling will be con-

tinued until the noise value is less than a threshold. The

experimental results confirm the applicability of these

facts [17].

We consider a test. The test was applied to show how a

bidirectional connection makes attractors. The model

consists of two standard reverse-network structures. Each

of forward and reverse parts has two hidden layers. First

layer contains 32 neurons, second layer contains 64, and

output layer contains three neurons. The structure of the

model is shown in Fig. 4.

In the forward part, the output layer trains the code for

each sample. The reverse part reconstructs the samples.

The attractors behavior is considered. Figure 5 shows the

nonnoisy inputs and outputs. The results show that the

noisy inputs recognition performance is acceptable even

for samples that are nonrecognizable by human (Fig. 6).

Fig. 3 The noisy sample, which is still in the region, seems to the

next layer the same as the clean

Fig. 4 The structure of an auto-associative BNN
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2.4 Feed forward network model

The first neural network model is a standard feed-forward

network (FFN) that is designed in comparison with the

bidirectional model. The FFN consists of one hidden layer.

After 40 iterations, best mean square error (MSE) of the

output in the model is obtained, while the hidden layer

contains 92 neurons. The model is trained with the resilient

backpropagation algorithm. Input vectors of the model are

LHCB representations, and output vectors are 14 features

from 14 channels of EMA [22].

2.5 Proposed bidirectional neural network model

The second model that is proposed is a bidirectional (for-

ward–reverse) model. The model consists of two standard

reverse-network structures and attempts to mimic the per-

formance, flexibility, correctness, and reliability of the

human auditory system. Each parts of the model is trained

independently. In the forward stage, we have a nonlinear

mapping from LHCB representations to EMA features.

Using the reverse part, we provide a nonlinear mapping

from EMA features to LHCB representations. A general

structure of the two networks is shown in Fig. 7. As

mentioned in Sect. 2.4, the forward part uses one hidden

layer perceptron with 92 neurons. The reverse network is

designed with two hidden layers to map 14 EMA features

to 18 LHCB representations. To obtain optimized neurons

in the first layer, we examine between 1 and 128 neurons.

In other words, we set the second layer 64 neurons and vary

the number of neurons in the first layer. With the best

neuron selection for the first layer, we can examine second

layer. In our model, the first layer contains 95 neurons, and

second layer contains 92 neurons. Just like the FNN, the

resilient backpropagation algorithm is used for optimizing

the error function [22].

The outputs of forward section are passed as input to the

reverse network inputs and the outputs for the reverse

network are passed back to the forward section. After

performing six rotations between the forward and reverse

parts, the EMA and LHCB parameters are fixed.

2.6 Recognition model

The TDNN is used for phoneme recognition and is based

on the articulatory and acoustic parameters obtained in

Sects. 2.4 and 2.5. A TDNN is a dynamic artificial neural

network whose input, output, or both include not only

current data values but also past and future values.
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Fig. 5 Network inputs and

outputs. Rows 1 and 3 show the

inputs without noise. Rows 2
and 4 show the outputs
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In our proposed TDNN, only the inputs contain infor-

mation about the past and future. The model includes two

hidden layers. Like the neuron selection method in the

Sect. 2.4, best model is approximated. The first layer

contains 93 neurons, and the second layer contains 70

neurons. A resilient learning algorithm for the optimization

of the backpropagation error function is used to train the

model [23]. Figure 8 shows a general structure of a TDNN

model. The model uses 15 elements of LHCB representa-

tions and EMA values as input. In other words, the input

includes one present element and fourteen past and future

vectors, which contain both LHCB and EMA channel

values. The TDNN recognition model learns various words

in terms of their energy functions and articulatory vectors.

The addition of temporal LHCB and EMA information

allows the TDNN recognition model to learn words by

sentence context. The FFN and BNN models prepare dif-

ferent mappings of EMA channels as auxiliary input in the

phone recognition model.
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Fig. 7 General structure of BNN model training and testing process

for the acoustic-articulatory inversion mapping

Fig. 8 A general structure of the TDNN

940 Neural Comput & Applic (2012) 21:935–943

123



3 Results

The results in this section are obtained by a model, which is

trained and tested using the female speaker’s data. Here,

we use 70% of the first EMA data for training and the rest

for testing. For comparison, a base TDNN that only uses

LHCB as input is introduced. Its accuracy on the testing

data is 53.11%. The TDNN that uses LHCB and EMA as

input is applied, and accuracy on the testing data is

improved up to 68.73%. Our first experiment uses the FFN

to produce EMA from LHCB. The network uses the EMA

output as auxiliary data in addition to the acoustic repre-

sentation for phone recognition. The accuracy of this sys-

tem is 62.09%. The proposed BNN model is used for

inversion mapping. When the EMA output of this model is

passed as auxiliary data to the TDNN model, the accuracy

of phone recognition rate is improved up to 64.18%.

Passing both the EMA output data and LHCB input data of

BNN to the phone recognition model raises the recognition

accuracy up to 64.91%. Table 1 shows the phone recog-

nition accuracy in different models. As can be seen in

Table 1, the accuracy is increased about 3% from 62.09 to

64.91%. Here, we use ‘‘McNemar’s Test’’ to determine

whether the recognition results can consider to be signifi-

cantly different from one another. The McNemar signifi-

cance level reflects the probability of the hypothesis that

the differences between two classification results occur by

chance. We set the threshold of the significance level to be

0.05, which means that the differences are considered as

statistically significant if the probability of the differences

occurring due to chance is less than 0.05 [24]. Here, the

significance level of the McNemar’s test is less than 0.001.

Therefore, it indicates significant difference between these

results.

3.1 Using other speaker features (male, northern

accent)

In this section, we use 70% of the first EMA and corre-

sponding acoustic data from the female speaker for training

process. Besides, we use 30% of the last 460 sentences

from the single male speaker for testing process. This

database passes to the network that is trained by the female

speaker features. In fact, male speaker features are passed

to the inverse mapping network that is trained with the

female features. After six rotations, the features pass to the

phone recognition network. The principles of this method

could be used in speaker-independent task if suitable

databases were available. The results are in Table 2. In the

male speaker, when articulatory feature is used beside

the acoustic representation, the changes are minor. This is

possibly because of the difference in the sex of speakers. It

means that when they say a same sentence, their articula-

tor’s positions are different.

In the Table 2, we train the model with speech repre-

sentation of the woman data (fsew). Then, we test the

model with speech representations of the man (maps).

Results show that the accuracy is 46.4%. In the second row,

we use speech and articulatory representations of the

woman to train the recognition model. Then, we use speech

Table 1 Comparison of recognition results with different models

Recognition model Recognition

accuracy

TDNN train with LHCB of MOCHA (fsew) and test

with LHCB of MOCHA (fsew)

53.11

TDNN train with LHCB and EMA of MOCHA

(fsew) and test with LHCB and EMA of MOCHA

(fsew)

68.73

TDNN train with LHCB and EMA of MOCHA

(fsew) and test with LHCB of MOCHA (fsew) and

the auxiliary data(EMA) that is obtained from FFN

model

62.09

TDNN train with LHCB and EMA from MOCHA

(fsew) and test with LHCB of MOCHA (fsew) and

the auxiliary data(EMA) that is obtained from

BNN model after six rotations

64.18

TDNN train with LHCB and EMA of MOCHA

(fsew) and test with auxiliary data (LHCB and

EMA) that is obtained from BNN model after six

rotations

64.91

Table 2 Comparison of recognition results with different models

Recognition model Recognition

accuracy

TDNN train with LHCB of MOCHA (fsew) and test

with LHCB of MOCHA (maps)

46.4

TDNN train with LHCB and EMA of MOCHA

(fsew) and test with LHCB and EMA of MOCHA

(30% of the last ‘‘maps’’)

47.06

TDNN train with LHCB and EMA of MOCHA

(fsew) and test with LHCB of MOCHA (30% of

the last ‘‘maps’’) and the auxiliary data(EMA) that

is obtained from FFN model when inputs are

(maps)

47.32

TDNN train with LHCB and EMA from

MOCHA(fsew) and test with LHCB of MOCHA

(30% of the last ‘‘maps’’) and the auxiliary data

(EMA) that is obtained from BNN model after six

rotations when inputs are (maps)

48.8

TDNN train with LHCB and EMA of

MOCHA(fsew) and test with auxiliary data

(LHCB and EMA) that is obtained from BNN

model after six rotations when inputs are LHCB

(maps)

49.11
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and articulatory representations of the man to test. The

accuracy is raised up to 47.06%. In the third row, the

training process is the same as the second row. However, in

testing process, we use the articulatory features that are

obtained from FFN mode, and the accuracy is improved

again. In other words, although we eliminate the man data

in the testing process, we see an improving in the results

and the accuracy is raised to 47.32%. Again, we use the

output of BNN model in acoustic-articulatory inversion

mapping. The accuracy is again improved and raised to

48.8%. The point of this accuracy improvement is probably

attractors. It means that the BNN model sends the Man’s

speech representations to the Woman’s speech represen-

tations attractors. Finally, in the last row, the speech and

articulatory representations are used in the BNN model at

the same time. The accuracy is 49.11%. After eliminating

man’s speech and articulatory data in the process, we

witness new growth. It shows that BNN models probably

filter speech and auditory data. In the speaker-independent

recognition, using such BNN model might help us to

eliminate other speakers’ data in testing process as well as

getting better speech recognition.

4 Conclusion

The human perception has a bidirectional structure. When

an individual utters a word, feedback from the acoustic

signal is emitted from the speech organs. The articulatory

movements of these organs are induced by feedback

between heard acoustic signals and the sensing of articu-

latory movements. This learning process is placed in the

best training mode (attractors). The goal of this paper was

to establish this theory in the structure of ANNs and

introduce a new BNN. The feedback between articulators

and heard acoustic signals is used in the structure of the

bidirectional model as forward and reverse networks. The

method is compared with an FFN model. When used for

speech recognition, the proposed model obtains higher

accuracy using a BNN model in the acoustic-articulatory

inversion process than it does using a standard FFN and

TDNN. In other words, We want to investigate the ability

of articulatory information to improve speech recognition.

Here, we use a basic recognition system and try to improve

the recognition rates by using articulatory and acoustic

features jointly. Our research shows that using articulatory

features along with acoustic representations in neural net-

work systems could lead to better results. It happens even

when we use acoustic and EMA data of male speaker as

test data in a system that is trained by female speaker.

Besides, we consider an acoustic-articulatory inversion

mapping system. We use this system to map the acoustic

and articulatory data of male speaker to those of female

speaker. It shows that probably a person’s knowledge of

their own acoustic and articulatory information can help

them to learn corresponding speech that is produced by other

people. This method can be used for speaker-independent

recognition if the suitable databases were available. In the

future, method can be applied to inversion mapping meth-

ods, such as HMM-based methods and others.
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