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Abstract Modeling unsaturated water flow in soil

requires knowledge of the hydraulic properties of soil.

However, correlation between soil hydraulic properties

such as the relationship between saturated soil-water con-

tent hs and saturated soil hydraulic conductivity ks as

function of soil depth is in stochastic pattern. On the other

hand, soil-water profile process is also believed to be

highly non-linear, time varying, spatially distributed, and

not easily described by simple models. In this study, the

potential of implementing artificial neural network (ANN)

model was proposed and investigated to map the soil-water

profile in terms of ks and hs with respect to the soil depth

d. A regularized neural network (NN) model is developed

to overcome the drawbacks of conventional prediction

techniques. The use of regularized NN advantaged avoid

over-fitting of training data, which was observed as a

limitation of classical ANN models. Site experimental data

sets on the hydraulic properties of weathered granite soils

were collected. These data sets include the observed values

of saturated and unsaturated hydraulic conductivities, sat-

urated water contents, and retention curves. The proposed

ANN model was examined utilizing 49 records of data

collected from field experiments. The results showed that

the regularized ANN model has the ability to detect and

extract the stochastic behavior of saturated soil-water

content with relatively high accuracy.

Keywords Regularized neural network � Saturated

soil-water content � Over-fitting � Soil formation

1 Introduction

The study of rainwater infiltration on forested hillslopes is

a very important area of research in forest hydrology.

Rainwater infiltration produces positive pore water pres-

sures in soil layers and is closely related to the occurrence

of slope failures (e.g., [24, 25]). Soil data serve as an

important initialization parameter for hydro-ecological and

climatological modeling of water and chemical movement,

heat transfer, or land-use change. Most soil hydraulic

properties are difficult to measure and therefore have to be

estimated in most cases. In addition, knowledge of the

moisture content and water movement in a soil layer is

fundamental to the analysis of biological reactions, plant

activity, material transports in forest ecosystems, and

stream water chemistry [30, 37]. To analyze rainwater

infiltration into soil, it is important to have an under-

standing of the hydraulic properties of the soil, in particular

the relationship between volumetric water content hs and

soil capillary pressure w and the relationship between

unsaturated hydraulic conductivity K and w. These rela-

tionships are known as the water retention curve and the

hydraulic conductivity function, respectively. Many mod-

els for water retention (e.g., [7, 14, 19, 33, 39]) have been

developed, incorporating earlier models by [8] and [23],

with the aim of deriving analytical expressions that can be

used to predict the relative hydraulic conductivity of soil.

The resultant water retention curve is considered one of the

most fundamentally important hydraulic characteristics of

soil [2].
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The relationship between saturated soil-water content hs

and saturated soil hydraulic conductivity Ks as function of

soil depth is in stochastic pattern. However, soil-water

profile process is believed to be highly non-linear, time

varying, spatially distributed, and not easily described by

simple models. Most present model techniques are based

upon conventional linear or non-linear statistical models,

such as regression analysis. Although these models have

been utilized for many years to provide relatively good

prediction accuracy, they have several limitations to detect

and mimic such highly stochastic pattern of soil-water

profile.

Soil-water content is believed to be highly non-linear,

time varying, spatially distributed, and not easily described

by simple models. Two major approaches for modeling the

soil-water content prediction process have been explored in

the literature. These are the conceptual (physical) models

and the system-theoretic models. Conceptual models are

designed to approximate within their structures (in some

physically realistic manner) the general internal subpro-

cesses and physical mechanisms, which govern the water

profile in soil. These models usually incorporate simplified

forms of physical laws and are generally non-linear, time

invariant, and deterministic with parameters that are rep-

resentative of complex behavior of the soil-water content

characteristics. Until recently, for practical reasons (data

availability, calibration problems, etc.), most conceptual

soil-water profile prediction model assumed lumped rep-

resentations of the parameters. While such models ignore

the stochastic properties of the soil-water profile process,

they attempt to incorporate realistic representations of the

major non-linearities inherent in the soil-water profile

parameter relationships. Conceptual soil-water profile

models are generally reported to be reliable in predicting.

However, the implementation and calibration of such

model can typically encounter various difficulties including

sophisticated mathematical tools, significant amounts of

calibration, and some degree of experience with the model.

While conceptual models are of importance in the

understanding of soil-water processes, there are many

practical situations such as soil-water profile where the

main concern is with making accurate predictions. In such

a situation, it is preferable to develop and implement a

simpler system-theoretic model instead of developing a

conceptual model. In the system-theoretic approach, mod-

els based on differential equations (or difference equations

in case of discrete-time systems) are used to identify a

direct mapping between the inputs and outputs without

detailed consideration of the internal structure of the

physical processes. The linear time series models such as

ARMAX (autoregressive moving average with exogenous

inputs) models developed by Box and Jenkins [5] have

been usually used in such situations because they are

relatively easy to develop and implement. They have been

determined to provide satisfactory predictions in many

applications [6, 34, 40]. However, such models do not

attempt to represent the non-linear dynamics inherent in the

soil-water process and therefore may not always perform

adequately.

Recently, significant progress in the fields of non-linear

pattern recognition and system theory using artificial neural

networks (ANN) has been performed (e.g., [1, 3, 29]). An

ANN is a non-linear mathematical structure that is capable

of representing arbitrarily complex non-linear processes

that relate the inputs and outputs of any system.

Agyare et al. [1] analyzed the measurement of soil

properties together with terrain attributes in artificial neural

networks (ANNs) to estimate saturated hydraulic conduc-

tivity (Ks), for two pilot sites in the Volta basin of Ghana. It

was observed that good data distribution, range, and

amounts are prerequisites for good ANN estimation and

therefore data preprocessing is important for ANN. With

adequate and sensitive data, ANN can be used to estimate

Ks, using soil properties such as sand, silt, and clay content,

bulk density, and organic carbon. Although the inclusion of

terrain parameters can improve the estimation of Ks using

ANN, they cannot be relied on as the sole input parameters

as they yield poor results for the scale considered in this

study. The source of training data was found to signifi-

cantly influence the topsoil Ks, but the subsoil was not

sensitive to training data source.

Parasuraman et al. [29] investigated the applicability of

neural networks in estimating Ks at field scales and

compared the performance of the field-scale pedotransfer

functions (PTFs) with the published neural networks

program Rosetta, also compared the performance of two

different ensemble methods, namely bagging and boosting

in estimating Ks. Data sets from two distinct sites are

considered in the study. The performances of the models

were evaluated when only sand, silt, and clay content

(SSC) was used as inputs and when SSC and bulk density

qb (SSC ? qb) were used as inputs. The result showed

that for both data sets, the field-scale models performed

better than Rosetta. The comparison of field-scale ANN

models employing bagging and boosting algorithms

indicates that the neural network model employing the

boosting algorithm results in better generalization by

reducing both the bias and variance of the neural network

models. Although artificial neural networks (ANNs)-based

PTFs have been successfully adopted in modeling soil

hydraulic properties at larger scales (national, continental,

and intercontinental), the utility of ANNs in modeling

saturated soil-water content hs and saturated soil hydraulic

conductivity Ks as function of soil depth has rarely been

reported. In addition, in Rosetta model, there are many

parameters that supposed to be considered for the model
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input, which is not necessarily to be available in most of

the applications.

On the other hand, the major objective of training an

ANN for prediction is to generalize, i.e., to have the out-

puts of the network approximate target values given inputs

that were not in the training set. However, prediction based

on ANN learning algorithms is fundamentally difficult and

faces problems. One of the major shortcomings is that the

ANN model experienced over-fitting problem while train-

ing session and occurs when a neural network loses its

generalization [12, 13, 22, 28, 31].

1.1 Problem statement

In this study, the potential of implementing artificial neural

network (ANN) model was proposed and investigated to

map the soil-water profile in terms of Ks and hs with respect

to the soil depth d. On the other hand, obviously, AI pro-

vides a viable and effective approach for developing input–

output prediction models in situations that do not require

modeling of the whole and/or part of the internal parameter

of the soil-water profile. Although those models have

proved to be efficient, its convergence tends to be very

slow and yields suboptimal solutions. This may not be

suitable for adaptive accurate prediction purpose. In fact,

the major objective of training an ANN for prediction is to

generalize, i.e., to have the outputs of the network

approximate target values given inputs that were not in the

training set. However, prediction based on ANN learning

algorithms is fundamentally difficult and faces problems.

One of the major shortcomings is that the ANN model

experienced over-fitting problem while training session and

occurs when a neural network loses its generalization.

A number of data sets on the hydraulic properties of

weathered granite soils were collected from some catch-

ment area in Japan. These data sets include the observed

values of saturated and unsaturated hydraulic conductivi-

ties, saturated water contents, and retention curves. The

proposed ANN model was examined utilizing 49 records of

data collected from field experiments.

1.2 Objective

The objective of this paper is to analyze the soil-water

profile and to develop a robust prediction model of the soil

moisture content at different depths utilizing ANN. While

such a model is not intended to substitute physically based

conceptual models, it can provide an accurate prediction

for soil moisture content using only the hydraulic con-

ductivity and the depth as available input and output time

series data. The anticipated impact of this model is that it

can predict the soil moisture content without the need to

explicitly consider the internal geologic or hydraulic

parameters.

2 Experimental work

Granite soils are known to be very sensitive to weathering

and vulnerable to landslides. In Japan, many disasters have

been occurred in granite soil areas following heavy rains,

resulting in a total of more than 1,000 casualties over the

last 62 years. In all of these cases, the major disasters

resulting from these rainstorms were owing to landslides

that occurred on weathered granite slopes [9]. On the other

hand, rainwater infiltration into soil also has great effect in

slope instability. Therefore, this study analyzes an accurate

prediction for soil moisture content with respect to the

hydraulic conductivity and the depth using ANN model.

Forty-nine data sets on the hydraulic properties of

weathered granite soils were collected from published

studies (i.e., [18, 20, 21, 27, 36]). These data were observed

from 5 catchment areas in Japan (i.e., Aichi, Enzan, Fudo,

Kiryu, and Rokkou catchment areas). Observations were

divided into surface and subsurface soil layers and com-

prised two sample sets of 33 and 16 samples of soil that

were taken from 5- to 25-cm depths and from 70- to

170-cm depths, respectively.

3 Methodology

3.1 Artificial neural network

Artificial neural network is densely interconnected pro-

cessing units that utilize parallel computation algorithms.

The basic advantage of ANN is that they can learn from

representative examples without providing special pro-

gramming modules to simulate special patterns in the data

set [16]. This allows ANN to learn and adapt to a contin-

uously changing environment. Therefore, ANN can be

trained to perform a particular function by tuning the val-

ues of the weights (connections) between these elements.

The training procedure of ANN is performed so that a

particular input leads to a certain target output as shown in

Fig. 1.

Multilayer ANN has been reported as a powerful mod-

eling tool [16]. The input and output layers of any network

have numbers of neurons equal to the numbers of the inputs

and outputs of the system, respectively. The architecture of

a multilayer feed-forward neural network can have many

layers between the input and the output layers where a

layer represents a set of parallel processing units (or

nodes), namely the hidden layer.

Neural Comput & Applic (2012) 21:543–553 545

123



The main function of the hidden layer is to allow the

network to detect and capture the relevant patterns in the

data and to perform complex non-linear mapping between

the input and the output variables. The sole role of the input

layer of nodes is to relate the external inputs to the neurons

of the hidden layer. Hence, the number of input nodes

corresponds to the number of input variables. The outputs

of the hidden layer are passed to the last (or output) layer,

which provides the final output of the network. Finding a

parsimonious model for accurate prediction is particularly

critical since there is no formal method for determining the

appropriate number of hidden nodes prior to training.

Therefore, here we resort to a trial-and-error method

commonly used for network design.

In the prediction context, multilayer feed-forward neural

network training consists of providing input–output

examples to the network and minimizing the objective

function (i.e., error function) using either a first-order or a

second-order optimization method. Training can be for-

mulated as one of minimizing a function of the weight, the

sum of the non-linear least squares between the observed

and the predicted outputs defined by the following

equation:

E ¼ 1

2

Xn

P¼1

ðYO � YPÞ2 ð1Þ

where n is the number of patterns (observations), Yo

represents the observed response (target output), and Yp the

model response (predicted output). In the back-propagation

training, minimization of the error function (see (1)) is

attempted using the steepest descent method and

computing the gradient of the error function by applying

the chain rule on the hidden layers of the feed-forward

neural network. Consider a typical multilayer feed-forward

neural network whose hidden layer contains M neurons.

The network is based on the following equations:

netPJ ¼
XN

I¼1

Wjixpi þWjo ð2Þ

gðnetPJÞ ¼
1

1þ e�netPJ
ð3Þ

where netPJ is the weighted inputs into the jth hidden unit,

n is the total number of input nodes, Wji is the weight from

input unit i to the hidden unit j, xpi is a value of the ith input

for pattern P, Wjo is the threshold (or bias) for neuron j, and

g(netPJ) is the jth neuron’s activation function assuming

that g is a logistic function. Note that the input units do not

perform operation on the information but simply pass it

onto the hidden nodes. The output unit receives a net input

of

netpk ¼
XM

J¼1

Wkj:gðnetPJÞ þWko ð4:aÞ

ypk ¼ gðnetpkÞ ð4:bÞ

where M is the number of hidden units, Wkj represents the

weight connecting the hidden node j to the output k, Wko is

the threshold value for neuron k, and ypk is the kth predicted

output. The ultimate goal of the network training is to find

the set of weights Wji, connecting input units i to the hidden

units j and Wkj, connecting the hidden units j to output k,

that minimize the objective function (1, [17]). Since (1) is

not an explicit function of the weight in the hidden layer,

the first partial derivatives of E in (1) are evaluated with

respect to the weights using the chain rule, and the weights

are moved in the steepest descent direction. This can be

formulated mathematically as follows:

DWkj ¼ �g
oE

oWkj
ð5Þ

where g is the learning rate, which scales the step size. The

usual approach in back-propagation training consists in

choosing g according to the relation 0 \ g\ 1. The

learning rule is a procedure for modifying the weights and

biases of the network. This procedure may also be referred

to as the training algorithm. The learning rule is provided

with a known input/output set of data, and an algorithm is

then used to adjust the weights and biases of the network in

order to move the network outputs closer to the targets.

Therefore, modeling capabilities of networks trained using

supervised learning algorithms are limited to the range of

the input used in training the network.

3.2 ANN for modeling soil-water profile

Artificial neural network model have been used in a broad

range of applications including patterns classification,

identification, prediction, optimization, and control systems.

Fig. 1 Artificial neural network model diagram
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ANNs learn by using some examples, namely patterns. In

other words, to train and test a neural network, input data and

corresponding target values are necessary [17, 32]. In this

study, 49 records for saturated hydraulic conductivity (Ks)

and saturated soil-water content (SMC) with respect to soil

depth (D), obtained from the experiment location, were used

to train and test the model.

Our pilot investigation showed that soil moisture content

(SMC) is based on hydraulic conductivity (KS) at certain

depth D. Therefore, in this study, ANN with its non-linear

and stochastic modeling capabilities is utilized to develop a

soil-water profile model. The soil moisture content SMCdi

predicted at certain depth di with respect to saturated

hydraulic conductivity HCdi can be expressed as follows:

SMCd ið Þ ¼ f HCdðiÞ; d ið Þð Þ ð6Þ

The ANN model is established using the above equation.

The architecture of the network consists of an input layer of

two neurons (HCdðiÞ; d ið Þ), an output layer of one neuron

(corresponding to SMCd ið Þ), and a number of hidden layers

of arbitrary number of neurons at each layer. In order to

achieve the desirable prediction accuracy, ANN architec-

tures were developed utilizing 40 records out of 49

experimental records in order to train the network. The

performance and the reliability of the ANN model were

examined using the rest 9 records.

In order to accelerate the training procedure and to

achieve minimum mean square estimation error, the

records of data were normalized [10, 11]. All data in input

and output layers were normalized in the (-1, 1)–(0, 1).

Different MLP-ANN architectures (while keeping two

neurons in the input layer and only one neuron in the output

layer) were used to examine the best performance. The

choice of the number of hidden layers and the number of

neurons in each layer is based on two performance indices.

The first index is the root mean square (RMS) value of the

prediction error, and the second index is the value of the

maximum error. The exact ANN architecture used for

predicting saturated soil moisture content SMCd ið Þ is pre-

sented in Fig. 2.

There are several training algorithms for feed-forward

networks. All these algorithms use the gradient of the

performance function to determine how to adjust the

weights to minimize performance. The gradient is deter-

mined using a technique called back-propagation, which

involves performing computations backward through the

network. The basic back-propagation algorithm adjusts

the weights in the steepest descent direction (negative of

the gradient), the direction in which the performance

function decreases most rapidly. It turns out that, although

the function decreases most rapidly along the negative of

the gradient, this does not necessarily produce the fastest

convergence. In the conjugate gradient algorithms, a search

is performed along conjugate directions, which produces

generally faster convergence than steepest descent direc-

tions. Each of the conjugate gradient algorithms discussed

so far requires a line search per iteration. This line search is

computationally expensive, because it requires that the

network response to all training inputs be computed several

times for each search. The scaled conjugate gradient

algorithm (SCG) was designed to avoid the time-consum-

ing line search. This algorithm combines the model-trust

region approach (used in the Levenberg–Marquardt algo-

rithm), with the conjugate gradient approach [4]. The

scaled conjugate gradient criterion was used to update the

ANN parameters while training, since it was reported that

this method is the most suitable in case of high randomness

on the input data, which is the case in this study [10]. This

criterion is based on the conjugate gradient method, but

with small modification that significantly saves computa-

tional time [4].

Training of the network was performed by using

Levenberg–Marquardt (LM) feed-forward back-propaga-

tion algorithms. A computer program was performed under

Matlab 6.5 software. Hyperbolic tangent sigmoid function

(HTSF) and purelin function (PF) were used as the transfer

function in the hidden layer and output layer, respectively.

These are shown by the (7) and (8), respectively.

y ¼ ex � e�x

ex þ e�x
ð7Þ

y ¼ axþ b ð8Þ

Finally, the Levenberg–Marquardt learning algorithm,

which is a variant of back-propagation, was chosen as the

learning algorithm of the model. The model was

constructed, trained, and tested using different numbers

of neurons (from 2 to 30) in their hidden layer using

software developed by Matlab. For each network, RMSE

value of the outputs was calculated.

Hidden Layer

Output Layer
With one neuron

Input Layer
With three neurons

Neuron

)(iHCd

)(id)(id

)(iSMCd

Fig. 2 The exact neural network architecture utilized for saturated

soil-water content SMCd(i)
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3.3 Network over-fitting and regularization procedure

Network over-fitting is a classical machine learning prob-

lem that has been investigated by many researchers [35,

38]. Network over-fitting usually occurs when the network

captures the internal local patterns of the training data set

rather than recognizing the global patterns of the data sets.

The knowledge rule base that is extracted from the training

data set is therefore not general. As a consequence, it is

important to recognize that the specification of the training

samples is a critical factor in producing a neural network

capable of making the correct responses. The problem of

over-fitting has also been investigated by researchers with

respect to network complexity [32].

Here, to avoid an over-fitting problem, we utilized the

regularization technique [26]. This is known as a suitable

technique when the scaled conjugate gradient descent

method is adopted for training, as is the case in this study.

The regularization technique involves modifying the per-

formance function, which is normally chosen to be the sum

of squares of the network errors on the training set defined

as follows:

MSE ¼ 1

2

Xn

P¼1

ðYO � YPÞ2 ð9Þ

The modified performance function is defined by adding

a term that consists of the mean of the sum of squares of

the network weights and biases to the original mean square

error (MSE) function as follows:

MSEreg ¼ c �MSE þ 1� cð Þ � MSW ð10Þ

where c is the performance ratio that takes values between

0 and 1 and MSW is computed as follows:

MSW ¼ 1

M

XM

j¼1

w2
j ð11Þ

where M is the number of weights utilized inside the net-

work structure and w is weight matrix of the network.

Using the performance function of (10), the neural net-

works to predict the saturated water content were devel-

oped with the intention to avoid over-fitting of data.

3.4 Regression model

Linear regression analysis has been used to establish a

quantitative relationship between water quality parameters.

Moreover, linear regression adopts to construct a simple

formula that will predict what value will occur for a

quantity of interest when other related variables take given

values. Analyses were performed using the Statistica7

software. The general purpose of multiple regressions is

to learn more about the relationship between several

independent or predictor variables and a dependent or

criterion variable. A linear regression line has an equation

of the following form:

yi ¼ b1xi1 þ � � � þ bpxip þ ei ¼ x0ibþ ei ð12Þ

where 0 denotes the transpose, so that x0ib is the inner

product between vectors xi and b.

Often, these n equations are stacked together and written

in vector form as follows:

y ¼ xbþ e ð13Þ

The most common method for fitting a regression line is

the method of least squares. This method calculates the

best-fitting line for the observed data by minimizing the

sum of the squares of the vertical deviations from each data

point to the line (if a point lies on the fitted line exactly,

then its vertical deviation is 0). Because the deviations are

first squared and then summed, there are no cancellations

between positive and negative values.

4 Results and discussions

The ANN model architecture of Fig. 2 is employed in this

study to provide prediction of saturated soil moisture

content SMCd ið Þ. The measured saturated soil moisture

content SMCd ið Þ over the first 40 records was used to train

the ANN model. The proposed ANN model successfully

achieved the target MSE of 10-4. Figure 3 demonstrates

the training curve and shows that the convergence to the

target MSE is achieved after 73 iterations.

Various ANN architectures (while keeping two neurons in

the input layer and only one neuron in the output layer) were

used to examine the best performance. In fact, there is no

Fig. 3 Training curve for the proposed ANN model utilizing 40

records of the data
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formal and/or mathematical method for determining the

appropriate ‘‘optimal set’’ set of the key parameters of neural

network (number of hidden layers, number of neurons with

each hidden layer, and the type of transfer function between

two consequence layers). Therefore, it was decided to per-

form this task utilizing trial-and-error method. Several sets

were examined with maximum 2 hidden layers and maxi-

mum 6 neurons within each layer. Therefore, the choice of

the number of hidden layers and the number of neurons in

each layer is based on two performance indices. The first

index is the root mean square error (RMSE) value of the

prediction error, and the second index is the value of the

maximum error. Both indices were obtained while examin-

ing the ANN model with the training data. Actually, in

developing such prediction model using neural network, the

model could perform well during the training period and

might provide higher level of error when evaluating during

either validation or testing period. In this context, in this

study the authors used these performance indices to make

sure of that the proposed model could provide consistent

level of accuracy for different input patterns. The advantages

of utilizing these two statistical indices as a performance

indicator of the proposed model are first to make sure that the

highest error while evaluating the performance is within

the acceptable error for such prediction model. Utilizing the

RMSE is to ensure that the summation of the error distri-

bution within the validation period is not high. Conse-

quently, using both indices is guaranteed consistent level of

errors, which is providing a great potential for having same

level error while examining the model for unseen data in the

testing period.

In order to show how the trial-and-error procedure for

selecting the best parameter set of certain ANN architec-

ture was performed, an example for month of January is

presented in Fig. 4. For better visualization, the inverse

value of both RMSE and maximum error was used as seen

in Fig. 4b and c instead of the real values, while Fig. 4a

shows the real value for both indices. Figure 4 shows the

changes in the value of the RMSE and the maximum error

versus the number of neurons when the number of hidden

layers is one (Fig. 4a) and for two hidden layers in Fig. 4b

(RMSE) and Fig. 4c for the maximum error during the

validation period between 1930 and 1960. It is interesting

to observe the large number of local minima that exist in

both domains. The best combination of the proposed sta-

tistical indices for evaluating the model can be observed

when the ANN architecture has 4 neurons in the first layer

and 2 neurons in the second layer, achieving RMSE

0.045BCM and maximum error 15%.

The number of hidden layers (R) and the number of

neurons in each layer (N) for the network are presented in

Table 1. The transfer functions used in each layer of the
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Fig. 4 Neural network

performance ‘‘RMSE and

maximum error’’ utilizing

different architectures, a one

hidden layer, b and c two

hidden layers

Table 1 The architecture of the neural network model

Layer Number

of neurons

Transfer function

Input layer 2 Tan sigmoid

Hidden layer I 4

Hidden layer II 2 Pure line

Output layer 1
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networks are also listed in Table 1. The network utilizes

the back-propagation algorithm during the training proce-

dure. Once the network weights and biases are initialized,

during the training process the weights and biases of the

network are iteratively adjusted to minimize the network

performance function mean square error MSE—the aver-

age squared error between the network outputs a and the

target outputs t.

In order to examine the performance of the proposed

ANN, a simulation for the model output during the training

is performed. Figure 4 illustrates the performance of the

model over the first 40 records used for training. The sta-

tistical comparisons between predicted and measured soil

moisture content SMCd ið Þ were performed by estimating

the prediction error (PE), which measures the average

squared error between the predicted SMCd ið Þ obtained

from the model and the measured SMCd ið Þ. The PE is

described in (14)

PEð%Þ ¼ 100 �
SMCf ðtestingÞ � SMCm

�� ��
SMCm

� �
ð14Þ

where SMCf ðtestingÞ is the predicted value and SMCm is the

experimentally measured value and m represents the

number of samples in each testing group.

4.1 Non-regularized neural network

Prediction errors for the two ANN networks are presented

in Fig. 5. It is obvious from Fig. 5 that SMCd ið Þ prediction

models using ANN have a maximum error of 4% at only

the experiments #1 and #8, while a maximum error *2%

at the rest of the 40 records. In addition, almost 0.0% error

for 10 experiments can be observed, which is 25% of the

whole examined records. As a result, the proposed ANN

model successfully provides accurate predictions for

SMCd ið Þ utilizing the saturated hydraulic conductivity (Ks)

at different depth (D).

To verify the performance of the proposed ANN-based

model for saturated soil moisture content, the experiments

between #41 and #49 was utilized. Figure 5 shows the error

distribution value of the soil moisture content error over

these 9 experiments. It can be observed that 6 out of 9

experiments experienced error lower than 5%. On the other

hand, relatively higher levels of errors could be observed

for experiments 42, 44, and 48, which is above 10%

(Fig. 6).

Furthermore, Fig. 7 shows the neural network model

output versus the actual saturated soil-water content. It can

be observed from Fig. 7 that the proposed neural network

model output could mimic the dynamic pattern in the soil-

water content during training and testing.

4.2 Regularized neural network

The regularization technique described in Sect. 3.3 was

applied to improve the generalization of the training and

testing process of the proposed neural network model uti-

lizing the same procedure (40 experiments for training and

9 experiments for testing). A trial-and-error procedure is

applied to determine the best c ratio that overcomes the

over-fitting problems. Optimization techniques were not
Fig. 5 The error distribution for the ANN model during training

session

Fig. 6 The error distribution for the ANN model during testing

session

Fig. 7 Observed and predicted saturated soil-water content for the

ANN model during training and testing session
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necessary as value of c easily converged by simplified trial-

and-update procedures [15]. Different values of c ranging

between 0 and 1 are examined for each network. The

analysis showed that c ratio equals to 0.8 provided a con-

siderable reduction in the error distributions of the pro-

posed model.

Figure 8 demonstrates the performance of the regular-

ized neural network model during testing. It can be

depicted that the reduction in the distribution of the errors

for those experiments experienced relatively poor predic-

tion (Exp# 42, 44, and 48) while utilizing non-regularized

neural network. It can be determined that the regularized

network significantly improved the distribution of errors

for all the experiments compared with non-regularized

network.

Furthermore, by comparing the results showed in Figs. 8

and 6, similar level of accuracy for the regularized neural

network model during training and testing sessions could

be depicted. Such observation proves that the proposed

regularized neural network model could provide consistent

level of accuracy. In addition, Fig. 9 shows the observation

versus the prediction values of the soil-water content. It

could be depicted that there is a clear matching between the

observed and the proposed ANN model output, which

confirms the ability of the ANN model to provide an

adequate accuracy level for soil-water content values.

Table 2 shows the PE values of the errors at each

experiment for both non-regularized and regularized net-

works. When compared with non-regularized networks,

smaller values of PE errors can be depicted after elimi-

nating the over-fitting problem. For example, comparing

the PE value of SMC error at the Exp# 42, a reduction from

15% error to 1% error has been achieved. Similar

improvement on the performance of almost all experiments

can be observed. It can be observed that the results utilizing

regularized neural network achieved better level of accu-

racy over the non-regularized neural network model.

For further assessment, a comparison analysis is carried

out between the proposed ANN model and the linear

regression model proposed in Sect. 3.3. The same proce-

dure applied while performing the ANN model utilizing 40

records to calibrate the LRM and examined using the rest

9 records. Figure 10 shows the error distribution for those 9

records for both models. It could be observed that the

proposed ANN model with the regularized procedure out-

performed the LRM for all the records with remarkable

improvement in prediction accuracy.

4.3 Recommendation for further research

In fact, it is common in ANN development to train several

different networks with different architecture and to select

the best one on the basis of performance of the networks

with testing/validation sets. A major disadvantage of such

an approach is that it assumes that performance of the

networks for all other possible testing sets will usually be

similar, which is statistically incorrect. Moreover, observ-

ing the performance of the developed ANN when tested, it

is obvious that no single network has the optimal prediction

for all the testing data sets.

Fig. 8 The error distribution for the non-regularized ANN model

during testing session

Fig. 9 Observed and predicted saturated soil-water content for the

ANN model during training and testing session

Table 2 Improvement in PE associated with NN model during

testing

Exp# PE before

regularization

(%)

PE after

regularization

(%)

Reduction in

prediction

error (%)

1 -6 -3.3 45

2 15 -1 93

3 -7 -4.8 31

4 -10 -5.4 46

5 -6 -2.7 55

6 -6 -4.3 28

7 -6 -3.4 43

8 10 -4.7 53

9 1.5 0.26 83
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Therefore, a better accuracy than the best reported by

any single network can be accomplished if an optimization

algorithm that can utilize all these networks is developed.

Another interesting observation is that the effect of the

transfer function is as important as the number of layers

and neurons in each layer. This can be observed when

comparing the performance of two networks with similar

number of hidden layers and neurons, but with different

transfer functions. Further discussion on the effect of the

optimal combination of different transfer function for

specific applications is beyond the scope of this study.

5 Conclusion

This article suggests the use of a regularized NN model for

developing a prediction model of the saturated soil-water

content at different depths. The model was successful to

provide an accurate prediction for saturated soil moisture

content using only the saturated hydraulic conductivity and

the depth as input variables. The proposed ANN model was

examined utilizing 49 records of data collected from field

experiments. The results showed that the ANN model has

the ability to detect and extract the stochastic behavior of

the saturated soil-water content with relatively high accu-

racy. The performance accuracy of the model can be

expressed from the training session that a maximum error

*2% at the rest of the 40 records, while the maximum error

for the testing session is within *5% level of accuracy.
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