
ORIGINAL ARTICLE

Parallel Hash function construction based on chaotic maps
with changeable parameters

Yantao Li • Di Xiao • Shaojiang Deng •

Qi Han • Gang Zhou

Received: 16 October 2009 / Accepted: 31 January 2011 / Published online: 17 February 2011

� Springer-Verlag London Limited 2011

Abstract A parallel Hash algorithm construction based on

chaotic maps with changeable parameters is proposed and

analyzed in this paper. The two main characteristics of the

proposed algorithm are parallel processing mode and mes-

sage expansion. The algorithm translates the expanded

message blocks into the corresponding ASCII code values as

the iteration times, iterates the chaotic asymmetric tent map

and then the chaotic piecewise linear map, continuously, with

changeable parameters dynamically obtained from the posi-

tion index of the corresponding message blocks, to generate

decimal fractions, then rounds the decimal fractions to inte-

gers, and finally cascades these integers to construct inter-

mediate Hash value. Final Hash value with the length of

128-bit is generated by logical XOR operation of interme-

diate Hash values. Theoretical analysis and computer simu-

lation indicate that the proposed algorithm satisfies the

performance requirements of a secure Hash function.

Keywords Chaos � Asymmetric tent map �
Piecewise linear map � Parallel processing mode �
Changeable parameter

1 Introduction

As one of the cores of cryptography, Hashing is a basic

technique for information security. The conventional Hash

functions such as MD4 [1], MD5 [2], and SHA-1 are

realized through the complicated methods based on logical

XOR operation or multi-round iterations of some available

cipher. Since there are some defects in conventional Hash

function constructions, the recently proposed chaos-based

Hash functions exhibit an attractive design direction [3–

15]. Until recently, based on Baptista’s method [3] in 1998

that the message text was encrypted as the number of

iterations applied in the chaotic map in order to reach the

region correspondent to that text, Wong developed a

Hashing scheme [4] in 2003, which was built on the

number of iterations of one-dimensional logistic map

needed to reach the region corresponding to the character,

along with a look-up table updated dynamically, and Xiao

et al. created a one-way Hash function-based construction

based on the chaotic map with changeable parameter [5] in

2005, which employed 3-unit iterations of one-dimensional

chaotic piecewise linear map to generate final Hash value

extracted some bits from each iteration, and in the same

year, Yi [6] proposed a Hash function based on chaotic tent

maps, which operated on a message with arbitrary length to

produce 2l-bit Hash value. In 2006, Lian et al. [7]

employed a secure Hash function, which was constructed

based on a three-layer network, where the three neuron-

layers were used to realize data confusion, diffusion, and

compression, respectively, and the multi-block Hash mode

was presented to support the plaintext with variable length.

Zhang et al. constructed an n-dimensional chaotic dynamic

system named feedforward–feedback nonlinear filter

(FFNF) and then proposed a novel chaotic keyed Hash

algorithm using FFNF [8] in 2007. In 2008, Wang et al. [9]

gave a one-way Hash function construction based on two-

dimensional coupled map lattices, which employed a two-

dimensional coupled map lattices with parameters leading

to the largest Lyapunov exponent. In the same year, Yang

Y. Li (&) � D. Xiao � S. Deng � Q. Han

College of Computer Science, Chongqing University,

Chongqing 400044, China

e-mail: yantaoli@foxmail.com; liyantao@live.com;

yantaoli@cs.wm.edu

Y. Li � G. Zhou

Department of Computer Science, College of William and Mary,

Williamsburg, VA, USA

123

Neural Comput & Applic (2011) 20:1305–1312

DOI 10.1007/s00521-011-0543-4



et al. [10] proposed a one-way Hash function construction

based on chaotic map network. We employed a novel

combined cryptographic and Hash algorithm based on

chaotic control character [11] in 2009. In 2010, we pro-

posed a novel Hash algorithm construction based on cha-

otic neural network [12] and also created Hash function

based on the chaotic look-up table with changeable

parameter [13]. However, all of the Hash algorithms

mentioned above cannot be processed in a parallel mode,

which can greatly improve the efficiency and speed of the

Hash function.

It follows that a parallel Hash algorithm construction

based on chaotic maps with changeable parameters is

proposed and analyzed in this paper. The algorithm trans-

lates the expanded message blocks into the corresponding

ASCII code values as the iteration times, iterates the cha-

otic asymmetric tent map and then the chaotic piecewise

linear map, continuously, with the changeable parameters

dynamically obtained from the position index of the cor-

responding message blocks, to generate decimal fractions,

then rounds the decimal fractions to integers, and finally

cascades these integers to construct intermediate Hash

value. Final Hash value with the length of 128-bit is gen-

erated by logical XOR operation of intermediate Hash

values.

The rest of this paper is arranged as follows: Section 2

introduces the preliminaries about the chaotic asymmetric

tent map and piecewise linear map used in the proposed

algorithm; In Sect. 3, the parallel Hash algorithm is

described in detail; Performance is analyzed in Sect. 4; and

Finally, conclusions are drawn in Sect. 5.

2 Preliminaries

2.1 Analysis of the chaotic asymmetric tent map

The one-dimensional chaotic asymmetric tent map in the

algorithm is represented as (1):

xiþ1 ¼
xi=a 0� xi� a
ð1� xiÞ=ð1� aÞ a\xi� 1

�
ð1Þ

where xi 2 ½0; 1� and a 2 ð0; 1Þ are the iteration trajectory

value and the parameter of the chaotic asymmetric tent

map, respectively. The map transforms an interval [0, 1]

onto itself and contains only one parameter a. The map has

some properties, which are suitable for constructing the

Hash function, such as initial value sensitivity and

parameter sensitivity. Figure 1 displays the chaotic itera-

tion property with changeable parameter a valued in the

interval (0, 1), if initial value x0 = 0.42223. The simulation

of the map iterating 50 times with the initial value

x0 = 0.7654 and parameter a = 0.6 is shown in Fig. 2.

2.2 Analysis of the chaotic piecewise linear map

The one-dimensional and chaotic piecewise linear map in

the algorithm is expressed as (2):

xiþ1 ¼

xi=b; 0� xi\b;
ðxi � bÞ=ð0:5� bÞ; b� xi\0:5;
ð1� b� xiÞ=ð0:5� bÞ; 0:5� xi\1� b;
ð1� xiÞ=b; 1� b� xi� 1;

8>><
>>:

ð2Þ

where xi 2 ½0; 1� and b is the control parameter and belongs

to (0, 0.5). The map is piecewise linear, and the parameter

b ensures that the map runs in a chaotic state when

0 \b\ 0.5. It transforms an interval [0, 1] onto itself and

contains only one parameter b. The chaotic piecewise

linear map also has the same properties to chaotic asym-

metric tent map that are fit for composing Hash function.

Although the form of the map is simple and the equation

involved is linear, with changeable parameter b valued in

the interval (0, 0.5) and initial value x0 = 0.32323, this

map can display chaotic phenomena as shown in Fig. 3.

Figure 4 shows the simulation of the chaotic piecewise

linear map iterating 50 times with the initial value

x0 = 0.32323 and parameter b = 0.4.

3 Description of the parallel Hash algorithm

In this paper, the parallel Hash algorithm is developed by

employing the high sensitivity to the initial conditions of a

chaotic asymmetric tent map and a chaotic piecewise linear

map. In order to improve the message sensitivity to the

final Hash value, message expansion is introduced. Parallel

processing mode and message expansion are the two main

characteristics of the proposed Hash algorithm.

Fig. 1 Iteration property with changeable parameter a when

x0 = 0.42223

1306 Neural Comput & Applic (2011) 20:1305–1312

123



3.1 Design of the parallel Hash algorithm

The main objective of a Hash function is to generate a fixed

length Hash value from a message with arbitrary length,

which plays an important role in data integrity protection,

message authentication, and digital signature. Let

Hl = 128 be the bit-length of Hash value in this paper, and

the whole structure of Hash algorithm proposed is depicted

in Fig. 5, which is composed of three steps: message

expansion, parallel processing, and Hash value generation.

3.1.1 Step 1: message expansion

Message expansion is significant and necessary, because it

greatly improves the sensitivity of each bit in original

message to the final Hash value [16]. The plaintext is an

arbitrary message that is expressed in a matrix M, for

simple explanation of the extended message. Assume that

M as shown in (3) is a n 9 128 plain message matrix, each

element with a size of 8 bits.

M ¼

m1;1 m1;2 � � � m1;127 r2

m2;1 m2;2 � � � m2;127 r3

� � � � � � � � � � � � � � �
mn�1;1 mn�1;2 � � � mn�1;127 rn

c127 c126 � � � c1 r1

2
66664

3
77775 ð3Þ

A careful observation of message matrix Mn9128 shows

that it is composed of matrix M0n�1;127, ri (i = 1, 2,…,n),

and cj (j = 1, 2,…,127). In the following, the generation of

the three parts will be described, respectively.

As for the matrix M
0

n�1;127, it is defined in (4) as follows:

M
0 ¼

m1;1 m1;2 � � � m1;127

m2;1 m2;2 � � � m2;127

� � � � � � � � � � � �
mn�1;1 mn�1;2 � � � mn�1;127

2
664

3
775 ð4Þ

Fig. 2 Iteration property with x0 = 0.7654 and parameter a = 0.6

Fig. 3 Iteration property with changeable parameter b when

x0 = 0.32323

Fig. 4 Iteration property with x0 = 0.32323 and parameter b = 0.4

Plaintext Message M with padding

ATM

PLM

ATM

PLM

ATM

PLM

ATM

PLM

H(M)

1024 bits 1024 bits 1024 bits 1024 bits

128-bit
H(1)

128-bit
H(2)

128-bit
H(i)

128-bit
H(n)

128 bits

M1 M2 Mn
...

Fig. 5 The whole structure of Hash algorithm

Neural Comput & Applic (2011) 20:1305–1312 1307

123



where M0 = (mij) is a (n-1) 9 127 matrix composed of the

original message with padding. The original message with

arbitrary length firstly is padded with several bits, such that

the length of padded message is a multiple of 127 9 8 =

1,016: let the length of original message be om, and then

append n binary bits (1010…10)2, such that (om ? n) mod

1,016 = 1,016 - 64, where 1 B n B 1,016, and the left 64

bits are used to denote the length of the original message

om. Secondly, the message is divided into 8-bit elements

with number of a multiple of 127, each of which is then

translated into its corresponding ASCII code value. Finally,

all of the ASCII code values (decimal values) are assigned

to mij (i = 1, 2,…, n-1; j = 1, 2,…,127), sequentially and

respectively. That is the generation process of matrix

M
0

n�1;127 from padded original massage.

The other elements cj (j = 1, 2,…,127) and ri (i = 1,

2,…,n) in M n 9 128 are defined in (5) and (6), respectively:

cj ¼ �
n

i¼1
ðmi;j � lmiÞ þ lm j ðj ¼ 1; 2; . . .; 127Þ ð5Þ

where ‘‘�’’ denotes bitwise exclusive OR operation, ‘‘?’’

represents addition modulo 28, and lmi (i = 1, 2,…, n) and

lmj (j = 1, 2,…, 127) are the (n ? 127) successive values

multiplied by 28, which are obtained by iterating chaotic

asymmetric tent map (n ? 127) times with initial value

x0 = 0.7654 and parameter a = 0.6, sequentially and

respectively. cj is a function operation on all the elements

in the jth column of message matrix M0 with generated

numbers lmi and lmj.

ri ¼

P127

j¼1

ððmi;j þ lm jÞ � lmiÞ; i ¼ 1; 2; . . .; n� 1

P127

j¼1

ððcolj þ lm jÞ � lmiÞ; i ¼ n

8>>><
>>>:

ð6Þ

where ‘‘R‘‘ is summation modulo 28 and ri is a function

operation on all the elements in the ith row of the message

matrix M0 with generated numbers lmi and lmj.

For further convenient reference, set M = (M1,

M2,…,Mn) = (mij) (i = 1, 2,…, n; j = 1, 2,…,128), where

Mi denotes the ith row elements of message matrix M.

3.1.2 Step 2: parallel processing

Since the parallel processing procedures are the same for

each Mi (i = 1, 2,…, n), as we can see from the whole

structure of Hash algorithm (Fig. 5), for easy understand-

ing, the processing procedure of message block Mi is ran-

domly chosen as an example. For sub-blocks mi,j (j = 1,

2,…,128) of the current Mi, iterate the chaotic asymmetric

tent map (1) j
Hl� mi;j

� �
times with initial value of the state

value of last iteration of piecewise linear map xplm(mi,j-1) if

j = 1 or
mi;128

256
2 0; 1½ � if and only if j = 1 and changeable

parameter a ¼ ð inþ
j

HlÞ=2, to generate current state value of

the asymmetric tent map xacm(mi,j), and then iterate the

piecewise linear map (2) 1� j
Hl

� �
� mi;j

� �
times with ini-

tial value xacm(mi,j) and changeable parameter b ¼ a
2
, to

generate the current value xplm(mi,j) of current sub-block

mi,j, and then round xplm(mi,j) to its nearest integer 0 or 1.

Until all sub-blocks mi,j in Mi are processed, Hl numbers of

0 or 1 will be obtained. The intermediate Hl-bit Hash value

H(i) is generated by cascading the Hl numbers of 0 or 1.

3.1.3 Step 3: Hash value generation

After all the blocks are processed; the final Hash value

is generated by HðMÞ ¼ Hð1Þ � Hð2Þ � � � �HðiÞ � � � � �
HðnÞ.

3.2 Characteristics of the parallel Hash algorithm

The proposed algorithm has two significant characteristics:

the parallel processing mode and the improved sensitivity

in message expansion, which are the two main contribu-

tions and advantages in this paper.

(1) Parallel processing mode

Since the presented Hash algorithm is mainly based on

the iterations of the chaotic asymmetric tent map with

initial value of last sub-block state value of chaotic piece

linear map and changeable parameter a, and the iterations

of chaotic piecewise linear map with last sub-block state

value of asymmetric tent map as initial value and

changeable parameter b, respectively, as we can see from

Fig. 5, all message blocks Mi (i = 1,2,…,n) are processed

at the same time, which can greatly improve the efficiency

and speed of the algorithm.

(2) Sensitivity improvement in message expansion.

Since the message matrix M consists of message

M
0
n�1;127, ri (i = 1, 2,…, n), and cj (j = 1, 2,…, 127), as

shown in (3), each element of ri is closely related to the ith

row of M
0

n�1;127 and each element of cj is closely related to

the jth column of M
0

n�1;127 as well, according to (5) and (6).

The message in ri and cj correlated to each message block

greatly improves the sensitivity of the whole message M.

4 Performance analysis

4.1 Distribution of Hash value

The uniform distribution of Hash value is one of the most

important properties of Hash function, which is directly

1308 Neural Comput & Applic (2011) 20:1305–1312

123



related to the security of Hash function. Simulation

experiment has been done on the following paragraph of

message:

Chongqing University is a nationally famed com-

prehensive key university in China, directly under the

State Ministry of Education, also a university listed

among the first group of ‘‘211 Project’’ universities

gaining preferential support in their construction and

development from the Central Government of China.

Currently, Chongqing University runs a graduate

school and offers a wide range of undergraduate

programs covering diverse branches of learning such

as sciences, engineering, liberal arts, economics,

management, law and education.

Two 2-dimensional graphs are used to demonstrate the

differences between the message and the final Hash value.

In Fig. 6a, since the ASCII codes of letters and symbols in

ASCII Code Table are valued between 32 and 127, the

message are localized within a small area, while in Fig. 6b,

the hexadecimal Hash value spreads around very irregu-

larly. The similar experiment has been done to a special

paragraph of ‘‘blank space’’—message with the same

length as the above message. The contrast between mes-

sage and Hash value is demonstrated in Fig. 7. Even under

this very extreme condition, the contrast is still distinct, and

the distribution of Hash value is irregular as well. The

simulation results indicate that no information (including

the statistic information) of the message can be left after

the diffusion and confusion.

4.2 Sensitivity of Hash value to the original message

In order to evaluate the sensitivity of Hash value to the

message, Hash simulation experiments have been con-

ducted under the following different six conditions:

C1: The original message is the same as the one in Sect.

4.1

C2: Change the first character ‘C’ in the original

message to ‘c’

C3: Change the word ‘‘from’’ in the original message to

‘‘form’’

C4: Change the number ‘‘211’’ in the original message to

‘‘212’’

C5: Add a blank space at the end of the original message

C6: Exchange the first message block M1-‘‘Chongqing

University is a nationally famed comprehensive key uni’’

with the second message block M2-‘‘versity in China,

directly under the State Ministry of Education’’

The corresponding Hash values in hexadecimal formats

are gotten from simulation experiments as follows:

C1: 91064917275D65E06227EE4CA8BFEA59.

C2: 8B36B1895D9095A59071C2A5A1F463ED.

C3: FE0A7D9256E2EB086227EE4CA8BFEA58.

C4: 9F0500A6BBFD1B791EC5898FAB05CEBF.

C5: 4735997205925656AA56654A8AC6ADB.

C6: 1A8391DB0595C62B05C60D837CD96623.

The corresponding graphical display of binary sequences is

shown in Fig. 8. The simulation result indicates that

sensitivity property of the proposed algorithm is so perfect

that any tiny difference of the message will cause huge

changes in the final Hash value.

4.3 Statistical analysis of diffusion and confusion

Confusion and diffusion are two basic design criteria for

encryption algorithm, including Hash algorithms. Diffusion

means spreading out of the influence of a single plaintext

Fig. 6 Spread of message and Hash value: a distribution of the

message in ASCII code; b distribution of the Hash value in

hexadecimal format

Neural Comput & Applic (2011) 20:1305–1312 1309

123



bit over many cipher text bits so as to hide the statistical

structure of the plaintext. Confusion means the use of

transformations that complicate dependence of the

statistics of cipher text on the statistics of plaintext. Hash

function requires the message to diffuse its influence into

the whole Hash space. This means that the correlation

between the message and the corresponding Hash value

should be as small as possible. For the Hash value in binary

format, each bit can be only 0 or 1. Therefore, the ideal

diffusion effect should be that any tiny change in the initial

condition, control parameter, or plaintext leads to a 50%

changing probability for each bit of Hash value. Usually,

four statistics are defined as follows:

Mean changed bit number: B ¼ 1
N

PN
i¼1

Bi

Mean changed probability: P ¼ ðB=HlÞ � 100%

Standard deviation of the changed bit number:

DB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N�1

PN
i¼1

ðBi � BÞ2
s

Standard deviation: DP¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N�1

PN
i¼1

ðBi=Hl�PÞ2
s

� 100%

where N is the total number of tests, Bi denotes changed

bit number in the ith test, and Hl is the length of Hash

value.

The diffusion and confusion test is performed as fol-

lows: A paragraph of message is randomly chosen, and the

corresponding Hash value is generated. Then a bit in the

message is randomly selected and toggled and a new Hash

value is obtained. Two Hash values are compared, and the

number of hanged bit is counted as Bi. This test is per-

formed N times, and the corresponding distribution of

changed bit number is shown in Fig. 9, where N = 2,048.

Obviously, the changed bit number corresponding to 1 bit

changed message concentrates around the ideal changed bit

number 64-bit. It indicates that the algorithm has very

strong capability for diffusion and confusion.

The same tests on the algorithm with N = 256, 512,

1,024, and 2,048 have also been performed, respectively.

Under the condition that 1 bit is changed at each time, the

corresponding values of B, P, DB, and DP are obtained as

shown in Table 1. Based on the analysis of the data in

Table 1, we can see the mean changed bit number B and

the mean changed probability P are both very close to the

ideal value 64-bit and 50%. While DB and DP are very

little, which indicate the capability for diffusion and con-

fusion is very stable. Therefore, we can draw the conclu-

sion: the statistical performance of the proposed algorithm

approaches the ideal performance and satisfies the

requirement of resisting statistical attacks.

4.4 Analysis of collision resistance

We perform the following test to conduct quantitative

analysis on collision resistance [14, 15]: first, the Hash

Fig. 7 Spread of all ‘‘blank space’’—message and Hash value:

a distribution of all ‘‘blank space’’—message; b distribution of the

Hash value in hexadecimal format

Fig. 8 Hash values under different conditions

1310 Neural Comput & Applic (2011) 20:1305–1312

123



value for a paragraph of message randomly chosen is

generated and stored in ASCII format. Then a bit in the

paragraph is selected randomly and toggled, and thus a new

Hash value is then generated and stored in the same format.

Two Hash values are compared, and the number of ASCII

characters with the same value at the same location in the

Hash values, namely, the number of hits, is counted. A plot

of the distribution of the number of hits is given in Fig. 10,

and we can see there are 25 tests hit twice and 124 tests hit

once, while in 1,899 tests, no hit occurs. It is noticed that

the maximum number of equal character is only 2 and the

collision is very low. Moreover, the absolute difference

of two Hash values is calculated using the formula:

d ¼
PN
i¼1

jtðeiÞ � tðe0iÞj, where ei and ei

0
are the ith ASCII

character of the original and the new Hash value, respec-

tively, and the function t (*) converts the entries to their

equivalent decimal values. This kind of collision test is

performed 2,048 times. The maximum, mean, and mini-

mum values of d are listed in Table 2.

4.5 Analysis of meet-in-the-middle resistance

Meet-in-the-middle attack [13–15] means to find a con-

tradiction through looking for a suitable substitution of the

last plaintext block. For instance, M = (M1, M2,…, Mn-1,

Mn), the expected contradicted one is M00 ¼
ðM1;M2; . . .;Mn�1;M

00
n Þ. That is, the attack process is just

to replace Mn with Mn

00
and keep the final Hash value

H(M) unchanged. As a quantitative analysis, the corre-

sponding simulation experiment is implemented as fol-

lows: replace the last message block Mn ‘‘w and

education.’’ by the random message block named Mn

00

‘‘parallel acm plm’’. The associated Hash values of the

original message and replaced message in hexadecimal

formats from the experiments are described in the follow-

ing, followed by the number of different bits between

original message and replaced message, and corresponding

binary sequences are shown in Fig. 11.

Original message: 91064917275D65E06227EE4CA8B

FEA59.

Replaced message: 6BD8429DFCD30562C630DCDF

34A593C2 (63).

Fig. 9 Distribution of changed bit number: a plot of Bi, b histogram

of Bi

Table 1 Statistics of number of changed bit

N N = 256 N = 512 N = 1,024 N = 2,048 Mean

B 63.8555 63.8398 63.6465 63.5684 63.7276

P (%) 49.89 49.87 49.72 49.66 49.79

DB 8.0024 7.3993 8.0226 7.4260 7.7126

DP (%) 6.25 5.78 6.27 5.80 6.03

Fig. 10 Distribution of the number of ASCII characters with the

same value at the same location in the Hash value

Neural Comput & Applic (2011) 20:1305–1312 1311

123



It follows from Fig. 11 that the original message is

obviously different from replaced message. In particular,

there are 63-bit differences between original message and

replaced message. Thus, the algorithm is against the attack.

A careful observation of Fig. 5 and Step 2 in Sect. 3 as a

qualitative analysis reveals that both the initial value

x0 = xplm(mi,j-1)and changeable parameter a ¼ i
nþ

j
Hl

� �
=2

of the chaotic asymmetric tent map and the initial value

x0 = xacm(mi,j) and changeable parameter b ¼ i
nþ

j
Hl

� �
=4

of the chaotic piecewise linear map in the current sub-

message block are closely related to the position index ‘‘i’’

and ‘‘j’’ of the message M. Therefore, it is very difficult to

exchange Mn with Mn

00
. If it does as above instance, it will

generate different Hash value. As a result, the proposed

algorithm can resist meet-in-the-middle attack.

5 Conclusion

Based on the chaotic asymmetric tent map with changeable

parameter and the chaotic piecewise linear map with

changeable parameter, a parallel Hash algorithm construc-

tion is proposed and analyzed. There are two main char-

acteristics of the algorithm: parallel processing mode and

message expansion. The algorithm translates the expanded

message blocks into the corresponding ASCII code values

as the iteration times, iterates the chaotic asymmetric tent

map and then the chaotic piecewise linear map, continu-

ously, with the changeable parameters dynamically

obtained from the position index of the corresponding

message block, to generate decimal fractions, then rounds

the decimal fractions to integers, and finally cascades these

integers to construct intermediate Hash value. Final Hash

value with the length of 128-bit is generated by logical XOR

operation of intermediate Hash value. Theoretical analysis

and computer simulation indicate that the proposed algo-

rithm presents several interesting features, such as high

message, good statistical properties, collision resistance,

and secure against meet-in-the-middle attacks that can

satisfy the performance requirements of Hash function.

Acknowledgments Our sincere thanks go to the anonymous

reviewers for their valuable comments. The work described here was

supported by the Fundamental Research Funds for the Central Uni-

versities (Grant No. CDJXS10182215), the National Natural Science

Foundation of China (Grant Nos. 61070246, 61003247, 60873201),

the Program for New Century Excellent Talents in University of

China (NCET-09-0838, NCET-08-0603), the Natural Science Foun-

dation Project of CQ CSTC (Grant Nos. 2010BB2047, 2009BB2211).

References

1. Rivest RL (1991) The MD4 message digest algorithm. Springer,

Berlin, pp 303–311

2. Rivest RL (1992) The MD5 message digest algorithm. Request

for Comments: 1321. MIT Laboratory for Computer Science and

RSA Data Security, Inc

3. Baptista MS (1998) Cryptography with chaos. Phys Lett A

240:50–54

4. Wong KW (2003) A combined chaotic cryptographic and

Hashing scheme. Phys Lett A 307:292–298

5. Xiao D, Liao XF, Deng SJ (2005) One-way Hash function con-

struction based on the chaotic map with changeable-parameter.

Chaos Solitons Fractals 24:65–71

6. Yi X (2005) Hash function based on chaotic tent maps. IEEE

Trans Circuits Syst II Express Briefs 52:354–357

7. Lian SG, Sun JS, Wang ZQ (2006) Secure Hash function based

on neural network. Neurocomputing 69:2346–2350

8. Zhang JS, Wang XM, Zhang WF (2007) Chaotic keyed Hash

function based on feedforward–feedback nonlinear digital filter.

Phys Lett A 362:439–448

9. Wang Y, Liao XF, Xiao D, Wong KW (2008) One-way Hash

function construction based on 2D coupled map lattices. Inform

Sci 178:1391–1406

10. Yang HQ, Wong KW, Liao XF, Wang Y, Yang DG (2009) One-

way Hash function construction based on chaotic map network.

Chaos Solitons Fractals 41:2566–2574

11. Deng SJ, Li YT, Xiao D (2009) Analysis and improvement of a

chaos-based Hash function construction. Commun Nonlinear Sci

Numer Simulat 15:1338–1347

12. Li YT, Deng SJ, Xiao D (2011) A novel Hash algorithm con-

struction based on chaotic neural network. Neural Comput Appl

20:133–141

13. Li YT, Xiao D, Deng SJ (2010) Hash function based on the

chaotic look-up table with changeable parameter. Intern J Modern

Phys B (In press)

14. Xiao D, Liao XF, Deng SJ (2008) Parallel keyed Hash function

construction based on chaotic maps. Phys Lett A 372:4682–4688

15. Xiao D, Liao XY, Wong KW (2006) Improving the security of a

dynamic look-up table based chaotic cryptosystem. IEEE Trans

Circuits Sys II Express Briefs 53:502–506

16. Zhang CN, Lai CR (2004) A systematic approach for encryption

and authentication with fault tolerance. Comput Netw 45:143–154

Table 2 Absolute difference of two Hash values

Absolute difference Maximum Minimum Mean Mean/character

Values 2,221 514 1367.6 85.4773

Fig. 11 Hash values under meet-in-the-middle resistance

1312 Neural Comput & Applic (2011) 20:1305–1312

123


	Parallel Hash function construction based on chaotic maps with changeable parameters
	Abstract
	Introduction
	Preliminaries
	Analysis of the chaotic asymmetric tent map
	Analysis of the chaotic piecewise linear map

	Description of the parallel Hash algorithm
	Design of the parallel Hash algorithm
	Step 1: message expansion
	Step 2: parallel processing
	Step 3: Hash value generation

	Characteristics of the parallel Hash algorithm

	Performance analysis
	Distribution of Hash value
	Sensitivity of Hash value to the original message
	Statistical analysis of diffusion and confusion
	Analysis of collision resistance
	Analysis of meet-in-the-middle resistance

	Conclusion
	Acknowledgments
	References


