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Abstract Correlations are very significant from the ear-

liest days; in some cases, it is essential as it is difficult to

measure the amount directly, and in other cases it is

desirable to ascertain the results with other tests through

correlations. Soft computing techniques are now being

used as alternate statistical tool, and new techniques such

as artificial neural networks, fuzzy inference systems,

genetic algorithms, and their hybrids were employed for

developing the predictive models to estimate the needed

parameters, in the recent years. Determination of perme-

ability coefficient (k) of soils is very important for the

definition of hydraulic conductivity and is difficult,

expensive, time-consuming, and involves destructive tests.

In this paper, use of some soft computing techniques such

as ANNs (MLP, RBF, etc.) and ANFIS (adaptive neuro-

fuzzy inference system) for prediction of permeability of

coarse-grained soils was described and compared. As a

result of this paper, it was obtained that the all constructed

soft computing models exhibited high performance for

predicting k. In order to predict the permeability coeffi-

cient, ANN models having three inputs, one output were

applied successfully and exhibited reliable predictions.

However, all four different algorithms of ANN have almost

the same prediction capability, and accuracy of MLP was

relatively higher than RBF models. The ANFIS model for

prediction of permeability coefficient revealed the most

reliable prediction when compared with the ANN models,

and the use of soft computing techniques will provide new

approaches and methodologies in prediction of some

parameters in soil mechanics.

Keywords ANN � MLP � RBF � ANFIS �
Soft computing � Soils � Grain size � Permeability

1 Introduction

It generally has been recognized that grain size is a fun-

damental independent variable controlling permeability in

unconsolidated sediments. Previous theoretical and

empirical investigations into the relationship between

particle size and inter-granular permeability have resulted

in the well-known formula (Eq. 1) for intrinsic perme-

ability. In Eq. 1, d is particle diameter and c is dimen-

sionless constant [1].

k ¼ cd2 ð1Þ

Since permeability is the measure of the ease with which

water moves through aquifer material, certain relationships

must exist between permeability and the statistical

parameters that describe the grain-size distribution of the

porous mediums.

Soft computing techniques—such as fuzzy logic, artifi-

cial neural networks, genetic algorithms, and neuro-fuzzy
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systems, which were first used in design of higher tech-

nology products—are now being used in many branches of

sciences and technologies, and their popularities gradually

increase.

Earth sciences aim to describe very complex processes

and are in need of new technologies for data analyses. The

number of researches in evolutionary algorithms and

genetic programming, neural science and neural net sys-

tems, fuzzy set theory and fuzzy systems, fractal and chaos

theory, and chaotic systems aiming the solution of

problems in earth sciences (estimation of parameters; sus-

ceptibility, risk, vulnerability and hazard mapping; inter-

pretation of geophysical measurement results; many kinds

of mining applications; etc.) was especially increased in the

last 5–10 years.

Correlations have been a significant part of scientific

researches from earliest days. In some cases, it is essential

as it is difficult to measure the amount directly, and in other

cases it is desirable to ascertain the results with other tests

through correlations. The correlations are generally semi-

empirical based on some mechanics or purely empirical

based on statistical analysis [2].

However, determination of permeability coefficient

(k) of a soil is time-consuming, expensive, and involves

destructive tests. If reliable predictive models could be

obtained between k with quick, cheap, and nondestructive

test results such as grain-size distribution parameters,

it would be very valuable for the estimation of k.

The study presented herein aims to predict the perme-

ability coefficient (k) of the coarse-grained soils due to

grain-size distribution curves using a few soft computing

techniques (artificial neural networks—ANN and adaptive

neuro-fuzzy inference system—ANFIS) and to compare

the models in prediction capability point of view. Soil

samples have been collected from various locations of

Ostrava (Czech Republic) and tested. The tests included

grain-size distribution and permeability coefficient; and

d10, d30, and d60 were first correlated with k; and statisti-

cally significant models were selected. In order to establish

predictive models, soft computing techniques such as

artificial neural networks and neuro-fuzzy models were

used, and prediction performances were then analyzed.

2 Perspective and purpose

Especially in water-bearing soils, permeability is one of the

most important characteristics that significantly affect

groundwater flow. Permeability represents the ability of a

porous medium to transmit water through its intercon-

nected voids. Accurate estimation of permeability is con-

sidered crucial for successful groundwater development

and management practices. Grain-size distribution mainly

controls the intrinsic permeability of medium, and increase

in grain size increases the permeability due to the large

pore openings. Moreover, sorting and uniformity of the

grain size are also very important for permeability. Per-

meability decreases in poorly sorted soils because of the

fine grains in pore spaces, while uniform soils have greater

permeability coefficient than non-uniform soils.

Statistical grain-size distribution analyses are cheaper

and lesser dependent on the geometry and hydraulic

boundaries of the aquifer but reflect almost all the trans-

mitting properties of the media [3]. That is why numerous

attempts have been made to define the relationship between

permeability and grain-size distribution of soil. Some well-

known examples of these researches are as follows.

Hazen [4] first proposed a relationship (Eq. 1) between

k and effective grain size (d10). Shepherd [1] extended

Hazen’s work by performing power regression analysis on

19 sets of published data for unconsolidated sediments. The

data sets ranged in size from 8 to 66 data pairs. He found

that the exponent in Eq. 1 varies from 1.11 to 2.05 with an

average value of 1.72 and that the value of the constant c is

most often between 0.05 and 1.18 but can reach a value of

9.85. Values for both c and the exponent are typically

higher for well-sorted samples with uniformly sized parti-

cles and highly spherical grains. Uma et al. [5] suggested

an equation to estimate the Ks and transmissivity of sandy

aquifers of the same form as Eq. 1, with c values that

depend on the nature of the geologic environment.

Krumbein and Monk [6] proposed an equation based on

experiments performed with sieved glacial outwash sands

that were recombined to obtain various grain-size distri-

butions. Kozeny [7] proposed an equation based on

porosity and specific surface. Rawls and Brakensiek [8]

used field data from 1,323 soils across the United States to

develop a regression equation that relates porosity n, per-

centages of sand- and clay-sized particles in the sample.

Jabro [9] estimated permeability from grain-size and bulk

density data. Sperry and Peirce [10] developed a linear

model to estimate permeability based on grain size, shape,

and porosity. Lebron et al. [11] sought to improve upon

permeability prediction methods by quantifying the char-

acteristics of the pore spaces at a microscopic scale [12].

However, many attempts were done for the estimation

of k; correlation coefficients (R2) of the models were

generally lower than *0.80; and whole grain-size distri-

bution curves were not included in the assessments.

Alyamani and Sen [3] included more information about

the entire grain-size distribution curve by relating k to the

initial slope and intercept of the curve for 32 sandy soil

samples obtained in Saudi Arabia and Australia, and pro-

posed the following equation:

k ¼ 1:505 � ½Io þ 0:025 � ðd50 � d10Þ�2 ð2Þ
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in Eq. 2, k is expressed in cm/s, Io is x-intercept of the

straight line formed by joining d50 and d10 of the grain-size

distribution curve (mm). Alyamani and Sen [3] found that a

log–log plot of k versus [Io ? 0.025 * (d50 - d10] for their

data set yielded a straight line having an R2 = 0.94.

In the useful suggested method of Alyamani and Sen

[3], an extra graph, which is plotted by calculated per-

centiles corresponding to increments of 5% starting from

5% (d5, d10, d15, d20,…,d95), is needed. Io is then calculated

from intercept of the straight-line drawn by joining d50 and

d10 of this graph.

In order to predict the permeability coefficient from

grain-size distribution curves directly, some neural com-

puting models were constructed in this paper, and more

information about the entire grain-size distribution curve

relating to uniformity and sorting degree was included in

the assessment of k. For grain-size distribution analyses

and determination of permeability coefficient, selected 243

soil sample sets were first tested according to American

Society for Testing and Materials (ASTM) guidelines

[13, 14]. These analyses were performed on the samples

collected from the various locations of Ostrava (Czech

Republic). After drawing the grain-size distribution curves,

as the parameters of uniformity and sorting degree, d10

(grain-size diameter at which 10% by weight), d30 (grain-

size diameter at which 30% by weight), and d60 (grain-size

diameter at which 60% by weight) were then determined

from the grain-size distribution curves. The results

obtained from the experiments and their basic test statistics

are tabulated in Table 1.

3 Data sets used in the models

In order to establish relationships among the parameters

obtained in this study, simple regression analyses were first

performed, and relations between k with d10 (grain-size

diameter at which 10% by weight), d30 (grain-size diameter

at which 30% by weight), and d60 (grain-size diameter at

which 60% by weight) were analyzed employing linear,

power, logarithmic, and exponential functions (Table 2).

Regression equations were established among k with grain-

size distribution analyses results (Table 3), and it was

found that the relationships were not statistically enough

strong to establish significant models by traditional statis-

tical methods. Figure 1 shows the plot of the k versus d10,

d30, and d60. However, exponential regression models are

relatively stronger than other models (Table 2). That is

why some soft computing techniques were used for pre-

diction of permeability coefficient from d10, d30, and d60.

Multiple regression analysis was also carried out to

correlate the measured permeability to three grain-size

parameters, namely, d10, d30, and d60 (Table 4). Multiple

regression model to predict permeability is given below.

k ¼ 0:004ð Þd10 þ 3:4 � 10�5
� �

d30 þ 8:6 � 10�6
� �

d60 ð3Þ
In fact, the coefficient of correlation between the mea-

sured and predicted values is a good indicator to check the

prediction performance of the model. Figure 2 shows the

relationships between measured and predicted values

obtained from the MR model for S%, with a poor corre-

lation coefficient (R2 = 0.587).

4 An overview of Artificial Neural Network (ANN)

models

When the materials are natural materials, there will be faced

many uncertainty and material will never be known with

certainty. That is why some methodologies in artificial

neural networks, fuzzy systems, and evolutionary compu-

tation have been successfully combined, and new tech-

niques called soft computing or computational intelligence

have been developed in recent years. These techniques are

attracting more and more attention in several research fields

because they tolerate a wide range of uncertainty [15].

Artificial neural networks are data processing systems

devised via imitating brain activity and have performance

characteristics like biological neural networks. ANN has a

Table 1 Basic statistics of the results obtained from analyses

k (*10-6) d10 d30 d60

Minimum 0.0001 0.0017 0.011 0.0285

Maximum 0.005 0.65 17 43

Average 0.00051187 0.199 2.569 12.631

Std. dev. 0.00071 0.119 3.318 9.586

Unit of d is mm

Table 2 Correlation coefficients (R2) obtained from the simple

regressions between k with d10, d30, d60

Model d10 D30 D60

Linear 0.505 0.599 0.516

Logarithmic 0.162 0.351 0.164

Exponential 0.557 0.616 0.526

Power 0.179 0.387 0.192

Bold values show the highest correlation coefficients (R2)

Table 3 Predictive models for the assessment of k

Predictive model R2

k - d10 k (*10-6) = 0.0001 e5.6231(d
10
) 0.557

k - d30 k (*10-6) = 0.0002 e0.2133(d
30
) 0.616

k - d60 k (*10-6) = 0.0001 e0.0682(d
60
) 0.526
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lot of important capabilities such as learning from data,

generalization, working with unlimited number of variable

[16]. Neural networks may be used as a direct substitute

for auto correlation, multivariable regression, linear

regression, trigonometric, and other statistical analysis and

techniques [17]. Neural networks, with their remarkable

ability to derive meaning from complicated or imprecise

data, can be used to extract patterns and detect trends that

are too complex to be noticed by either humans or other

computer techniques [18, 19]. Rumelhart and McClelland

[20] reported that the main characteristics of ANN include

large-scale parallel distributed processing, continuous

nonlinear dynamics, collective computation, high fault

tolerance, self-organization, self-learning, and real-time

treatment. A trained neural network can be thought of as an

‘‘expert’’ in the category of information it has been given to

Fig. 1 k versus d10, d30, d60

graphics

Table 4 Model summaries of multiple regressions for prediction of k

Independent variables Coefficient St. error t value Sig. level

Constant 0.000 0.000 -5.360 0.000

d10 0.004 0.000 15.267 0.000

d30 3.4E-005 0.000 1.446 0.150

d60 8.6E-006 0.000 -1.413 0.159
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analyze. This expert can then be used to provide projec-

tions given new situations of interest and answer ‘‘what if’’

questions [21].

The most commonly used algorithms are multilayer

feed-forward artificial neural network (multiple layer per-

ceptron-MLP) and radial basis function network (RBFN).

The radial basis function network (RBFN) is traditionally

used for strict interpolation problem in multi-dimensional

space and has similar capabilities with MLP neural net-

work which solves any function approximation problem

[22]. RBFs were first used in design of neural network by

Broomhead and Lowe [23], who showed how a nonlinear

relationship could be modeled by RBF neural network, and

interpolation problems could be implemented [23]. The

main two advantages of RBFN are

(a) Training of networks in a short time than MLP [24],

(b) Approximation of the best solution without dealing

with local minimums [25].

Moreover, RBFN are local networks compared to the

feed-forward networks which perform global mapping.

Otherwise, RBFN uses a single set of processing units, and

each of these units is most receptive to a local region of the

input space [26]. That is why, RBFN are used as an

alternative neural network model in applications of func-

tion approximation, time series forecasting as well as

classifying task in recent years [27–35].

The structure of RBFN is composed of three layers

(Fig. 3), and the main distinction between MLP and RBFN

is the number of the hidden layer. RBFN has only one

hidden layer, which contains nodes called RBF units, and

radially symmetric basis function is used as activation

functions of hidden nodes.

The input layer serves as an input distributor to the hidden

layer. Different from MLP, the values in input layer are

forwarded to hidden layer directly without being multiplied

by weight values. The hidden layer unit measures the dis-

tance between an input vector with the center of its radial

function and produces an output value depending on the

distance. The center of radial basis function is called

reference vector. The closer input vector is to the reference

vector, the more the value is produced at the output of hidden

node. However, a lot of radial basis functions are suggested

for using in hidden layer (Gaussian, Multi-Quadric, Gen-

eralized Multi-Quadric, Thin Plate Spline), Gaussian func-

tion is the most widely used in applications. Chen et al. [27]

indicate that the choice of radial basis function used in

network does not significantly affect performance of net-

work. The activation function of the individual hidden nodes

defined by the Gaussian function is expressed as follows:

/j ¼ e
�

X�Cjk k2

r2
j

� �

j ¼ 1; 2 . . .; L ð4Þ

where /j denotes the output of the jth node in hidden layer,

:k kis Euclidian distance function which is generally used in

applications, X is the input vector, Cj is center of the jth

Gaussian function, rj is radius which shows the width of

the Gaussian function of the jth node, and L denotes the

number of hidden layer nodes.

In the next step, the neurons of the output layer perform

a weighted sum using the hidden layer outputs and the

weights which connect hidden layer to output layer. Output

of network can be presented as a linear combination of the

basis functions:

Fig. 2 Cross-correlation of

predicted and observed values

of k obtained from multiple

regression analysis

Fig. 3 Architecture of radial basis function network (RBF)
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yk ¼
XL

j¼1

/jwkj þ wk0 ð5Þ

where wkj is the weight that connects hidden neuron j and

output neuron k,wk0 is bias for the output neuron.

5 Artificial neural network models for prediction of k

All data were first normalized and divided into three data

sets, such as, training (1/2 of all data), test (1/4 of all data),

and verification (1/4 of all data). In this study, Matlab 7.1

[36] software was used in neural network analyses having a

three-layer feed-forward network, and models were con-

structed by MLP and RBF architectures.

5.1 MLP models for prediction of k

In this study, permeability coefficients of soils were first

predicted indirectly by using the MLP algorithm. They

consist of an input layer (3 neurons), one hidden layer (10

neurons), and one output layer (Fig. 4). In the analyses

network parameters of learning parameters, momentum

parameters, networks training function, and activation

(transfer) function for all layer were respectively adjusted

to 0.01, 0.9, trainLm, and tansig. As in many other network

training methods, models and parameters were used to be

able to reach minimum RMS values, and network goal was

reached at the end of 437 iterations.

In fact, the coefficient of determination between the

measured and predicted values is a good indicator to

check the prediction performance of the model. Figure 5

shows the relationships between measured and predicted

values obtained from the models for k, with good coef-

ficient of determinations. In this study, variance account

for (VAF) (Eq. 6) and root mean square error (RMSE)

(Eq. 7) indices were also calculated to control the per-

formance of the prediction capacity of predictive models

developed in the study as employed by Alvarez and

Babuska [37, Finol et al. [38], Yilmaz and Yüksek

[39, 40]:

VAF ¼ 1�
var y� y

0� �

var yð Þ

" #

� 100 ð6Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

y� y0ð Þ2
vuut ð7Þ

where y and y0 are the measured and predicted values,

respectively. If the VAF is 100 and RMSE is 0, then the

model will be excellent. The obtained values of VAF and

RMSE given in Table 5 indicated a high prediction

performance.

5.2 RBF models for prediction of k

Training of RBF networks contains process of determina-

tion of center vector (Cj), radius value (rj), and linear

weight values (wkj). Two-stage hybrid learning algorithm is

used to train RBF networks in general. In the first stage of

hybrid learning algorithm, center and width of RBFs in

hidden layer are determined by using unsupervised clus-

tering algorithms or randomly selected from given input

data set. Output weight is calculated in the second stage. A

lot of methods are proposed in literature to determine the

center and width of reference vector, and some of them are

listed below.
Fig. 4 MLP model used in this study

Fig. 5 Cross-correlation of

predicted and observed values

of k for MLP model
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Number of hidden neurons is set to the number of

training examples, and all input vectors are also used as

centers of RBFs. In other words, for each point in input

space, one radial basis function is determined. This case is

named as ‘‘Exact RBF’’. There are two disadvantages of

Exact RBF such as size problem and overtraining problem.

Size problem causes calculation complexity when data set

is too large. Network is over trained with these noisy data,

so the performance of the system for test data will not as

good as performance of training data. To reduce calculat-

ing complexity and to deal with overtraining problem, the

number of neurons in hidden layer is reduced as smaller

than the number of sample in input data set, and central

vectors are chosen from input vectors randomly.

Pruning or growing methods start with a number of

prespecified hidden neuron and iteratively, and continues

by adding/removing hidden neurons to/from RBFN. The

network structure that has minimum testing and training

error is selected as a final model of RBFN. In this iterative

process, parameters of hidden nodes are randomly selected

from input vectors or determined by using clustering

methods. In order to determine central vectors with clus-

tering methods, input vectors are devoted to certain number

of clusters by using clustering algorithms, such as, k means,

Self-Organization Map (SOM), and cluster centers are then

used as RBF centers.

In the analyses, three different algorithms of RBF such

as Exact RBF, RBF trained with k means, and RBF trained

with SOM were used in prediction of k. However, three

models consist of 3 neurons in input layer and one output

layer; the neuron numbers in the hidden layer of Exact

RBF, RBF trained with k means, and RBF trained with

SOM were, respectively, 26, 41, 37.

Cross-correlations between predicted and observed val-

ues (Figs. 6, 7, 8), RMSE, and VAF values indicated that

the three models of RBF constructed are highly acceptable

for prediction of k. RMSE, VAF, and R2 values are also

tabulated in Table 5.

6 Adaptive Neuro-Fuzzy Inference System model

for prediction of k

In ANFIS, both of the learning capabilities of a neural

network and reasoning capabilities of fuzzy logic were

combined in order to give enhanced prediction capabilities,

when compared to using a single methodology alone. The

goal of ANFIS is to find a model or mapping that will

correctly associate the inputs (initial values) with the target

(predicted values). The fuzzy inference system (FIS) is a

knowledge representation where each fuzzy rule describes

a local behavior of the system. The network structure that

implements FIS and employs hybrid learning rules to train

is called ANFIS.

Let X be a space of objects and x be a generic element

of X. A classical set A ( X is defined as a collection of

elements or objects x [ X such that each x can either belong

or not belong to the set A. By defining a characteristic

function for each element x in X, we can represent a clas-

sical set A by a set of ordered pairs (x, 0) or (x, 1), which

indicates x / 62 A or x [ A, respectively. On the other hand,

a fuzzy set expresses the degree to which an element

belongs to a set. Hence, the characteristic function of a

fuzzy set is allowed to have values between 0 and 1, which

denotes the degree of membership of an element in a given

set. So a fuzzy set A in X is defined as a set of ordered pairs:

Table 5 Performance indices (RMSE, VAF, and R2) for models used

Model RMSE VAF (%) (R2)

ANN—MLP 0.00015 93.234 0.933

ANN—RBF (exact) 0.00016 91.481 0.915

ANN—RBF (k means) 0.00018 88.947 0.891

ANN—RBF (SOM based) 0.00017 90.896 0.912

ANFIS 0.00006 96.711 0.973

RMSE Root mean square error, VAF Value account for

Fig. 6 Cross-correlation of

predicted and observed values

of k for Exact RBF model
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A ¼ fðx; lAðxÞÞjx 2 Xg ð8Þ

where lA(x) is called the membership function (MF) for the

fuzzy set A.

The MF maps each element of X to a membership grade

(or a value) between 0 and 1. Usually, X is referred to as

the universe of discourse or simply the universe. The most

widely used MF is the generalized bell MF (or the bell

MF), which is specified by three parameters {a, b, c} and

defined as [41]

bell ðx; a; b; cÞ ¼ 1= 1þ x� c=að Þj j2b
� �

ð9Þ

Parameter b is usually positive. A desired bell MF can

be obtained by a proper selection of the parameter set

{a, b, c}. During the learning phase of ANFIS, these

parameters are changing continuously in order to minimize

the error function between the target output values and the

calculated ones [42, 43].

The proposed neuro-fuzzy model of ANFIS is a multi-

layer neural network-based fuzzy system. Its topology is

shown in Fig. 9, and the system has a total of five layers. In

this connected structure, the input and output nodes rep-

resent the training values and the predicted values,

respectively, and in the hidden layers, there are nodes

functioning as membership functions (MFs) and rules. This

architecture has the benefit that it eliminates the

disadvantage of a normal feed-forward multilayer network,

where it is difficult for an observer to understand or modify

the network.

For simplicity, we assume that the examined fuzzy

inference system has two inputs x and y and one output. For

a first-order Sugeno fuzzy model, a common rule set with

two fuzzy if–then rules are defined as

Rule 1 : If x is A1 and y is B1; then

f1 ¼ p1xþ q1yþ r1;
ð10Þ

Rule 2 : If x is A2 and y is B2; then f2 ¼ p2xþ q2yþ r2:

ð11Þ

As seen from Fig. 9b, different layers of ANFIS have

different nodes. Each node in a layer is either fixed or

adaptive [44]. Different layers with their associated nodes

are described below:

Layer 1 Every node I in this layer is an adaptive node.

Parameters in this layer are called premise parameters.

Layer 2 Every node in this layer is a fixed node labeled P,

whose output is the product of all the incoming signals. Each

node output represents the firing strength of a rule.

Layer 3 Every node in this layer is a fixed node labeled

N. The ith node calculates the ratio of the ith rules’ firing

strength. Thus, the outputs of this layer are called nor-

malized firing strengths.

Fig. 7 Cross-correlation of

predicted and observed values

of k for RBF (k means) model

Fig. 8 Cross-correlation of

predicted and observed values

of k for RBF (SOM) model
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Layer 4 Every node i in this layer is an adaptive node.

Parameters in this layer are referred to as consequent

parameters.

Layer 5 The single node in this layer is a fixed node

labeled R, which computes the overall output as the sum-

mation of all incoming signals.

The learning algorithm for ANFIS is a hybrid algorithm,

which is a combination of gradient descent and the least-

squares method. More specifically, in the forward pass of

the hybrid learning algorithm, node outputs go forward

until layer 4 and the consequent parameters are identified

by the least-squares method [44]. In the backward pass, the

error signals propagate backwards and the premise

parameters are updated by gradient descent. Table 6 sum-

marizes the activities in each pass.

The consequent parameters are optimized under the

condition that the premise parameters are fixed. The main

benefit of the hybrid approach is that it converges much

faster since it reduces the search space dimensions of the

original pure back propagation method used in neural

networks. The overall output can be expressed as a linear

combination of the consequent parameters. The error

measure to train the above-mentioned ANFIS is defined

as [45]:

E ¼
Xn

k¼1

ðfk � f 0kÞ
2 ð12Þ

where fk and f 0k are the kth desired and estimated output,

respectively, and n is the total number of pairs (inputs–

outputs) of data in the training set.

In this study, a hybrid intelligent system called ANFIS

(the adaptive neuro-fuzzy inference system) (Table 7) for

predicting k was also applied. ANFIS was trained with the

help of Matlab version 7.1 [36], SPSS 10.0 [46] package

was used for RMSE and statistical calculations. Different

parameter types and their values used for training ANFIS

can be seen in Table 7.

According to the RMSE, VAF, R2 values (Table 5), and

cross-correlation between predicted and observed values

(Fig. 10), ANFIS model constructed to predict k has the

highest prediction performance.

Fig. 9 Type- 3 fuzzy reasoning

(a) and equivalent ANFIS (b)

Table 6 Forward and backward pass for ANFIS

Forward pass Backward pass

Premise parameters Fixed Gradient descent

Consequent parameters Least-squares estimator Fixed

Signals Node outputs Error signals
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7 Results and conclusions

In this paper, use of some neural computing models—such

as, artificial neural network (ANN) with different algo-

rithms (MLP, Exact RBF, RBF trained with k means, and

RBF trained with SOM) and artificial neuro-fuzzy infer-

ence system (ANFIS) models for prediction of permeability

coefficient value of soils—was described and compared.

It appears that there is a possibility of estimating k of

coarse-grained soils from grain-size distribution curves by

using the soft computing models.

The results of the present paper and their conclusions

can be drawn as follows:

(1) The result of the multiple regression analysis showed

that the model performance is very low with the

correlation coefficient of 0.587 obtained from cross-

correlation between observed and predicted values of k.

(2) In order to predict the permeability coefficient, ANN

models having three inputs, one output were applied

successfully and exhibited reliable predictions. How-

ever, all four different algorithms of ANN have

almost the same prediction capability, and accuracy

of MLP was relatively higher than RBF models.

(3) The ANFIS model for prediction of permeability

coefficient revealed the most reliable prediction when

compared with the ANN models.

The comparison of VAF, RMSE indices, and coefficient

of correlations (R2) for predicting k revealed that prediction

performances of the artificial neuro-fuzzy inference system

model are higher than those of four algorithms of artificial

neural networks (MLP, Exact RBF, RBF trained with

k means, RBF trained with SOM). In order to show the

deviations from the observed values of k, the distances of

Table 7 Different parameter types and their values used for training

ANFIS

ANFIS parameter type Value

Number of nodes 78

Number of linear parameters 108

Number of nonlinear parameters 27

Total number of parameters 135

Number of training data pairs 146

Number of checking data pairs 49

Number of fuzzy rules 27

Fig. 10 Cross-correlation of

predicted and observed values

of k for ANFIS model

Fig. 11 Graphics showing the

variation of the values,

predicted by ANN (Exact,

k means, SOM) and ANFIS

models, from the observed

values
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the predicted values from the models constructed from the

observed values were also calculated, and graphics were

drawn (Fig. 11). The deviation intervals (will be multiplied

by 10-6) (-0.000117 to ?0.000111) of the predicted values

from ANFIS are smaller than the deviation intervals of ANN

models (in MLP -0.000271 to ?0.000463, in Exact RBF

-0.000336 to ?0.000646, in RBF trained with k means

-0.000560 to ?0.000458, in RBF trained with SOM

-0.000317 to ?0.00011) (Fig. 12).

As is known, the potential benefits of soft computing

models extend beyond the high computation rates. Higher

performances of the soft computing models were sourced

from greater degree of robustness and fault tolerance than

traditional statistical models because there are many more

processing neurons, each with primarily local connections.

The performance comparison also showed that the soft

computing techniques are good tools for minimizing the

uncertainties, and their use will also may provide new

approaches and methodologies and minimize the potential

inconsistency of correlations. The results of this paper will

provide dissemination of important results of the use of soft

computing technologies in soil sciences and serve as an

example for engineering geologists, geotechnique and civil

engineers engaged in this area of interest.
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